// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Amlogic Meson Nand Flash Controller Driver * * Copyright (c) 2018 Amlogic, inc. * Author: Liang Yang */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NFC_REG_CMD 0x00 #define NFC_CMD_IDLE (0xc << 14) #define NFC_CMD_CLE (0x5 << 14) #define NFC_CMD_ALE (0x6 << 14) #define NFC_CMD_ADL ((0 << 16) | (3 << 20)) #define NFC_CMD_ADH ((1 << 16) | (3 << 20)) #define NFC_CMD_AIL ((2 << 16) | (3 << 20)) #define NFC_CMD_AIH ((3 << 16) | (3 << 20)) #define NFC_CMD_SEED ((8 << 16) | (3 << 20)) #define NFC_CMD_M2N ((0 << 17) | (2 << 20)) #define NFC_CMD_N2M ((1 << 17) | (2 << 20)) #define NFC_CMD_RB BIT(20) #define NFC_CMD_SCRAMBLER_ENABLE BIT(19) #define NFC_CMD_SCRAMBLER_DISABLE 0 #define NFC_CMD_SHORTMODE_DISABLE 0 #define NFC_CMD_RB_INT BIT(14) #define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0)) #define NFC_REG_CFG 0x04 #define NFC_REG_DADR 0x08 #define NFC_REG_IADR 0x0c #define NFC_REG_BUF 0x10 #define NFC_REG_INFO 0x14 #define NFC_REG_DC 0x18 #define NFC_REG_ADR 0x1c #define NFC_REG_DL 0x20 #define NFC_REG_DH 0x24 #define NFC_REG_CADR 0x28 #define NFC_REG_SADR 0x2c #define NFC_REG_PINS 0x30 #define NFC_REG_VER 0x38 #define NFC_RB_IRQ_EN BIT(21) #define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \ ( \ (cmd_dir) | \ ((ran) << 19) | \ ((bch) << 14) | \ ((short_mode) << 13) | \ (((page_size) & 0x7f) << 6) | \ ((pages) & 0x3f) \ ) #define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff)) #define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff)) #define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff)) #define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff)) #define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N) #define DMA_ADDR_ALIGN 8 #define ECC_CHECK_RETURN_FF (-1) #define NAND_CE0 (0xe << 10) #define NAND_CE1 (0xd << 10) #define DMA_BUSY_TIMEOUT 0x100000 #define CMD_FIFO_EMPTY_TIMEOUT 1000 #define MAX_CE_NUM 2 /* eMMC clock register, misc control */ #define CLK_SELECT_NAND BIT(31) #define NFC_CLK_CYCLE 6 /* nand flash controller delay 3 ns */ #define NFC_DEFAULT_DELAY 3000 #define ROW_ADDER(page, index) (((page) >> (8 * (index))) & 0xff) #define MAX_CYCLE_ADDRS 5 #define DIRREAD 1 #define DIRWRITE 0 #define ECC_PARITY_BCH8_512B 14 #define ECC_COMPLETE BIT(31) #define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0)) #define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0)) #define ECC_UNCORRECTABLE 0x3f #define PER_INFO_BYTE 8 struct meson_nfc_nand_chip { struct list_head node; struct nand_chip nand; unsigned long clk_rate; unsigned long level1_divider; u32 bus_timing; u32 twb; u32 tadl; u32 tbers_max; u32 bch_mode; u8 *data_buf; __le64 *info_buf; u32 nsels; u8 sels[]; }; struct meson_nand_ecc { u32 bch; u32 strength; }; struct meson_nfc_data { const struct nand_ecc_caps *ecc_caps; }; struct meson_nfc_param { u32 chip_select; u32 rb_select; }; struct nand_rw_cmd { u32 cmd0; u32 addrs[MAX_CYCLE_ADDRS]; u32 cmd1; }; struct nand_timing { u32 twb; u32 tadl; u32 tbers_max; }; struct meson_nfc { struct nand_controller controller; struct clk *core_clk; struct clk *device_clk; struct clk *phase_tx; struct clk *phase_rx; unsigned long clk_rate; u32 bus_timing; struct device *dev; void __iomem *reg_base; struct regmap *reg_clk; struct completion completion; struct list_head chips; const struct meson_nfc_data *data; struct meson_nfc_param param; struct nand_timing timing; union { int cmd[32]; struct nand_rw_cmd rw; } cmdfifo; dma_addr_t daddr; dma_addr_t iaddr; u32 info_bytes; unsigned long assigned_cs; }; enum { NFC_ECC_BCH8_1K = 2, NFC_ECC_BCH24_1K, NFC_ECC_BCH30_1K, NFC_ECC_BCH40_1K, NFC_ECC_BCH50_1K, NFC_ECC_BCH60_1K, }; #define MESON_ECC_DATA(b, s) { .bch = (b), .strength = (s)} static struct meson_nand_ecc meson_ecc[] = { MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8), MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24), MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30), MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40), MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50), MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60), }; static int meson_nand_calc_ecc_bytes(int step_size, int strength) { int ecc_bytes; if (step_size == 512 && strength == 8) return ECC_PARITY_BCH8_512B; ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8); ecc_bytes = ALIGN(ecc_bytes, 2); return ecc_bytes; } NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps, meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60); NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps, meson_nand_calc_ecc_bytes, 1024, 8); static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand) { return container_of(nand, struct meson_nfc_nand_chip, nand); } static void meson_nfc_select_chip(struct nand_chip *nand, int chip) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); struct meson_nfc *nfc = nand_get_controller_data(nand); int ret, value; if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels)) return; nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0; nfc->param.rb_select = nfc->param.chip_select; nfc->timing.twb = meson_chip->twb; nfc->timing.tadl = meson_chip->tadl; nfc->timing.tbers_max = meson_chip->tbers_max; if (nfc->clk_rate != meson_chip->clk_rate) { ret = clk_set_rate(nfc->device_clk, meson_chip->clk_rate); if (ret) { dev_err(nfc->dev, "failed to set clock rate\n"); return; } nfc->clk_rate = meson_chip->clk_rate; } if (nfc->bus_timing != meson_chip->bus_timing) { value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5); writel(value, nfc->reg_base + NFC_REG_CFG); writel((1 << 31), nfc->reg_base + NFC_REG_CMD); nfc->bus_timing = meson_chip->bus_timing; } } static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time) { writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff), nfc->reg_base + NFC_REG_CMD); } static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed) { writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)), nfc->reg_base + NFC_REG_CMD); } static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir, int scrambler) { struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); u32 bch = meson_chip->bch_mode, cmd; int len = mtd->writesize, pagesize, pages; pagesize = nand->ecc.size; if (raw) { len = mtd->writesize + mtd->oobsize; cmd = (len & GENMASK(13, 0)) | scrambler | DMA_DIR(dir); writel(cmd, nfc->reg_base + NFC_REG_CMD); return; } pages = len / nand->ecc.size; cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch, NFC_CMD_SHORTMODE_DISABLE, pagesize, pages); writel(cmd, nfc->reg_base + NFC_REG_CMD); } static void meson_nfc_drain_cmd(struct meson_nfc *nfc) { /* * Insert two commands to make sure all valid commands are finished. * * The Nand flash controller is designed as two stages pipleline - * a) fetch and b) excute. * There might be cases when the driver see command queue is empty, * but the Nand flash controller still has two commands buffered, * one is fetched into NFC request queue (ready to run), and another * is actively executing. So pushing 2 "IDLE" commands guarantees that * the pipeline is emptied. */ meson_nfc_cmd_idle(nfc, 0); meson_nfc_cmd_idle(nfc, 0); } static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc, unsigned int timeout_ms) { u32 cmd_size = 0; int ret; /* wait cmd fifo is empty */ ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size, !NFC_CMD_GET_SIZE(cmd_size), 10, timeout_ms * 1000); if (ret) dev_err(nfc->dev, "wait for empty CMD FIFO time out\n"); return ret; } static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc) { meson_nfc_drain_cmd(nfc); return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT); } static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); int len; len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i; return meson_chip->data_buf + len; } static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); int len, temp; temp = nand->ecc.size + nand->ecc.bytes; len = (temp + 2) * i; return meson_chip->data_buf + len; } static void meson_nfc_get_data_oob(struct nand_chip *nand, u8 *buf, u8 *oobbuf) { int i, oob_len = 0; u8 *dsrc, *osrc; oob_len = nand->ecc.bytes + 2; for (i = 0; i < nand->ecc.steps; i++) { if (buf) { dsrc = meson_nfc_data_ptr(nand, i); memcpy(buf, dsrc, nand->ecc.size); buf += nand->ecc.size; } osrc = meson_nfc_oob_ptr(nand, i); memcpy(oobbuf, osrc, oob_len); oobbuf += oob_len; } } static void meson_nfc_set_data_oob(struct nand_chip *nand, const u8 *buf, u8 *oobbuf) { int i, oob_len = 0; u8 *dsrc, *osrc; oob_len = nand->ecc.bytes + 2; for (i = 0; i < nand->ecc.steps; i++) { if (buf) { dsrc = meson_nfc_data_ptr(nand, i); memcpy(dsrc, buf, nand->ecc.size); buf += nand->ecc.size; } osrc = meson_nfc_oob_ptr(nand, i); memcpy(osrc, oobbuf, oob_len); oobbuf += oob_len; } } static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms) { u32 cmd, cfg; int ret = 0; meson_nfc_cmd_idle(nfc, nfc->timing.twb); meson_nfc_drain_cmd(nfc); meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT); cfg = readl(nfc->reg_base + NFC_REG_CFG); cfg |= NFC_RB_IRQ_EN; writel(cfg, nfc->reg_base + NFC_REG_CFG); reinit_completion(&nfc->completion); /* use the max erase time as the maximum clock for waiting R/B */ cmd = NFC_CMD_RB | NFC_CMD_RB_INT | nfc->param.chip_select | nfc->timing.tbers_max; writel(cmd, nfc->reg_base + NFC_REG_CMD); ret = wait_for_completion_timeout(&nfc->completion, msecs_to_jiffies(timeout_ms)); if (ret == 0) ret = -1; return ret; } static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); __le64 *info; int i, count; for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) { info = &meson_chip->info_buf[i]; *info |= oob_buf[count]; *info |= oob_buf[count + 1] << 8; } } static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); __le64 *info; int i, count; for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) { info = &meson_chip->info_buf[i]; oob_buf[count] = *info; oob_buf[count + 1] = *info >> 8; } } static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips, u64 *correct_bitmap) { struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); __le64 *info; int ret = 0, i; for (i = 0; i < nand->ecc.steps; i++) { info = &meson_chip->info_buf[i]; if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) { mtd->ecc_stats.corrected += ECC_ERR_CNT(*info); *bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info)); *correct_bitmap |= BIT_ULL(i); continue; } if ((nand->options & NAND_NEED_SCRAMBLING) && ECC_ZERO_CNT(*info) < nand->ecc.strength) { mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info); *bitflips = max_t(u32, *bitflips, ECC_ZERO_CNT(*info)); ret = ECC_CHECK_RETURN_FF; } else { ret = -EBADMSG; } } return ret; } static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf, int datalen, void *infobuf, int infolen, enum dma_data_direction dir) { struct meson_nfc *nfc = nand_get_controller_data(nand); u32 cmd; int ret = 0; nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir); ret = dma_mapping_error(nfc->dev, nfc->daddr); if (ret) { dev_err(nfc->dev, "DMA mapping error\n"); return ret; } cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr); writel(cmd, nfc->reg_base + NFC_REG_CMD); cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr); writel(cmd, nfc->reg_base + NFC_REG_CMD); if (infobuf) { nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir); ret = dma_mapping_error(nfc->dev, nfc->iaddr); if (ret) { dev_err(nfc->dev, "DMA mapping error\n"); dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir); return ret; } nfc->info_bytes = infolen; cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr); writel(cmd, nfc->reg_base + NFC_REG_CMD); cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr); writel(cmd, nfc->reg_base + NFC_REG_CMD); } return ret; } static void meson_nfc_dma_buffer_release(struct nand_chip *nand, int datalen, int infolen, enum dma_data_direction dir) { struct meson_nfc *nfc = nand_get_controller_data(nand); dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir); if (infolen) { dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir); nfc->info_bytes = 0; } } static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len) { struct meson_nfc *nfc = nand_get_controller_data(nand); int ret = 0; u32 cmd; u8 *info; info = kzalloc(PER_INFO_BYTE, GFP_KERNEL); if (!info) return -ENOMEM; ret = meson_nfc_dma_buffer_setup(nand, buf, len, info, PER_INFO_BYTE, DMA_FROM_DEVICE); if (ret) goto out; cmd = NFC_CMD_N2M | (len & GENMASK(13, 0)); writel(cmd, nfc->reg_base + NFC_REG_CMD); meson_nfc_drain_cmd(nfc); meson_nfc_wait_cmd_finish(nfc, 1000); meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE); out: kfree(info); return ret; } static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len) { struct meson_nfc *nfc = nand_get_controller_data(nand); int ret = 0; u32 cmd; ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL, 0, DMA_TO_DEVICE); if (ret) return ret; cmd = NFC_CMD_M2N | (len & GENMASK(13, 0)); writel(cmd, nfc->reg_base + NFC_REG_CMD); meson_nfc_drain_cmd(nfc); meson_nfc_wait_cmd_finish(nfc, 1000); meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE); return ret; } static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand, int page, bool in) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(nand_get_interface_config(nand)); struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc *nfc = nand_get_controller_data(nand); u32 *addrs = nfc->cmdfifo.rw.addrs; u32 cs = nfc->param.chip_select; u32 cmd0, cmd_num, row_start; int i; cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int); cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN; nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0; addrs[0] = cs | NFC_CMD_ALE | 0; if (mtd->writesize <= 512) { cmd_num--; row_start = 1; } else { addrs[1] = cs | NFC_CMD_ALE | 0; row_start = 2; } addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0); addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1); if (nand->options & NAND_ROW_ADDR_3) addrs[row_start + 2] = cs | NFC_CMD_ALE | ROW_ADDER(page, 2); else cmd_num--; /* subtract cmd1 */ cmd_num--; for (i = 0; i < cmd_num; i++) writel_relaxed(nfc->cmdfifo.cmd[i], nfc->reg_base + NFC_REG_CMD); if (in) { nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART; writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD); meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tR_max)); } else { meson_nfc_cmd_idle(nfc, nfc->timing.tadl); } return 0; } static int meson_nfc_write_page_sub(struct nand_chip *nand, int page, int raw) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(nand_get_interface_config(nand)); struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); struct meson_nfc *nfc = nand_get_controller_data(nand); int data_len, info_len; u32 cmd; int ret; meson_nfc_select_chip(nand, nand->cur_cs); data_len = mtd->writesize + mtd->oobsize; info_len = nand->ecc.steps * PER_INFO_BYTE; ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE); if (ret) return ret; ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, data_len, meson_chip->info_buf, info_len, DMA_TO_DEVICE); if (ret) return ret; if (nand->options & NAND_NEED_SCRAMBLING) { meson_nfc_cmd_seed(nfc, page); meson_nfc_cmd_access(nand, raw, DIRWRITE, NFC_CMD_SCRAMBLER_ENABLE); } else { meson_nfc_cmd_access(nand, raw, DIRWRITE, NFC_CMD_SCRAMBLER_DISABLE); } cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG; writel(cmd, nfc->reg_base + NFC_REG_CMD); meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tPROG_max)); meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE); return ret; } static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf, int oob_required, int page) { u8 *oob_buf = nand->oob_poi; meson_nfc_set_data_oob(nand, buf, oob_buf); return meson_nfc_write_page_sub(nand, page, 1); } static int meson_nfc_write_page_hwecc(struct nand_chip *nand, const u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); u8 *oob_buf = nand->oob_poi; memcpy(meson_chip->data_buf, buf, mtd->writesize); memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE); meson_nfc_set_user_byte(nand, oob_buf); return meson_nfc_write_page_sub(nand, page, 0); } static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc, struct nand_chip *nand, int raw) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); __le64 *info; u32 neccpages; int ret; neccpages = raw ? 1 : nand->ecc.steps; info = &meson_chip->info_buf[neccpages - 1]; do { usleep_range(10, 15); /* info is updated by nfc dma engine*/ smp_rmb(); dma_sync_single_for_cpu(nfc->dev, nfc->iaddr, nfc->info_bytes, DMA_FROM_DEVICE); ret = *info & ECC_COMPLETE; } while (!ret); } static int meson_nfc_read_page_sub(struct nand_chip *nand, int page, int raw) { struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc *nfc = nand_get_controller_data(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); int data_len, info_len; int ret; meson_nfc_select_chip(nand, nand->cur_cs); data_len = mtd->writesize + mtd->oobsize; info_len = nand->ecc.steps * PER_INFO_BYTE; ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD); if (ret) return ret; ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, data_len, meson_chip->info_buf, info_len, DMA_FROM_DEVICE); if (ret) return ret; if (nand->options & NAND_NEED_SCRAMBLING) { meson_nfc_cmd_seed(nfc, page); meson_nfc_cmd_access(nand, raw, DIRREAD, NFC_CMD_SCRAMBLER_ENABLE); } else { meson_nfc_cmd_access(nand, raw, DIRREAD, NFC_CMD_SCRAMBLER_DISABLE); } ret = meson_nfc_wait_dma_finish(nfc); meson_nfc_check_ecc_pages_valid(nfc, nand, raw); meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE); return ret; } static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf, int oob_required, int page) { u8 *oob_buf = nand->oob_poi; int ret; ret = meson_nfc_read_page_sub(nand, page, 1); if (ret) return ret; meson_nfc_get_data_oob(nand, buf, oob_buf); return 0; } static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); struct nand_ecc_ctrl *ecc = &nand->ecc; u64 correct_bitmap = 0; u32 bitflips = 0; u8 *oob_buf = nand->oob_poi; int ret, i; ret = meson_nfc_read_page_sub(nand, page, 0); if (ret) return ret; meson_nfc_get_user_byte(nand, oob_buf); ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap); if (ret == ECC_CHECK_RETURN_FF) { if (buf) memset(buf, 0xff, mtd->writesize); memset(oob_buf, 0xff, mtd->oobsize); } else if (ret < 0) { if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) { mtd->ecc_stats.failed++; return bitflips; } ret = meson_nfc_read_page_raw(nand, buf, 0, page); if (ret) return ret; for (i = 0; i < nand->ecc.steps ; i++) { u8 *data = buf + i * ecc->size; u8 *oob = nand->oob_poi + i * (ecc->bytes + 2); if (correct_bitmap & BIT_ULL(i)) continue; ret = nand_check_erased_ecc_chunk(data, ecc->size, oob, ecc->bytes + 2, NULL, 0, ecc->strength); if (ret < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += ret; bitflips = max_t(u32, bitflips, ret); } } } else if (buf && buf != meson_chip->data_buf) { memcpy(buf, meson_chip->data_buf, mtd->writesize); } return bitflips; } static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page) { return meson_nfc_read_page_raw(nand, NULL, 1, page); } static int meson_nfc_read_oob(struct nand_chip *nand, int page) { return meson_nfc_read_page_hwecc(nand, NULL, 1, page); } static bool meson_nfc_is_buffer_dma_safe(const void *buffer) { if ((uintptr_t)buffer % DMA_ADDR_ALIGN) return false; if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer))) return true; return false; } static void * meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr) { if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR)) return NULL; if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in)) return instr->ctx.data.buf.in; return kzalloc(instr->ctx.data.len, GFP_KERNEL); } static void meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr, void *buf) { if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) || WARN_ON(!buf)) return; if (buf == instr->ctx.data.buf.in) return; memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len); kfree(buf); } static void * meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr) { if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR)) return NULL; if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out)) return (void *)instr->ctx.data.buf.out; return kmemdup(instr->ctx.data.buf.out, instr->ctx.data.len, GFP_KERNEL); } static void meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr, const void *buf) { if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) || WARN_ON(!buf)) return; if (buf != instr->ctx.data.buf.out) kfree(buf); } static int meson_nfc_exec_op(struct nand_chip *nand, const struct nand_operation *op, bool check_only) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); struct meson_nfc *nfc = nand_get_controller_data(nand); const struct nand_op_instr *instr = NULL; void *buf; u32 op_id, delay_idle, cmd; int i; if (check_only) return 0; meson_nfc_select_chip(nand, op->cs); for (op_id = 0; op_id < op->ninstrs; op_id++) { instr = &op->instrs[op_id]; delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns), meson_chip->level1_divider * NFC_CLK_CYCLE); switch (instr->type) { case NAND_OP_CMD_INSTR: cmd = nfc->param.chip_select | NFC_CMD_CLE; cmd |= instr->ctx.cmd.opcode & 0xff; writel(cmd, nfc->reg_base + NFC_REG_CMD); meson_nfc_cmd_idle(nfc, delay_idle); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) { cmd = nfc->param.chip_select | NFC_CMD_ALE; cmd |= instr->ctx.addr.addrs[i] & 0xff; writel(cmd, nfc->reg_base + NFC_REG_CMD); } meson_nfc_cmd_idle(nfc, delay_idle); break; case NAND_OP_DATA_IN_INSTR: buf = meson_nand_op_get_dma_safe_input_buf(instr); if (!buf) return -ENOMEM; meson_nfc_read_buf(nand, buf, instr->ctx.data.len); meson_nand_op_put_dma_safe_input_buf(instr, buf); break; case NAND_OP_DATA_OUT_INSTR: buf = meson_nand_op_get_dma_safe_output_buf(instr); if (!buf) return -ENOMEM; meson_nfc_write_buf(nand, buf, instr->ctx.data.len); meson_nand_op_put_dma_safe_output_buf(instr, buf); break; case NAND_OP_WAITRDY_INSTR: meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms); if (instr->delay_ns) meson_nfc_cmd_idle(nfc, delay_idle); break; } } meson_nfc_wait_cmd_finish(nfc, 1000); return 0; } static int meson_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *nand = mtd_to_nand(mtd); if (section >= nand->ecc.steps) return -ERANGE; oobregion->offset = 2 + (section * (2 + nand->ecc.bytes)); oobregion->length = nand->ecc.bytes; return 0; } static int meson_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *nand = mtd_to_nand(mtd); if (section >= nand->ecc.steps) return -ERANGE; oobregion->offset = section * (2 + nand->ecc.bytes); oobregion->length = 2; return 0; } static const struct mtd_ooblayout_ops meson_ooblayout_ops = { .ecc = meson_ooblayout_ecc, .free = meson_ooblayout_free, }; static int meson_nfc_clk_init(struct meson_nfc *nfc) { int ret; /* request core clock */ nfc->core_clk = devm_clk_get(nfc->dev, "core"); if (IS_ERR(nfc->core_clk)) { dev_err(nfc->dev, "failed to get core clock\n"); return PTR_ERR(nfc->core_clk); } nfc->device_clk = devm_clk_get(nfc->dev, "device"); if (IS_ERR(nfc->device_clk)) { dev_err(nfc->dev, "failed to get device clock\n"); return PTR_ERR(nfc->device_clk); } nfc->phase_tx = devm_clk_get(nfc->dev, "tx"); if (IS_ERR(nfc->phase_tx)) { dev_err(nfc->dev, "failed to get TX clk\n"); return PTR_ERR(nfc->phase_tx); } nfc->phase_rx = devm_clk_get(nfc->dev, "rx"); if (IS_ERR(nfc->phase_rx)) { dev_err(nfc->dev, "failed to get RX clk\n"); return PTR_ERR(nfc->phase_rx); } /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ regmap_update_bits(nfc->reg_clk, 0, CLK_SELECT_NAND, CLK_SELECT_NAND); ret = clk_prepare_enable(nfc->core_clk); if (ret) { dev_err(nfc->dev, "failed to enable core clock\n"); return ret; } ret = clk_prepare_enable(nfc->device_clk); if (ret) { dev_err(nfc->dev, "failed to enable device clock\n"); goto err_device_clk; } ret = clk_prepare_enable(nfc->phase_tx); if (ret) { dev_err(nfc->dev, "failed to enable TX clock\n"); goto err_phase_tx; } ret = clk_prepare_enable(nfc->phase_rx); if (ret) { dev_err(nfc->dev, "failed to enable RX clock\n"); goto err_phase_rx; } ret = clk_set_rate(nfc->device_clk, 24000000); if (ret) goto err_disable_rx; return 0; err_disable_rx: clk_disable_unprepare(nfc->phase_rx); err_phase_rx: clk_disable_unprepare(nfc->phase_tx); err_phase_tx: clk_disable_unprepare(nfc->device_clk); err_device_clk: clk_disable_unprepare(nfc->core_clk); return ret; } static void meson_nfc_disable_clk(struct meson_nfc *nfc) { clk_disable_unprepare(nfc->phase_rx); clk_disable_unprepare(nfc->phase_tx); clk_disable_unprepare(nfc->device_clk); clk_disable_unprepare(nfc->core_clk); } static void meson_nfc_free_buffer(struct nand_chip *nand) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); kfree(meson_chip->info_buf); kfree(meson_chip->data_buf); } static int meson_chip_buffer_init(struct nand_chip *nand) { struct mtd_info *mtd = nand_to_mtd(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); u32 page_bytes, info_bytes, nsectors; nsectors = mtd->writesize / nand->ecc.size; page_bytes = mtd->writesize + mtd->oobsize; info_bytes = nsectors * PER_INFO_BYTE; meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL); if (!meson_chip->data_buf) return -ENOMEM; meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL); if (!meson_chip->info_buf) { kfree(meson_chip->data_buf); return -ENOMEM; } return 0; } static int meson_nfc_setup_interface(struct nand_chip *nand, int csline, const struct nand_interface_config *conf) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); const struct nand_sdr_timings *timings; u32 div, bt_min, bt_max, tbers_clocks; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return -ENOTSUPP; if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE); bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div; bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min + timings->tRC_min / 2) / div; meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max), div * NFC_CLK_CYCLE); meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min), div * NFC_CLK_CYCLE); tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max), div * NFC_CLK_CYCLE); meson_chip->tbers_max = ilog2(tbers_clocks); if (!is_power_of_2(tbers_clocks)) meson_chip->tbers_max++; bt_min = DIV_ROUND_UP(bt_min, 1000); bt_max = DIV_ROUND_UP(bt_max, 1000); if (bt_max < bt_min) return -EINVAL; meson_chip->level1_divider = div; meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider; meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1; return 0; } static int meson_nand_bch_mode(struct nand_chip *nand) { struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); int i; if (nand->ecc.strength > 60 || nand->ecc.strength < 8) return -EINVAL; for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) { if (meson_ecc[i].strength == nand->ecc.strength) { meson_chip->bch_mode = meson_ecc[i].bch; return 0; } } return -EINVAL; } static void meson_nand_detach_chip(struct nand_chip *nand) { meson_nfc_free_buffer(nand); } static int meson_nand_attach_chip(struct nand_chip *nand) { struct meson_nfc *nfc = nand_get_controller_data(nand); struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand); struct mtd_info *mtd = nand_to_mtd(nand); int ret; if (!mtd->name) { mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, "%s:nand%d", dev_name(nfc->dev), meson_chip->sels[0]); if (!mtd->name) return -ENOMEM; } if (nand->bbt_options & NAND_BBT_USE_FLASH) nand->bbt_options |= NAND_BBT_NO_OOB; nand->options |= NAND_NO_SUBPAGE_WRITE; ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps, mtd->oobsize - 2); if (ret) { dev_err(nfc->dev, "failed to ECC init\n"); return -EINVAL; } mtd_set_ooblayout(mtd, &meson_ooblayout_ops); ret = meson_nand_bch_mode(nand); if (ret) return -EINVAL; nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; nand->ecc.write_page_raw = meson_nfc_write_page_raw; nand->ecc.write_page = meson_nfc_write_page_hwecc; nand->ecc.write_oob_raw = nand_write_oob_std; nand->ecc.write_oob = nand_write_oob_std; nand->ecc.read_page_raw = meson_nfc_read_page_raw; nand->ecc.read_page = meson_nfc_read_page_hwecc; nand->ecc.read_oob_raw = meson_nfc_read_oob_raw; nand->ecc.read_oob = meson_nfc_read_oob; if (nand->options & NAND_BUSWIDTH_16) { dev_err(nfc->dev, "16bits bus width not supported"); return -EINVAL; } ret = meson_chip_buffer_init(nand); if (ret) return -ENOMEM; return ret; } static const struct nand_controller_ops meson_nand_controller_ops = { .attach_chip = meson_nand_attach_chip, .detach_chip = meson_nand_detach_chip, .setup_interface = meson_nfc_setup_interface, .exec_op = meson_nfc_exec_op, }; static int meson_nfc_nand_chip_init(struct device *dev, struct meson_nfc *nfc, struct device_node *np) { struct meson_nfc_nand_chip *meson_chip; struct nand_chip *nand; struct mtd_info *mtd; int ret, i; u32 tmp, nsels; nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); if (!nsels || nsels > MAX_CE_NUM) { dev_err(dev, "invalid register property size\n"); return -EINVAL; } meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels), GFP_KERNEL); if (!meson_chip) return -ENOMEM; meson_chip->nsels = nsels; for (i = 0; i < nsels; i++) { ret = of_property_read_u32_index(np, "reg", i, &tmp); if (ret) { dev_err(dev, "could not retrieve register property: %d\n", ret); return ret; } if (test_and_set_bit(tmp, &nfc->assigned_cs)) { dev_err(dev, "CS %d already assigned\n", tmp); return -EINVAL; } } nand = &meson_chip->nand; nand->controller = &nfc->controller; nand->controller->ops = &meson_nand_controller_ops; nand_set_flash_node(nand, np); nand_set_controller_data(nand, nfc); nand->options |= NAND_USES_DMA; mtd = nand_to_mtd(nand); mtd->owner = THIS_MODULE; mtd->dev.parent = dev; ret = nand_scan(nand, nsels); if (ret) return ret; ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(dev, "failed to register MTD device: %d\n", ret); nand_cleanup(nand); return ret; } list_add_tail(&meson_chip->node, &nfc->chips); return 0; } static int meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc) { struct meson_nfc_nand_chip *meson_chip; struct mtd_info *mtd; int ret; while (!list_empty(&nfc->chips)) { meson_chip = list_first_entry(&nfc->chips, struct meson_nfc_nand_chip, node); mtd = nand_to_mtd(&meson_chip->nand); ret = mtd_device_unregister(mtd); if (ret) return ret; nand_cleanup(&meson_chip->nand); list_del(&meson_chip->node); } return 0; } static int meson_nfc_nand_chips_init(struct device *dev, struct meson_nfc *nfc) { struct device_node *np = dev->of_node; struct device_node *nand_np; int ret; for_each_child_of_node(np, nand_np) { ret = meson_nfc_nand_chip_init(dev, nfc, nand_np); if (ret) { meson_nfc_nand_chip_cleanup(nfc); of_node_put(nand_np); return ret; } } return 0; } static irqreturn_t meson_nfc_irq(int irq, void *id) { struct meson_nfc *nfc = id; u32 cfg; cfg = readl(nfc->reg_base + NFC_REG_CFG); if (!(cfg & NFC_RB_IRQ_EN)) return IRQ_NONE; cfg &= ~(NFC_RB_IRQ_EN); writel(cfg, nfc->reg_base + NFC_REG_CFG); complete(&nfc->completion); return IRQ_HANDLED; } static const struct meson_nfc_data meson_gxl_data = { .ecc_caps = &meson_gxl_ecc_caps, }; static const struct meson_nfc_data meson_axg_data = { .ecc_caps = &meson_axg_ecc_caps, }; static const struct of_device_id meson_nfc_id_table[] = { { .compatible = "amlogic,meson-gxl-nfc", .data = &meson_gxl_data, }, { .compatible = "amlogic,meson-axg-nfc", .data = &meson_axg_data, }, {} }; MODULE_DEVICE_TABLE(of, meson_nfc_id_table); static int meson_nfc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct meson_nfc *nfc; struct resource *res; int ret, irq; nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); if (!nfc) return -ENOMEM; nfc->data = of_device_get_match_data(&pdev->dev); if (!nfc->data) return -ENODEV; nand_controller_init(&nfc->controller); INIT_LIST_HEAD(&nfc->chips); init_completion(&nfc->completion); nfc->dev = dev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); nfc->reg_base = devm_ioremap_resource(dev, res); if (IS_ERR(nfc->reg_base)) return PTR_ERR(nfc->reg_base); nfc->reg_clk = syscon_regmap_lookup_by_phandle(dev->of_node, "amlogic,mmc-syscon"); if (IS_ERR(nfc->reg_clk)) { dev_err(dev, "Failed to lookup clock base\n"); return PTR_ERR(nfc->reg_clk); } irq = platform_get_irq(pdev, 0); if (irq < 0) return -EINVAL; ret = meson_nfc_clk_init(nfc); if (ret) { dev_err(dev, "failed to initialize NAND clock\n"); return ret; } writel(0, nfc->reg_base + NFC_REG_CFG); ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc); if (ret) { dev_err(dev, "failed to request NFC IRQ\n"); ret = -EINVAL; goto err_clk; } ret = dma_set_mask(dev, DMA_BIT_MASK(32)); if (ret) { dev_err(dev, "failed to set DMA mask\n"); goto err_clk; } platform_set_drvdata(pdev, nfc); ret = meson_nfc_nand_chips_init(dev, nfc); if (ret) { dev_err(dev, "failed to init NAND chips\n"); goto err_clk; } return 0; err_clk: meson_nfc_disable_clk(nfc); return ret; } static int meson_nfc_remove(struct platform_device *pdev) { struct meson_nfc *nfc = platform_get_drvdata(pdev); int ret; ret = meson_nfc_nand_chip_cleanup(nfc); if (ret) return ret; meson_nfc_disable_clk(nfc); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver meson_nfc_driver = { .probe = meson_nfc_probe, .remove = meson_nfc_remove, .driver = { .name = "meson-nand", .of_match_table = meson_nfc_id_table, }, }; module_platform_driver(meson_nfc_driver); MODULE_LICENSE("Dual MIT/GPL"); MODULE_AUTHOR("Liang Yang "); MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver");