// SPDX-License-Identifier: GPL-2.0+ // Copyright (c) 2016-2017 Hisilicon Limited. #include #include #include #include "hclgevf_cmd.h" #include "hclgevf_main.h" #include "hclge_mbx.h" #include "hnae3.h" #include "hclgevf_devlink.h" #define HCLGEVF_NAME "hclgevf" #define HCLGEVF_RESET_MAX_FAIL_CNT 5 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); static void hclgevf_task_schedule(struct hclgevf_dev *hdev, unsigned long delay); static struct hnae3_ae_algo ae_algovf; static struct workqueue_struct *hclgevf_wq; static const struct pci_device_id ae_algovf_pci_tbl[] = { {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, /* required last entry */ {0, } }; static const u8 hclgevf_hash_key[] = { 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA }; MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); static const u32 cmdq_reg_addr_list[] = {HCLGEVF_NIC_CSQ_BASEADDR_L_REG, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, HCLGEVF_NIC_CSQ_DEPTH_REG, HCLGEVF_NIC_CSQ_TAIL_REG, HCLGEVF_NIC_CSQ_HEAD_REG, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, HCLGEVF_NIC_CRQ_DEPTH_REG, HCLGEVF_NIC_CRQ_TAIL_REG, HCLGEVF_NIC_CRQ_HEAD_REG, HCLGEVF_VECTOR0_CMDQ_SRC_REG, HCLGEVF_VECTOR0_CMDQ_STATE_REG, HCLGEVF_CMDQ_INTR_EN_REG, HCLGEVF_CMDQ_INTR_GEN_REG}; static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE, HCLGEVF_RST_ING, HCLGEVF_GRO_EN_REG}; static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG, HCLGEVF_RING_RX_ADDR_H_REG, HCLGEVF_RING_RX_BD_NUM_REG, HCLGEVF_RING_RX_BD_LENGTH_REG, HCLGEVF_RING_RX_MERGE_EN_REG, HCLGEVF_RING_RX_TAIL_REG, HCLGEVF_RING_RX_HEAD_REG, HCLGEVF_RING_RX_FBD_NUM_REG, HCLGEVF_RING_RX_OFFSET_REG, HCLGEVF_RING_RX_FBD_OFFSET_REG, HCLGEVF_RING_RX_STASH_REG, HCLGEVF_RING_RX_BD_ERR_REG, HCLGEVF_RING_TX_ADDR_L_REG, HCLGEVF_RING_TX_ADDR_H_REG, HCLGEVF_RING_TX_BD_NUM_REG, HCLGEVF_RING_TX_PRIORITY_REG, HCLGEVF_RING_TX_TC_REG, HCLGEVF_RING_TX_MERGE_EN_REG, HCLGEVF_RING_TX_TAIL_REG, HCLGEVF_RING_TX_HEAD_REG, HCLGEVF_RING_TX_FBD_NUM_REG, HCLGEVF_RING_TX_OFFSET_REG, HCLGEVF_RING_TX_EBD_NUM_REG, HCLGEVF_RING_TX_EBD_OFFSET_REG, HCLGEVF_RING_TX_BD_ERR_REG, HCLGEVF_RING_EN_REG}; static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG, HCLGEVF_TQP_INTR_GL0_REG, HCLGEVF_TQP_INTR_GL1_REG, HCLGEVF_TQP_INTR_GL2_REG, HCLGEVF_TQP_INTR_RL_REG}; static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) { if (!handle->client) return container_of(handle, struct hclgevf_dev, nic); else if (handle->client->type == HNAE3_CLIENT_ROCE) return container_of(handle, struct hclgevf_dev, roce); else return container_of(handle, struct hclgevf_dev, nic); } static int hclgevf_tqps_update_stats(struct hnae3_handle *handle) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_desc desc; struct hclgevf_tqp *tqp; int status; int i; for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_RX_STATUS, true); desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Query tqp stat fail, status = %d,queue = %d\n", status, i); return status; } tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += le32_to_cpu(desc.data[1]); hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS, true); desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "Query tqp stat fail, status = %d,queue = %d\n", status, i); return status; } tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += le32_to_cpu(desc.data[1]); } return 0; } static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclgevf_tqp *tqp; u64 *buff = data; int i; for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; } for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; } return buff; } static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; return kinfo->num_tqps * 2; } static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; u8 *buff = data; int i; for (i = 0; i < kinfo->num_tqps; i++) { struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd", tqp->index); buff += ETH_GSTRING_LEN; } for (i = 0; i < kinfo->num_tqps; i++) { struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd", tqp->index); buff += ETH_GSTRING_LEN; } return buff; } static void hclgevf_update_stats(struct hnae3_handle *handle, struct net_device_stats *net_stats) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int status; status = hclgevf_tqps_update_stats(handle); if (status) dev_err(&hdev->pdev->dev, "VF update of TQPS stats fail, status = %d.\n", status); } static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) { if (strset == ETH_SS_TEST) return -EOPNOTSUPP; else if (strset == ETH_SS_STATS) return hclgevf_tqps_get_sset_count(handle, strset); return 0; } static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, u8 *data) { u8 *p = (char *)data; if (strset == ETH_SS_STATS) p = hclgevf_tqps_get_strings(handle, p); } static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) { hclgevf_tqps_get_stats(handle, data); } static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, u8 subcode) { if (msg) { memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); msg->code = code; msg->subcode = subcode; } } static int hclgevf_get_basic_info(struct hclgevf_dev *hdev) { struct hnae3_ae_dev *ae_dev = hdev->ae_dev; u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE]; struct hclge_basic_info *basic_info; struct hclge_vf_to_pf_msg send_msg; unsigned long caps; int status; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0); status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, sizeof(resp_msg)); if (status) { dev_err(&hdev->pdev->dev, "failed to get basic info from pf, ret = %d", status); return status; } basic_info = (struct hclge_basic_info *)resp_msg; hdev->hw_tc_map = basic_info->hw_tc_map; hdev->mbx_api_version = basic_info->mbx_api_version; caps = basic_info->pf_caps; if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps)) set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); return 0; } static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; struct hclge_vf_to_pf_msg send_msg; u8 resp_msg; int ret; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, sizeof(u8)); if (ret) { dev_err(&hdev->pdev->dev, "VF request to get port based vlan state failed %d", ret); return ret; } nic->port_base_vlan_state = resp_msg; return 0; } static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) { #define HCLGEVF_TQPS_RSS_INFO_LEN 6 #define HCLGEVF_TQPS_ALLOC_OFFSET 0 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET 2 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET 4 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; struct hclge_vf_to_pf_msg send_msg; int status; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, HCLGEVF_TQPS_RSS_INFO_LEN); if (status) { dev_err(&hdev->pdev->dev, "VF request to get tqp info from PF failed %d", status); return status; } memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET], sizeof(u16)); memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET], sizeof(u16)); memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET], sizeof(u16)); return 0; } static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) { #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; struct hclge_vf_to_pf_msg send_msg; int ret; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, HCLGEVF_TQPS_DEPTH_INFO_LEN); if (ret) { dev_err(&hdev->pdev->dev, "VF request to get tqp depth info from PF failed %d", ret); return ret; } memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET], sizeof(u16)); memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET], sizeof(u16)); return 0; } static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclge_vf_to_pf_msg send_msg; u16 qid_in_pf = 0; u8 resp_data[2]; int ret; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); memcpy(send_msg.data, &queue_id, sizeof(queue_id)); ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, sizeof(resp_data)); if (!ret) qid_in_pf = *(u16 *)resp_data; return qid_in_pf; } static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) { struct hclge_vf_to_pf_msg send_msg; u8 resp_msg[2]; int ret; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, sizeof(resp_msg)); if (ret) { dev_err(&hdev->pdev->dev, "VF request to get the pf port media type failed %d", ret); return ret; } hdev->hw.mac.media_type = resp_msg[0]; hdev->hw.mac.module_type = resp_msg[1]; return 0; } static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) { struct hclgevf_tqp *tqp; int i; hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, sizeof(struct hclgevf_tqp), GFP_KERNEL); if (!hdev->htqp) return -ENOMEM; tqp = hdev->htqp; for (i = 0; i < hdev->num_tqps; i++) { tqp->dev = &hdev->pdev->dev; tqp->index = i; tqp->q.ae_algo = &ae_algovf; tqp->q.buf_size = hdev->rx_buf_len; tqp->q.tx_desc_num = hdev->num_tx_desc; tqp->q.rx_desc_num = hdev->num_rx_desc; /* need an extended offset to configure queues >= * HCLGEVF_TQP_MAX_SIZE_DEV_V2. */ if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2) tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET + i * HCLGEVF_TQP_REG_SIZE; else tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET + HCLGEVF_TQP_EXT_REG_OFFSET + (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) * HCLGEVF_TQP_REG_SIZE; tqp++; } return 0; } static int hclgevf_knic_setup(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; struct hnae3_knic_private_info *kinfo; u16 new_tqps = hdev->num_tqps; unsigned int i; u8 num_tc = 0; kinfo = &nic->kinfo; kinfo->num_tx_desc = hdev->num_tx_desc; kinfo->num_rx_desc = hdev->num_rx_desc; kinfo->rx_buf_len = hdev->rx_buf_len; for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) if (hdev->hw_tc_map & BIT(i)) num_tc++; num_tc = num_tc ? num_tc : 1; kinfo->tc_info.num_tc = num_tc; kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc); new_tqps = kinfo->rss_size * num_tc; kinfo->num_tqps = min(new_tqps, hdev->num_tqps); kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, sizeof(struct hnae3_queue *), GFP_KERNEL); if (!kinfo->tqp) return -ENOMEM; for (i = 0; i < kinfo->num_tqps; i++) { hdev->htqp[i].q.handle = &hdev->nic; hdev->htqp[i].q.tqp_index = i; kinfo->tqp[i] = &hdev->htqp[i].q; } /* after init the max rss_size and tqps, adjust the default tqp numbers * and rss size with the actual vector numbers */ kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc, kinfo->rss_size); return 0; } static void hclgevf_request_link_info(struct hclgevf_dev *hdev) { struct hclge_vf_to_pf_msg send_msg; int status; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); if (status) dev_err(&hdev->pdev->dev, "VF failed to fetch link status(%d) from PF", status); } void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) { struct hnae3_handle *rhandle = &hdev->roce; struct hnae3_handle *handle = &hdev->nic; struct hnae3_client *rclient; struct hnae3_client *client; if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) return; client = handle->client; rclient = hdev->roce_client; link_state = test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; if (link_state != hdev->hw.mac.link) { hdev->hw.mac.link = link_state; client->ops->link_status_change(handle, !!link_state); if (rclient && rclient->ops->link_status_change) rclient->ops->link_status_change(rhandle, !!link_state); } clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); } static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) { #define HCLGEVF_ADVERTISING 0 #define HCLGEVF_SUPPORTED 1 struct hclge_vf_to_pf_msg send_msg; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); send_msg.data[0] = HCLGEVF_ADVERTISING; hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); send_msg.data[0] = HCLGEVF_SUPPORTED; hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); } static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; int ret; nic->ae_algo = &ae_algovf; nic->pdev = hdev->pdev; nic->numa_node_mask = hdev->numa_node_mask; nic->flags |= HNAE3_SUPPORT_VF; nic->kinfo.io_base = hdev->hw.io_base; ret = hclgevf_knic_setup(hdev); if (ret) dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", ret); return ret; } static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) { if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { dev_warn(&hdev->pdev->dev, "vector(vector_id %d) has been freed.\n", vector_id); return; } hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; hdev->num_msi_left += 1; hdev->num_msi_used -= 1; } static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, struct hnae3_vector_info *vector_info) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hnae3_vector_info *vector = vector_info; int alloc = 0; int i, j; vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); vector_num = min(hdev->num_msi_left, vector_num); for (j = 0; j < vector_num; j++) { for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { vector->vector = pci_irq_vector(hdev->pdev, i); vector->io_addr = hdev->hw.io_base + HCLGEVF_VECTOR_REG_BASE + (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; hdev->vector_status[i] = 0; hdev->vector_irq[i] = vector->vector; vector++; alloc++; break; } } } hdev->num_msi_left -= alloc; hdev->num_msi_used += alloc; return alloc; } static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) { int i; for (i = 0; i < hdev->num_msi; i++) if (vector == hdev->vector_irq[i]) return i; return -EINVAL; } static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev, const u8 hfunc, const u8 *key) { struct hclgevf_rss_config_cmd *req; unsigned int key_offset = 0; struct hclgevf_desc desc; int key_counts; int key_size; int ret; key_counts = HCLGEVF_RSS_KEY_SIZE; req = (struct hclgevf_rss_config_cmd *)desc.data; while (key_counts) { hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_GENERIC_CONFIG, false); req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK); req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B); key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts); memcpy(req->hash_key, key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size); key_counts -= key_size; key_offset++; ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Configure RSS config fail, status = %d\n", ret); return ret; } } return 0; } static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle) { return HCLGEVF_RSS_KEY_SIZE; } static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev) { const u8 *indir = hdev->rss_cfg.rss_indirection_tbl; struct hclgevf_rss_indirection_table_cmd *req; struct hclgevf_desc desc; int rss_cfg_tbl_num; int status; int i, j; req = (struct hclgevf_rss_indirection_table_cmd *)desc.data; rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size / HCLGEVF_RSS_CFG_TBL_SIZE; for (i = 0; i < rss_cfg_tbl_num; i++) { hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE, false); req->start_table_index = cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE); req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK); for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++) req->rss_result[j] = indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j]; status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) { dev_err(&hdev->pdev->dev, "VF failed(=%d) to set RSS indirection table\n", status); return status; } } return 0; } static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size) { struct hclgevf_rss_tc_mode_cmd *req; u16 tc_offset[HCLGEVF_MAX_TC_NUM]; u16 tc_valid[HCLGEVF_MAX_TC_NUM]; u16 tc_size[HCLGEVF_MAX_TC_NUM]; struct hclgevf_desc desc; u16 roundup_size; unsigned int i; int status; req = (struct hclgevf_rss_tc_mode_cmd *)desc.data; roundup_size = roundup_pow_of_two(rss_size); roundup_size = ilog2(roundup_size); for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { tc_valid[i] = 1; tc_size[i] = roundup_size; tc_offset[i] = (hdev->hw_tc_map & BIT(i)) ? rss_size * i : 0; } hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false); for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { u16 mode = 0; hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B, (tc_valid[i] & 0x1)); hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M, HCLGEVF_RSS_TC_SIZE_S, tc_size[i]); hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B, tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET & 0x1); hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M, HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]); req->rss_tc_mode[i] = cpu_to_le16(mode); } status = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (status) dev_err(&hdev->pdev->dev, "VF failed(=%d) to set rss tc mode\n", status); return status; } /* for revision 0x20, vf shared the same rss config with pf */ static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) { #define HCLGEVF_RSS_MBX_RESP_LEN 8 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; struct hclge_vf_to_pf_msg send_msg; u16 msg_num, hash_key_index; u8 index; int ret; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / HCLGEVF_RSS_MBX_RESP_LEN; for (index = 0; index < msg_num; index++) { send_msg.data[0] = index; ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, HCLGEVF_RSS_MBX_RESP_LEN); if (ret) { dev_err(&hdev->pdev->dev, "VF get rss hash key from PF failed, ret=%d", ret); return ret; } hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; if (index == msg_num - 1) memcpy(&rss_cfg->rss_hash_key[hash_key_index], &resp_msg[0], HCLGEVF_RSS_KEY_SIZE - hash_key_index); else memcpy(&rss_cfg->rss_hash_key[hash_key_index], &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); } return 0; } static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, u8 *hfunc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; int i, ret; if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { /* Get hash algorithm */ if (hfunc) { switch (rss_cfg->hash_algo) { case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ: *hfunc = ETH_RSS_HASH_TOP; break; case HCLGEVF_RSS_HASH_ALGO_SIMPLE: *hfunc = ETH_RSS_HASH_XOR; break; default: *hfunc = ETH_RSS_HASH_UNKNOWN; break; } } /* Get the RSS Key required by the user */ if (key) memcpy(key, rss_cfg->rss_hash_key, HCLGEVF_RSS_KEY_SIZE); } else { if (hfunc) *hfunc = ETH_RSS_HASH_TOP; if (key) { ret = hclgevf_get_rss_hash_key(hdev); if (ret) return ret; memcpy(key, rss_cfg->rss_hash_key, HCLGEVF_RSS_KEY_SIZE); } } if (indir) for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) indir[i] = rss_cfg->rss_indirection_tbl[i]; return 0; } static int hclgevf_parse_rss_hfunc(struct hclgevf_dev *hdev, const u8 hfunc, u8 *hash_algo) { switch (hfunc) { case ETH_RSS_HASH_TOP: *hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; return 0; case ETH_RSS_HASH_XOR: *hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE; return 0; case ETH_RSS_HASH_NO_CHANGE: *hash_algo = hdev->rss_cfg.hash_algo; return 0; default: return -EINVAL; } } static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, const u8 *key, const u8 hfunc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; u8 hash_algo; int ret, i; if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { ret = hclgevf_parse_rss_hfunc(hdev, hfunc, &hash_algo); if (ret) return ret; /* Set the RSS Hash Key if specififed by the user */ if (key) { ret = hclgevf_set_rss_algo_key(hdev, hash_algo, key); if (ret) { dev_err(&hdev->pdev->dev, "invalid hfunc type %u\n", hfunc); return ret; } /* Update the shadow RSS key with user specified qids */ memcpy(rss_cfg->rss_hash_key, key, HCLGEVF_RSS_KEY_SIZE); } else { ret = hclgevf_set_rss_algo_key(hdev, hash_algo, rss_cfg->rss_hash_key); if (ret) return ret; } rss_cfg->hash_algo = hash_algo; } /* update the shadow RSS table with user specified qids */ for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) rss_cfg->rss_indirection_tbl[i] = indir[i]; /* update the hardware */ return hclgevf_set_rss_indir_table(hdev); } static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc) { u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0; if (nfc->data & RXH_L4_B_2_3) hash_sets |= HCLGEVF_D_PORT_BIT; else hash_sets &= ~HCLGEVF_D_PORT_BIT; if (nfc->data & RXH_IP_SRC) hash_sets |= HCLGEVF_S_IP_BIT; else hash_sets &= ~HCLGEVF_S_IP_BIT; if (nfc->data & RXH_IP_DST) hash_sets |= HCLGEVF_D_IP_BIT; else hash_sets &= ~HCLGEVF_D_IP_BIT; if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW) hash_sets |= HCLGEVF_V_TAG_BIT; return hash_sets; } static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle, struct ethtool_rxnfc *nfc, struct hclgevf_rss_input_tuple_cmd *req) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; u8 tuple_sets; req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; tuple_sets = hclgevf_get_rss_hash_bits(nfc); switch (nfc->flow_type) { case TCP_V4_FLOW: req->ipv4_tcp_en = tuple_sets; break; case TCP_V6_FLOW: req->ipv6_tcp_en = tuple_sets; break; case UDP_V4_FLOW: req->ipv4_udp_en = tuple_sets; break; case UDP_V6_FLOW: req->ipv6_udp_en = tuple_sets; break; case SCTP_V4_FLOW: req->ipv4_sctp_en = tuple_sets; break; case SCTP_V6_FLOW: if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 && (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3))) return -EINVAL; req->ipv6_sctp_en = tuple_sets; break; case IPV4_FLOW: req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; break; case IPV6_FLOW: req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; break; default: return -EINVAL; } return 0; } static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, struct ethtool_rxnfc *nfc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; struct hclgevf_rss_input_tuple_cmd *req; struct hclgevf_desc desc; int ret; if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) return -EOPNOTSUPP; if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) return -EINVAL; req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req); if (ret) { dev_err(&hdev->pdev->dev, "failed to init rss tuple cmd, ret = %d\n", ret); return ret; } ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "Set rss tuple fail, status = %d\n", ret); return ret; } rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en; rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en; rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en; rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en; rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en; rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en; rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en; rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en; return 0; } static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev, int flow_type, u8 *tuple_sets) { switch (flow_type) { case TCP_V4_FLOW: *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en; break; case UDP_V4_FLOW: *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en; break; case TCP_V6_FLOW: *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en; break; case UDP_V6_FLOW: *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en; break; case SCTP_V4_FLOW: *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en; break; case SCTP_V6_FLOW: *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en; break; case IPV4_FLOW: case IPV6_FLOW: *tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT; break; default: return -EINVAL; } return 0; } static u64 hclgevf_convert_rss_tuple(u8 tuple_sets) { u64 tuple_data = 0; if (tuple_sets & HCLGEVF_D_PORT_BIT) tuple_data |= RXH_L4_B_2_3; if (tuple_sets & HCLGEVF_S_PORT_BIT) tuple_data |= RXH_L4_B_0_1; if (tuple_sets & HCLGEVF_D_IP_BIT) tuple_data |= RXH_IP_DST; if (tuple_sets & HCLGEVF_S_IP_BIT) tuple_data |= RXH_IP_SRC; return tuple_data; } static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, struct ethtool_rxnfc *nfc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 tuple_sets; int ret; if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) return -EOPNOTSUPP; nfc->data = 0; ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type, &tuple_sets); if (ret || !tuple_sets) return ret; nfc->data = hclgevf_convert_rss_tuple(tuple_sets); return 0; } static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev, struct hclgevf_rss_cfg *rss_cfg) { struct hclgevf_rss_input_tuple_cmd *req; struct hclgevf_desc desc; int ret; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "Configure rss input fail, status = %d\n", ret); return ret; } static int hclgevf_get_tc_size(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; return rss_cfg->rss_size; } static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, int vector_id, struct hnae3_ring_chain_node *ring_chain) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclge_vf_to_pf_msg send_msg; struct hnae3_ring_chain_node *node; int status; int i = 0; memset(&send_msg, 0, sizeof(send_msg)); send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : HCLGE_MBX_UNMAP_RING_TO_VECTOR; send_msg.vector_id = vector_id; for (node = ring_chain; node; node = node->next) { send_msg.param[i].ring_type = hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); send_msg.param[i].tqp_index = node->tqp_index; send_msg.param[i].int_gl_index = hnae3_get_field(node->int_gl_idx, HNAE3_RING_GL_IDX_M, HNAE3_RING_GL_IDX_S); i++; if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { send_msg.ring_num = i; status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); if (status) { dev_err(&hdev->pdev->dev, "Map TQP fail, status is %d.\n", status); return status; } i = 0; } } return 0; } static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, struct hnae3_ring_chain_node *ring_chain) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int vector_id; vector_id = hclgevf_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "Get vector index fail. ret =%d\n", vector_id); return vector_id; } return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); } static int hclgevf_unmap_ring_from_vector( struct hnae3_handle *handle, int vector, struct hnae3_ring_chain_node *ring_chain) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int ret, vector_id; if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) return 0; vector_id = hclgevf_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "Get vector index fail. ret =%d\n", vector_id); return vector_id; } ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); if (ret) dev_err(&handle->pdev->dev, "Unmap ring from vector fail. vector=%d, ret =%d\n", vector_id, ret); return ret; } static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int vector_id; vector_id = hclgevf_get_vector_index(hdev, vector); if (vector_id < 0) { dev_err(&handle->pdev->dev, "hclgevf_put_vector get vector index fail. ret =%d\n", vector_id); return vector_id; } hclgevf_free_vector(hdev, vector_id); return 0; } static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, bool en_uc_pmc, bool en_mc_pmc, bool en_bc_pmc) { struct hnae3_handle *handle = &hdev->nic; struct hclge_vf_to_pf_msg send_msg; int ret; memset(&send_msg, 0, sizeof(send_msg)); send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; send_msg.en_bc = en_bc_pmc ? 1 : 0; send_msg.en_uc = en_uc_pmc ? 1 : 0; send_msg.en_mc = en_mc_pmc ? 1 : 0; send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->priv_flags) ? 1 : 0; ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); if (ret) dev_err(&hdev->pdev->dev, "Set promisc mode fail, status is %d.\n", ret); return ret; } static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, bool en_mc_pmc) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); bool en_bc_pmc; en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2; return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, en_bc_pmc); } static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); hclgevf_task_schedule(hdev, 0); } static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) { struct hnae3_handle *handle = &hdev->nic; bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; int ret; if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); if (!ret) clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); } } static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id, u16 stream_id, bool enable) { struct hclgevf_cfg_com_tqp_queue_cmd *req; struct hclgevf_desc desc; req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE, false); req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); req->stream_id = cpu_to_le16(stream_id); if (enable) req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; return hclgevf_cmd_send(&hdev->hw, &desc, 1); } static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int ret; u16 i; for (i = 0; i < handle->kinfo.num_tqps; i++) { ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable); if (ret) return ret; } return 0; } static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclgevf_tqp *tqp; int i; for (i = 0; i < kinfo->num_tqps; i++) { tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); } } static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) { struct hclge_vf_to_pf_msg send_msg; u8 host_mac[ETH_ALEN]; int status; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, ETH_ALEN); if (status) { dev_err(&hdev->pdev->dev, "fail to get VF MAC from host %d", status); return status; } ether_addr_copy(p, host_mac); return 0; } static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 host_mac_addr[ETH_ALEN]; if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) return; hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); if (hdev->has_pf_mac) ether_addr_copy(p, host_mac_addr); else ether_addr_copy(p, hdev->hw.mac.mac_addr); } static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p, bool is_first) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; struct hclge_vf_to_pf_msg send_msg; u8 *new_mac_addr = (u8 *)p; int status; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; ether_addr_copy(send_msg.data, new_mac_addr); if (is_first && !hdev->has_pf_mac) eth_zero_addr(&send_msg.data[ETH_ALEN]); else ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); if (!status) ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); return status; } static struct hclgevf_mac_addr_node * hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) { struct hclgevf_mac_addr_node *mac_node, *tmp; list_for_each_entry_safe(mac_node, tmp, list, node) if (ether_addr_equal(mac_addr, mac_node->mac_addr)) return mac_node; return NULL; } static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, enum HCLGEVF_MAC_NODE_STATE state) { switch (state) { /* from set_rx_mode or tmp_add_list */ case HCLGEVF_MAC_TO_ADD: if (mac_node->state == HCLGEVF_MAC_TO_DEL) mac_node->state = HCLGEVF_MAC_ACTIVE; break; /* only from set_rx_mode */ case HCLGEVF_MAC_TO_DEL: if (mac_node->state == HCLGEVF_MAC_TO_ADD) { list_del(&mac_node->node); kfree(mac_node); } else { mac_node->state = HCLGEVF_MAC_TO_DEL; } break; /* only from tmp_add_list, the mac_node->state won't be * HCLGEVF_MAC_ACTIVE */ case HCLGEVF_MAC_ACTIVE: if (mac_node->state == HCLGEVF_MAC_TO_ADD) mac_node->state = HCLGEVF_MAC_ACTIVE; break; } } static int hclgevf_update_mac_list(struct hnae3_handle *handle, enum HCLGEVF_MAC_NODE_STATE state, enum HCLGEVF_MAC_ADDR_TYPE mac_type, const unsigned char *addr) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclgevf_mac_addr_node *mac_node; struct list_head *list; list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; spin_lock_bh(&hdev->mac_table.mac_list_lock); /* if the mac addr is already in the mac list, no need to add a new * one into it, just check the mac addr state, convert it to a new * new state, or just remove it, or do nothing. */ mac_node = hclgevf_find_mac_node(list, addr); if (mac_node) { hclgevf_update_mac_node(mac_node, state); spin_unlock_bh(&hdev->mac_table.mac_list_lock); return 0; } /* if this address is never added, unnecessary to delete */ if (state == HCLGEVF_MAC_TO_DEL) { spin_unlock_bh(&hdev->mac_table.mac_list_lock); return -ENOENT; } mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); if (!mac_node) { spin_unlock_bh(&hdev->mac_table.mac_list_lock); return -ENOMEM; } mac_node->state = state; ether_addr_copy(mac_node->mac_addr, addr); list_add_tail(&mac_node->node, list); spin_unlock_bh(&hdev->mac_table.mac_list_lock); return 0; } static int hclgevf_add_uc_addr(struct hnae3_handle *handle, const unsigned char *addr) { return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, HCLGEVF_MAC_ADDR_UC, addr); } static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, const unsigned char *addr) { return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, HCLGEVF_MAC_ADDR_UC, addr); } static int hclgevf_add_mc_addr(struct hnae3_handle *handle, const unsigned char *addr) { return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, HCLGEVF_MAC_ADDR_MC, addr); } static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, const unsigned char *addr) { return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, HCLGEVF_MAC_ADDR_MC, addr); } static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, struct hclgevf_mac_addr_node *mac_node, enum HCLGEVF_MAC_ADDR_TYPE mac_type) { struct hclge_vf_to_pf_msg send_msg; u8 code, subcode; if (mac_type == HCLGEVF_MAC_ADDR_UC) { code = HCLGE_MBX_SET_UNICAST; if (mac_node->state == HCLGEVF_MAC_TO_ADD) subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; else subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; } else { code = HCLGE_MBX_SET_MULTICAST; if (mac_node->state == HCLGEVF_MAC_TO_ADD) subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; else subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; } hclgevf_build_send_msg(&send_msg, code, subcode); ether_addr_copy(send_msg.data, mac_node->mac_addr); return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); } static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, struct list_head *list, enum HCLGEVF_MAC_ADDR_TYPE mac_type) { char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; struct hclgevf_mac_addr_node *mac_node, *tmp; int ret; list_for_each_entry_safe(mac_node, tmp, list, node) { ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); if (ret) { hnae3_format_mac_addr(format_mac_addr, mac_node->mac_addr); dev_err(&hdev->pdev->dev, "failed to configure mac %s, state = %d, ret = %d\n", format_mac_addr, mac_node->state, ret); return; } if (mac_node->state == HCLGEVF_MAC_TO_ADD) { mac_node->state = HCLGEVF_MAC_ACTIVE; } else { list_del(&mac_node->node); kfree(mac_node); } } } static void hclgevf_sync_from_add_list(struct list_head *add_list, struct list_head *mac_list) { struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; list_for_each_entry_safe(mac_node, tmp, add_list, node) { /* if the mac address from tmp_add_list is not in the * uc/mc_mac_list, it means have received a TO_DEL request * during the time window of sending mac config request to PF * If mac_node state is ACTIVE, then change its state to TO_DEL, * then it will be removed at next time. If is TO_ADD, it means * send TO_ADD request failed, so just remove the mac node. */ new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); if (new_node) { hclgevf_update_mac_node(new_node, mac_node->state); list_del(&mac_node->node); kfree(mac_node); } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { mac_node->state = HCLGEVF_MAC_TO_DEL; list_move_tail(&mac_node->node, mac_list); } else { list_del(&mac_node->node); kfree(mac_node); } } } static void hclgevf_sync_from_del_list(struct list_head *del_list, struct list_head *mac_list) { struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; list_for_each_entry_safe(mac_node, tmp, del_list, node) { new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); if (new_node) { /* If the mac addr is exist in the mac list, it means * received a new request TO_ADD during the time window * of sending mac addr configurrequest to PF, so just * change the mac state to ACTIVE. */ new_node->state = HCLGEVF_MAC_ACTIVE; list_del(&mac_node->node); kfree(mac_node); } else { list_move_tail(&mac_node->node, mac_list); } } } static void hclgevf_clear_list(struct list_head *list) { struct hclgevf_mac_addr_node *mac_node, *tmp; list_for_each_entry_safe(mac_node, tmp, list, node) { list_del(&mac_node->node); kfree(mac_node); } } static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, enum HCLGEVF_MAC_ADDR_TYPE mac_type) { struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; struct list_head tmp_add_list, tmp_del_list; struct list_head *list; INIT_LIST_HEAD(&tmp_add_list); INIT_LIST_HEAD(&tmp_del_list); /* move the mac addr to the tmp_add_list and tmp_del_list, then * we can add/delete these mac addr outside the spin lock */ list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; spin_lock_bh(&hdev->mac_table.mac_list_lock); list_for_each_entry_safe(mac_node, tmp, list, node) { switch (mac_node->state) { case HCLGEVF_MAC_TO_DEL: list_move_tail(&mac_node->node, &tmp_del_list); break; case HCLGEVF_MAC_TO_ADD: new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); if (!new_node) goto stop_traverse; ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); new_node->state = mac_node->state; list_add_tail(&new_node->node, &tmp_add_list); break; default: break; } } stop_traverse: spin_unlock_bh(&hdev->mac_table.mac_list_lock); /* delete first, in order to get max mac table space for adding */ hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); /* if some mac addresses were added/deleted fail, move back to the * mac_list, and retry at next time. */ spin_lock_bh(&hdev->mac_table.mac_list_lock); hclgevf_sync_from_del_list(&tmp_del_list, list); hclgevf_sync_from_add_list(&tmp_add_list, list); spin_unlock_bh(&hdev->mac_table.mac_list_lock); } static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) { hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); } static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) { spin_lock_bh(&hdev->mac_table.mac_list_lock); hclgevf_clear_list(&hdev->mac_table.uc_mac_list); hclgevf_clear_list(&hdev->mac_table.mc_mac_list); spin_unlock_bh(&hdev->mac_table.mac_list_lock); } static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hnae3_ae_dev *ae_dev = hdev->ae_dev; struct hclge_vf_to_pf_msg send_msg; if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) return -EOPNOTSUPP; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, HCLGE_MBX_ENABLE_VLAN_FILTER); send_msg.data[0] = enable ? 1 : 0; return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); } static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, __be16 proto, u16 vlan_id, bool is_kill) { #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET 3 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclge_vf_to_pf_msg send_msg; int ret; if (vlan_id > HCLGEVF_MAX_VLAN_ID) return -EINVAL; if (proto != htons(ETH_P_8021Q)) return -EPROTONOSUPPORT; /* When device is resetting or reset failed, firmware is unable to * handle mailbox. Just record the vlan id, and remove it after * reset finished. */ if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { set_bit(vlan_id, hdev->vlan_del_fail_bmap); return -EBUSY; } else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) { clear_bit(vlan_id, hdev->vlan_del_fail_bmap); } hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, HCLGE_MBX_VLAN_FILTER); send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill; memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id, sizeof(vlan_id)); memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto, sizeof(proto)); /* when remove hw vlan filter failed, record the vlan id, * and try to remove it from hw later, to be consistence * with stack. */ ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); if (is_kill && ret) set_bit(vlan_id, hdev->vlan_del_fail_bmap); return ret; } static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) { #define HCLGEVF_MAX_SYNC_COUNT 60 struct hnae3_handle *handle = &hdev->nic; int ret, sync_cnt = 0; u16 vlan_id; if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID)) return; rtnl_lock(); vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); while (vlan_id != VLAN_N_VID) { ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), vlan_id, true); if (ret) break; clear_bit(vlan_id, hdev->vlan_del_fail_bmap); sync_cnt++; if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) break; vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); } rtnl_unlock(); } static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclge_vf_to_pf_msg send_msg; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, HCLGE_MBX_VLAN_RX_OFF_CFG); send_msg.data[0] = enable ? 1 : 0; return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); } static int hclgevf_reset_tqp(struct hnae3_handle *handle) { #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclge_vf_to_pf_msg send_msg; u8 return_status = 0; int ret; u16 i; /* disable vf queue before send queue reset msg to PF */ ret = hclgevf_tqp_enable(handle, false); if (ret) { dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n", ret); return ret; } hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status, sizeof(return_status)); if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE) return ret; for (i = 1; i < handle->kinfo.num_tqps; i++) { hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); memcpy(send_msg.data, &i, sizeof(i)); ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); if (ret) return ret; } return 0; } static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclge_vf_to_pf_msg send_msg; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); memcpy(send_msg.data, &new_mtu, sizeof(new_mtu)); return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); } static int hclgevf_notify_client(struct hclgevf_dev *hdev, enum hnae3_reset_notify_type type) { struct hnae3_client *client = hdev->nic_client; struct hnae3_handle *handle = &hdev->nic; int ret; if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || !client) return 0; if (!client->ops->reset_notify) return -EOPNOTSUPP; ret = client->ops->reset_notify(handle, type); if (ret) dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", type, ret); return ret; } static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev, enum hnae3_reset_notify_type type) { struct hnae3_client *client = hdev->roce_client; struct hnae3_handle *handle = &hdev->roce; int ret; if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client) return 0; if (!client->ops->reset_notify) return -EOPNOTSUPP; ret = client->ops->reset_notify(handle, type); if (ret) dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", type, ret); return ret; } static int hclgevf_reset_wait(struct hclgevf_dev *hdev) { #define HCLGEVF_RESET_WAIT_US 20000 #define HCLGEVF_RESET_WAIT_CNT 2000 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) u32 val; int ret; if (hdev->reset_type == HNAE3_VF_RESET) ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_VF_RST_ING, val, !(val & HCLGEVF_VF_RST_ING_BIT), HCLGEVF_RESET_WAIT_US, HCLGEVF_RESET_WAIT_TIMEOUT_US); else ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val, !(val & HCLGEVF_RST_ING_BITS), HCLGEVF_RESET_WAIT_US, HCLGEVF_RESET_WAIT_TIMEOUT_US); /* hardware completion status should be available by this time */ if (ret) { dev_err(&hdev->pdev->dev, "couldn't get reset done status from h/w, timeout!\n"); return ret; } /* we will wait a bit more to let reset of the stack to complete. This * might happen in case reset assertion was made by PF. Yes, this also * means we might end up waiting bit more even for VF reset. */ if (hdev->reset_type == HNAE3_VF_FULL_RESET) msleep(5000); else msleep(500); return 0; } static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) { u32 reg_val; reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG); if (enable) reg_val |= HCLGEVF_NIC_SW_RST_RDY; else reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG, reg_val); } static int hclgevf_reset_stack(struct hclgevf_dev *hdev) { int ret; /* uninitialize the nic client */ ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); if (ret) return ret; /* re-initialize the hclge device */ ret = hclgevf_reset_hdev(hdev); if (ret) { dev_err(&hdev->pdev->dev, "hclge device re-init failed, VF is disabled!\n"); return ret; } /* bring up the nic client again */ ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); if (ret) return ret; /* clear handshake status with IMP */ hclgevf_reset_handshake(hdev, false); /* bring up the nic to enable TX/RX again */ return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); } static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) { #define HCLGEVF_RESET_SYNC_TIME 100 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { struct hclge_vf_to_pf_msg send_msg; int ret; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); if (ret) { dev_err(&hdev->pdev->dev, "failed to assert VF reset, ret = %d\n", ret); return ret; } hdev->rst_stats.vf_func_rst_cnt++; } set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); /* inform hardware that preparatory work is done */ msleep(HCLGEVF_RESET_SYNC_TIME); hclgevf_reset_handshake(hdev, true); dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n", hdev->reset_type); return 0; } static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) { dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", hdev->rst_stats.vf_func_rst_cnt); dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", hdev->rst_stats.flr_rst_cnt); dev_info(&hdev->pdev->dev, "VF reset count: %u\n", hdev->rst_stats.vf_rst_cnt); dev_info(&hdev->pdev->dev, "reset done count: %u\n", hdev->rst_stats.rst_done_cnt); dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", hdev->rst_stats.hw_rst_done_cnt); dev_info(&hdev->pdev->dev, "reset count: %u\n", hdev->rst_stats.rst_cnt); dev_info(&hdev->pdev->dev, "reset fail count: %u\n", hdev->rst_stats.rst_fail_cnt); dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG)); dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG)); dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); } static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) { /* recover handshake status with IMP when reset fail */ hclgevf_reset_handshake(hdev, true); hdev->rst_stats.rst_fail_cnt++; dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", hdev->rst_stats.rst_fail_cnt); if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) set_bit(hdev->reset_type, &hdev->reset_pending); if (hclgevf_is_reset_pending(hdev)) { set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); hclgevf_reset_task_schedule(hdev); } else { set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); hclgevf_dump_rst_info(hdev); } } static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) { int ret; hdev->rst_stats.rst_cnt++; /* perform reset of the stack & ae device for a client */ ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); if (ret) return ret; rtnl_lock(); /* bring down the nic to stop any ongoing TX/RX */ ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); rtnl_unlock(); if (ret) return ret; return hclgevf_reset_prepare_wait(hdev); } static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) { int ret; hdev->rst_stats.hw_rst_done_cnt++; ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); if (ret) return ret; rtnl_lock(); /* now, re-initialize the nic client and ae device */ ret = hclgevf_reset_stack(hdev); rtnl_unlock(); if (ret) { dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); return ret; } ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT); /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1 * times */ if (ret && hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1) return ret; ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT); if (ret) return ret; hdev->last_reset_time = jiffies; hdev->rst_stats.rst_done_cnt++; hdev->rst_stats.rst_fail_cnt = 0; clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); return 0; } static void hclgevf_reset(struct hclgevf_dev *hdev) { if (hclgevf_reset_prepare(hdev)) goto err_reset; /* check if VF could successfully fetch the hardware reset completion * status from the hardware */ if (hclgevf_reset_wait(hdev)) { /* can't do much in this situation, will disable VF */ dev_err(&hdev->pdev->dev, "failed to fetch H/W reset completion status\n"); goto err_reset; } if (hclgevf_reset_rebuild(hdev)) goto err_reset; return; err_reset: hclgevf_reset_err_handle(hdev); } static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev, unsigned long *addr) { enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; /* return the highest priority reset level amongst all */ if (test_bit(HNAE3_VF_RESET, addr)) { rst_level = HNAE3_VF_RESET; clear_bit(HNAE3_VF_RESET, addr); clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); clear_bit(HNAE3_VF_FUNC_RESET, addr); } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { rst_level = HNAE3_VF_FULL_RESET; clear_bit(HNAE3_VF_FULL_RESET, addr); clear_bit(HNAE3_VF_FUNC_RESET, addr); } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { rst_level = HNAE3_VF_PF_FUNC_RESET; clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); clear_bit(HNAE3_VF_FUNC_RESET, addr); } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { rst_level = HNAE3_VF_FUNC_RESET; clear_bit(HNAE3_VF_FUNC_RESET, addr); } else if (test_bit(HNAE3_FLR_RESET, addr)) { rst_level = HNAE3_FLR_RESET; clear_bit(HNAE3_FLR_RESET, addr); } return rst_level; } static void hclgevf_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); struct hclgevf_dev *hdev = ae_dev->priv; dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); if (hdev->default_reset_request) hdev->reset_level = hclgevf_get_reset_level(hdev, &hdev->default_reset_request); else hdev->reset_level = HNAE3_VF_FUNC_RESET; /* reset of this VF requested */ set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); hclgevf_reset_task_schedule(hdev); hdev->last_reset_time = jiffies; } static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, enum hnae3_reset_type rst_type) { struct hclgevf_dev *hdev = ae_dev->priv; set_bit(rst_type, &hdev->default_reset_request); } static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) { writel(en ? 1 : 0, vector->addr); } static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev, enum hnae3_reset_type rst_type) { #define HCLGEVF_RESET_RETRY_WAIT_MS 500 #define HCLGEVF_RESET_RETRY_CNT 5 struct hclgevf_dev *hdev = ae_dev->priv; int retry_cnt = 0; int ret; retry: down(&hdev->reset_sem); set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); hdev->reset_type = rst_type; ret = hclgevf_reset_prepare(hdev); if (ret) { dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n", ret); if (hdev->reset_pending || retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) { dev_err(&hdev->pdev->dev, "reset_pending:0x%lx, retry_cnt:%d\n", hdev->reset_pending, retry_cnt); clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); up(&hdev->reset_sem); msleep(HCLGEVF_RESET_RETRY_WAIT_MS); goto retry; } } /* disable misc vector before reset done */ hclgevf_enable_vector(&hdev->misc_vector, false); if (hdev->reset_type == HNAE3_FLR_RESET) hdev->rst_stats.flr_rst_cnt++; } static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; int ret; hclgevf_enable_vector(&hdev->misc_vector, true); ret = hclgevf_reset_rebuild(hdev); if (ret) dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", ret); hdev->reset_type = HNAE3_NONE_RESET; clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); up(&hdev->reset_sem); } static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hdev->fw_version; } static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) { struct hclgevf_misc_vector *vector = &hdev->misc_vector; vector->vector_irq = pci_irq_vector(hdev->pdev, HCLGEVF_MISC_VECTOR_NUM); vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; /* vector status always valid for Vector 0 */ hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; hdev->num_msi_left -= 1; hdev->num_msi_used += 1; } void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) { if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) && !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); } void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) { if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); } static void hclgevf_task_schedule(struct hclgevf_dev *hdev, unsigned long delay) { if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); } static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) { #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) return; down(&hdev->reset_sem); set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); if (test_and_clear_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state)) { /* PF has intimated that it is about to reset the hardware. * We now have to poll & check if hardware has actually * completed the reset sequence. On hardware reset completion, * VF needs to reset the client and ae device. */ hdev->reset_attempts = 0; hdev->last_reset_time = jiffies; hdev->reset_type = hclgevf_get_reset_level(hdev, &hdev->reset_pending); if (hdev->reset_type != HNAE3_NONE_RESET) hclgevf_reset(hdev); } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state)) { /* we could be here when either of below happens: * 1. reset was initiated due to watchdog timeout caused by * a. IMP was earlier reset and our TX got choked down and * which resulted in watchdog reacting and inducing VF * reset. This also means our cmdq would be unreliable. * b. problem in TX due to other lower layer(example link * layer not functioning properly etc.) * 2. VF reset might have been initiated due to some config * change. * * NOTE: Theres no clear way to detect above cases than to react * to the response of PF for this reset request. PF will ack the * 1b and 2. cases but we will not get any intimation about 1a * from PF as cmdq would be in unreliable state i.e. mailbox * communication between PF and VF would be broken. * * if we are never geting into pending state it means either: * 1. PF is not receiving our request which could be due to IMP * reset * 2. PF is screwed * We cannot do much for 2. but to check first we can try reset * our PCIe + stack and see if it alleviates the problem. */ if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { /* prepare for full reset of stack + pcie interface */ set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); /* "defer" schedule the reset task again */ set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); } else { hdev->reset_attempts++; set_bit(hdev->reset_level, &hdev->reset_pending); set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); } hclgevf_reset_task_schedule(hdev); } hdev->reset_type = HNAE3_NONE_RESET; clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); up(&hdev->reset_sem); } static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) { if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) return; if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) return; hclgevf_mbx_async_handler(hdev); clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); } static void hclgevf_keep_alive(struct hclgevf_dev *hdev) { struct hclge_vf_to_pf_msg send_msg; int ret; if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) return; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); if (ret) dev_err(&hdev->pdev->dev, "VF sends keep alive cmd failed(=%d)\n", ret); } static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) { unsigned long delta = round_jiffies_relative(HZ); struct hnae3_handle *handle = &hdev->nic; if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) return; if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { delta = jiffies - hdev->last_serv_processed; if (delta < round_jiffies_relative(HZ)) { delta = round_jiffies_relative(HZ) - delta; goto out; } } hdev->serv_processed_cnt++; if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) hclgevf_keep_alive(hdev); if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { hdev->last_serv_processed = jiffies; goto out; } if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) hclgevf_tqps_update_stats(handle); /* VF does not need to request link status when this bit is set, because * PF will push its link status to VFs when link status changed. */ if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state)) hclgevf_request_link_info(hdev); hclgevf_update_link_mode(hdev); hclgevf_sync_vlan_filter(hdev); hclgevf_sync_mac_table(hdev); hclgevf_sync_promisc_mode(hdev); hdev->last_serv_processed = jiffies; out: hclgevf_task_schedule(hdev, delta); } static void hclgevf_service_task(struct work_struct *work) { struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, service_task.work); hclgevf_reset_service_task(hdev); hclgevf_mailbox_service_task(hdev); hclgevf_periodic_service_task(hdev); /* Handle reset and mbx again in case periodical task delays the * handling by calling hclgevf_task_schedule() in * hclgevf_periodic_service_task() */ hclgevf_reset_service_task(hdev); hclgevf_mailbox_service_task(hdev); } static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) { hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr); } static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, u32 *clearval) { u32 val, cmdq_stat_reg, rst_ing_reg; /* fetch the events from their corresponding regs */ cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG); if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); dev_info(&hdev->pdev->dev, "receive reset interrupt 0x%x!\n", rst_ing_reg); set_bit(HNAE3_VF_RESET, &hdev->reset_pending); set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); hdev->rst_stats.vf_rst_cnt++; /* set up VF hardware reset status, its PF will clear * this status when PF has initialized done. */ val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, val | HCLGEVF_VF_RST_ING_BIT); return HCLGEVF_VECTOR0_EVENT_RST; } /* check for vector0 mailbox(=CMDQ RX) event source */ if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { /* for revision 0x21, clearing interrupt is writing bit 0 * to the clear register, writing bit 1 means to keep the * old value. * for revision 0x20, the clear register is a read & write * register, so we should just write 0 to the bit we are * handling, and keep other bits as cmdq_stat_reg. */ if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); else *clearval = cmdq_stat_reg & ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); return HCLGEVF_VECTOR0_EVENT_MBX; } /* print other vector0 event source */ dev_info(&hdev->pdev->dev, "vector 0 interrupt from unknown source, cmdq_src = %#x\n", cmdq_stat_reg); return HCLGEVF_VECTOR0_EVENT_OTHER; } static void hclgevf_reset_timer(struct timer_list *t) { struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer); hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST); hclgevf_reset_task_schedule(hdev); } static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) { #define HCLGEVF_RESET_DELAY 5 enum hclgevf_evt_cause event_cause; struct hclgevf_dev *hdev = data; u32 clearval; hclgevf_enable_vector(&hdev->misc_vector, false); event_cause = hclgevf_check_evt_cause(hdev, &clearval); if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) hclgevf_clear_event_cause(hdev, clearval); switch (event_cause) { case HCLGEVF_VECTOR0_EVENT_RST: mod_timer(&hdev->reset_timer, jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY)); break; case HCLGEVF_VECTOR0_EVENT_MBX: hclgevf_mbx_handler(hdev); break; default: break; } hclgevf_enable_vector(&hdev->misc_vector, true); return IRQ_HANDLED; } static int hclgevf_configure(struct hclgevf_dev *hdev) { int ret; hdev->gro_en = true; ret = hclgevf_get_basic_info(hdev); if (ret) return ret; /* get current port based vlan state from PF */ ret = hclgevf_get_port_base_vlan_filter_state(hdev); if (ret) return ret; /* get queue configuration from PF */ ret = hclgevf_get_queue_info(hdev); if (ret) return ret; /* get queue depth info from PF */ ret = hclgevf_get_queue_depth(hdev); if (ret) return ret; return hclgevf_get_pf_media_type(hdev); } static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) { struct pci_dev *pdev = ae_dev->pdev; struct hclgevf_dev *hdev; hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); if (!hdev) return -ENOMEM; hdev->pdev = pdev; hdev->ae_dev = ae_dev; ae_dev->priv = hdev; return 0; } static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) { struct hnae3_handle *roce = &hdev->roce; struct hnae3_handle *nic = &hdev->nic; roce->rinfo.num_vectors = hdev->num_roce_msix; if (hdev->num_msi_left < roce->rinfo.num_vectors || hdev->num_msi_left == 0) return -EINVAL; roce->rinfo.base_vector = hdev->roce_base_msix_offset; roce->rinfo.netdev = nic->kinfo.netdev; roce->rinfo.roce_io_base = hdev->hw.io_base; roce->rinfo.roce_mem_base = hdev->hw.mem_base; roce->pdev = nic->pdev; roce->ae_algo = nic->ae_algo; roce->numa_node_mask = nic->numa_node_mask; return 0; } static int hclgevf_config_gro(struct hclgevf_dev *hdev) { struct hclgevf_cfg_gro_status_cmd *req; struct hclgevf_desc desc; int ret; if (!hnae3_dev_gro_supported(hdev)) return 0; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG, false); req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; req->gro_en = hdev->gro_en ? 1 : 0; ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(&hdev->pdev->dev, "VF GRO hardware config cmd failed, ret = %d.\n", ret); return ret; } static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev) { u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size; struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; struct hclgevf_rss_tuple_cfg *tuple_sets; u32 i; rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; rss_cfg->rss_size = hdev->nic.kinfo.rss_size; tuple_sets = &rss_cfg->rss_tuple_sets; if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { u8 *rss_ind_tbl; rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE; rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size, sizeof(*rss_ind_tbl), GFP_KERNEL); if (!rss_ind_tbl) return -ENOMEM; rss_cfg->rss_indirection_tbl = rss_ind_tbl; memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key, HCLGEVF_RSS_KEY_SIZE); tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP; tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; tuple_sets->ipv6_sctp_en = hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ? HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT : HCLGEVF_RSS_INPUT_TUPLE_SCTP; tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; } /* Initialize RSS indirect table */ for (i = 0; i < rss_ind_tbl_size; i++) rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size; return 0; } static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) { struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; int ret; if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, rss_cfg->rss_hash_key); if (ret) return ret; ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg); if (ret) return ret; } ret = hclgevf_set_rss_indir_table(hdev); if (ret) return ret; return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size); } static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; int ret; ret = hclgevf_en_hw_strip_rxvtag(nic, true); if (ret) { dev_err(&hdev->pdev->dev, "failed to enable rx vlan offload, ret = %d\n", ret); return ret; } return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, false); } static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) { #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 unsigned long last = hdev->serv_processed_cnt; int i = 0; while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && last == hdev->serv_processed_cnt) usleep_range(1, 1); } static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); if (enable) { hclgevf_task_schedule(hdev, 0); } else { set_bit(HCLGEVF_STATE_DOWN, &hdev->state); /* flush memory to make sure DOWN is seen by service task */ smp_mb__before_atomic(); hclgevf_flush_link_update(hdev); } } static int hclgevf_ae_start(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state); hclgevf_reset_tqp_stats(handle); hclgevf_request_link_info(hdev); hclgevf_update_link_mode(hdev); return 0; } static void hclgevf_ae_stop(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); set_bit(HCLGEVF_STATE_DOWN, &hdev->state); if (hdev->reset_type != HNAE3_VF_RESET) hclgevf_reset_tqp(handle); hclgevf_reset_tqp_stats(handle); hclgevf_update_link_status(hdev, 0); } static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) { #define HCLGEVF_STATE_ALIVE 1 #define HCLGEVF_STATE_NOT_ALIVE 0 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hclge_vf_to_pf_msg send_msg; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : HCLGEVF_STATE_NOT_ALIVE; return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); } static int hclgevf_client_start(struct hnae3_handle *handle) { return hclgevf_set_alive(handle, true); } static void hclgevf_client_stop(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int ret; ret = hclgevf_set_alive(handle, false); if (ret) dev_warn(&hdev->pdev->dev, "%s failed %d\n", __func__, ret); } static void hclgevf_state_init(struct hclgevf_dev *hdev) { clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); mutex_init(&hdev->mbx_resp.mbx_mutex); sema_init(&hdev->reset_sem, 1); spin_lock_init(&hdev->mac_table.mac_list_lock); INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); /* bring the device down */ set_bit(HCLGEVF_STATE_DOWN, &hdev->state); } static void hclgevf_state_uninit(struct hclgevf_dev *hdev) { set_bit(HCLGEVF_STATE_DOWN, &hdev->state); set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); if (hdev->service_task.work.func) cancel_delayed_work_sync(&hdev->service_task); mutex_destroy(&hdev->mbx_resp.mbx_mutex); } static int hclgevf_init_msi(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int vectors; int i; if (hnae3_dev_roce_supported(hdev)) vectors = pci_alloc_irq_vectors(pdev, hdev->roce_base_msix_offset + 1, hdev->num_msi, PCI_IRQ_MSIX); else vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, hdev->num_msi, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (vectors < 0) { dev_err(&pdev->dev, "failed(%d) to allocate MSI/MSI-X vectors\n", vectors); return vectors; } if (vectors < hdev->num_msi) dev_warn(&hdev->pdev->dev, "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", hdev->num_msi, vectors); hdev->num_msi = vectors; hdev->num_msi_left = vectors; hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, sizeof(u16), GFP_KERNEL); if (!hdev->vector_status) { pci_free_irq_vectors(pdev); return -ENOMEM; } for (i = 0; i < hdev->num_msi; i++) hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, sizeof(int), GFP_KERNEL); if (!hdev->vector_irq) { devm_kfree(&pdev->dev, hdev->vector_status); pci_free_irq_vectors(pdev); return -ENOMEM; } return 0; } static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; devm_kfree(&pdev->dev, hdev->vector_status); devm_kfree(&pdev->dev, hdev->vector_irq); pci_free_irq_vectors(pdev); } static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) { int ret; hclgevf_get_misc_vector(hdev); snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", HCLGEVF_NAME, pci_name(hdev->pdev)); ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 0, hdev->misc_vector.name, hdev); if (ret) { dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", hdev->misc_vector.vector_irq); return ret; } hclgevf_clear_event_cause(hdev, 0); /* enable misc. vector(vector 0) */ hclgevf_enable_vector(&hdev->misc_vector, true); return ret; } static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) { /* disable misc vector(vector 0) */ hclgevf_enable_vector(&hdev->misc_vector, false); synchronize_irq(hdev->misc_vector.vector_irq); free_irq(hdev->misc_vector.vector_irq, hdev); hclgevf_free_vector(hdev, 0); } static void hclgevf_info_show(struct hclgevf_dev *hdev) { struct device *dev = &hdev->pdev->dev; dev_info(dev, "VF info begin:\n"); dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); dev_info(dev, "PF media type of this VF: %u\n", hdev->hw.mac.media_type); dev_info(dev, "VF info end.\n"); } static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, struct hnae3_client *client) { struct hclgevf_dev *hdev = ae_dev->priv; int rst_cnt = hdev->rst_stats.rst_cnt; int ret; ret = client->ops->init_instance(&hdev->nic); if (ret) return ret; set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || rst_cnt != hdev->rst_stats.rst_cnt) { clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); client->ops->uninit_instance(&hdev->nic, 0); return -EBUSY; } hnae3_set_client_init_flag(client, ae_dev, 1); if (netif_msg_drv(&hdev->nic)) hclgevf_info_show(hdev); return 0; } static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, struct hnae3_client *client) { struct hclgevf_dev *hdev = ae_dev->priv; int ret; if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || !hdev->nic_client) return 0; ret = hclgevf_init_roce_base_info(hdev); if (ret) return ret; ret = client->ops->init_instance(&hdev->roce); if (ret) return ret; set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); hnae3_set_client_init_flag(client, ae_dev, 1); return 0; } static int hclgevf_init_client_instance(struct hnae3_client *client, struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; int ret; switch (client->type) { case HNAE3_CLIENT_KNIC: hdev->nic_client = client; hdev->nic.client = client; ret = hclgevf_init_nic_client_instance(ae_dev, client); if (ret) goto clear_nic; ret = hclgevf_init_roce_client_instance(ae_dev, hdev->roce_client); if (ret) goto clear_roce; break; case HNAE3_CLIENT_ROCE: if (hnae3_dev_roce_supported(hdev)) { hdev->roce_client = client; hdev->roce.client = client; } ret = hclgevf_init_roce_client_instance(ae_dev, client); if (ret) goto clear_roce; break; default: return -EINVAL; } return 0; clear_nic: hdev->nic_client = NULL; hdev->nic.client = NULL; return ret; clear_roce: hdev->roce_client = NULL; hdev->roce.client = NULL; return ret; } static void hclgevf_uninit_client_instance(struct hnae3_client *client, struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; /* un-init roce, if it exists */ if (hdev->roce_client) { while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) msleep(HCLGEVF_WAIT_RESET_DONE); clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); hdev->roce_client = NULL; hdev->roce.client = NULL; } /* un-init nic/unic, if this was not called by roce client */ if (client->ops->uninit_instance && hdev->nic_client && client->type != HNAE3_CLIENT_ROCE) { while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) msleep(HCLGEVF_WAIT_RESET_DONE); clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); client->ops->uninit_instance(&hdev->nic, 0); hdev->nic_client = NULL; hdev->nic.client = NULL; } } static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev) { #define HCLGEVF_MEM_BAR 4 struct pci_dev *pdev = hdev->pdev; struct hclgevf_hw *hw = &hdev->hw; /* for device does not have device memory, return directly */ if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR))) return 0; hw->mem_base = devm_ioremap_wc(&pdev->dev, pci_resource_start(pdev, HCLGEVF_MEM_BAR), pci_resource_len(pdev, HCLGEVF_MEM_BAR)); if (!hw->mem_base) { dev_err(&pdev->dev, "failed to map device memory\n"); return -EFAULT; } return 0; } static int hclgevf_pci_init(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; struct hclgevf_hw *hw; int ret; ret = pci_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "failed to enable PCI device\n"); return ret; } ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (ret) { dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); goto err_disable_device; } ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); if (ret) { dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); goto err_disable_device; } pci_set_master(pdev); hw = &hdev->hw; hw->hdev = hdev; hw->io_base = pci_iomap(pdev, 2, 0); if (!hw->io_base) { dev_err(&pdev->dev, "can't map configuration register space\n"); ret = -ENOMEM; goto err_clr_master; } ret = hclgevf_dev_mem_map(hdev); if (ret) goto err_unmap_io_base; return 0; err_unmap_io_base: pci_iounmap(pdev, hdev->hw.io_base); err_clr_master: pci_clear_master(pdev); pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); return ret; } static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; if (hdev->hw.mem_base) devm_iounmap(&pdev->dev, hdev->hw.mem_base); pci_iounmap(pdev, hdev->hw.io_base); pci_clear_master(pdev); pci_release_regions(pdev); pci_disable_device(pdev); } static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) { struct hclgevf_query_res_cmd *req; struct hclgevf_desc desc; int ret; hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true); ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(&hdev->pdev->dev, "query vf resource failed, ret = %d.\n", ret); return ret; } req = (struct hclgevf_query_res_cmd *)desc.data; if (hnae3_dev_roce_supported(hdev)) { hdev->roce_base_msix_offset = hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), HCLGEVF_MSIX_OFT_ROCEE_M, HCLGEVF_MSIX_OFT_ROCEE_S); hdev->num_roce_msix = hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); /* nic's msix numbers is always equals to the roce's. */ hdev->num_nic_msix = hdev->num_roce_msix; /* VF should have NIC vectors and Roce vectors, NIC vectors * are queued before Roce vectors. The offset is fixed to 64. */ hdev->num_msi = hdev->num_roce_msix + hdev->roce_base_msix_offset; } else { hdev->num_msi = hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); hdev->num_nic_msix = hdev->num_msi; } if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { dev_err(&hdev->pdev->dev, "Just %u msi resources, not enough for vf(min:2).\n", hdev->num_nic_msix); return -EINVAL; } return 0; } static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev) { #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); ae_dev->dev_specs.max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE; ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL; ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME; } static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev, struct hclgevf_desc *desc) { struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); struct hclgevf_dev_specs_0_cmd *req0; struct hclgevf_dev_specs_1_cmd *req1; req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data; req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data; ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; ae_dev->dev_specs.rss_ind_tbl_size = le16_to_cpu(req0->rss_ind_tbl_size); ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); } static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev) { struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; if (!dev_specs->max_non_tso_bd_num) dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; if (!dev_specs->rss_ind_tbl_size) dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; if (!dev_specs->rss_key_size) dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE; if (!dev_specs->max_int_gl) dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL; if (!dev_specs->max_frm_size) dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME; } static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev) { struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM]; int ret; int i; /* set default specifications as devices lower than version V3 do not * support querying specifications from firmware. */ if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { hclgevf_set_default_dev_specs(hdev); return 0; } for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) { hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS, true); desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT); } hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS, true); ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM); if (ret) return ret; hclgevf_parse_dev_specs(hdev, desc); hclgevf_check_dev_specs(hdev); return 0; } static int hclgevf_pci_reset(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int ret = 0; if ((hdev->reset_type == HNAE3_VF_FULL_RESET || hdev->reset_type == HNAE3_FLR_RESET) && test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { hclgevf_misc_irq_uninit(hdev); hclgevf_uninit_msi(hdev); clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); } if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { pci_set_master(pdev); ret = hclgevf_init_msi(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); return ret; } ret = hclgevf_misc_irq_init(hdev); if (ret) { hclgevf_uninit_msi(hdev); dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", ret); return ret; } set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); } return ret; } static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) { struct hclge_vf_to_pf_msg send_msg; hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, HCLGE_MBX_VPORT_LIST_CLEAR); return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); } static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev) { if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1); } static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev) { if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0); } static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int ret; ret = hclgevf_pci_reset(hdev); if (ret) { dev_err(&pdev->dev, "pci reset failed %d\n", ret); return ret; } ret = hclgevf_cmd_init(hdev); if (ret) { dev_err(&pdev->dev, "cmd failed %d\n", ret); return ret; } ret = hclgevf_rss_init_hw(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize RSS\n", ret); return ret; } ret = hclgevf_config_gro(hdev); if (ret) return ret; ret = hclgevf_init_vlan_config(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize VLAN config\n", ret); return ret; } /* get current port based vlan state from PF */ ret = hclgevf_get_port_base_vlan_filter_state(hdev); if (ret) return ret; set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); hclgevf_init_rxd_adv_layout(hdev); dev_info(&hdev->pdev->dev, "Reset done\n"); return 0; } static int hclgevf_init_hdev(struct hclgevf_dev *hdev) { struct pci_dev *pdev = hdev->pdev; int ret; ret = hclgevf_pci_init(hdev); if (ret) return ret; ret = hclgevf_devlink_init(hdev); if (ret) goto err_devlink_init; ret = hclgevf_cmd_queue_init(hdev); if (ret) goto err_cmd_queue_init; ret = hclgevf_cmd_init(hdev); if (ret) goto err_cmd_init; /* Get vf resource */ ret = hclgevf_query_vf_resource(hdev); if (ret) goto err_cmd_init; ret = hclgevf_query_dev_specs(hdev); if (ret) { dev_err(&pdev->dev, "failed to query dev specifications, ret = %d\n", ret); goto err_cmd_init; } ret = hclgevf_init_msi(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); goto err_cmd_init; } hclgevf_state_init(hdev); hdev->reset_level = HNAE3_VF_FUNC_RESET; hdev->reset_type = HNAE3_NONE_RESET; ret = hclgevf_misc_irq_init(hdev); if (ret) goto err_misc_irq_init; set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); ret = hclgevf_configure(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); goto err_config; } ret = hclgevf_alloc_tqps(hdev); if (ret) { dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); goto err_config; } ret = hclgevf_set_handle_info(hdev); if (ret) goto err_config; ret = hclgevf_config_gro(hdev); if (ret) goto err_config; /* Initialize RSS for this VF */ ret = hclgevf_rss_init_cfg(hdev); if (ret) { dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); goto err_config; } ret = hclgevf_rss_init_hw(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize RSS\n", ret); goto err_config; } /* ensure vf tbl list as empty before init*/ ret = hclgevf_clear_vport_list(hdev); if (ret) { dev_err(&pdev->dev, "failed to clear tbl list configuration, ret = %d.\n", ret); goto err_config; } ret = hclgevf_init_vlan_config(hdev); if (ret) { dev_err(&hdev->pdev->dev, "failed(%d) to initialize VLAN config\n", ret); goto err_config; } hclgevf_init_rxd_adv_layout(hdev); set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state); hdev->last_reset_time = jiffies; dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", HCLGEVF_DRIVER_NAME); hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0); return 0; err_config: hclgevf_misc_irq_uninit(hdev); err_misc_irq_init: hclgevf_state_uninit(hdev); hclgevf_uninit_msi(hdev); err_cmd_init: hclgevf_cmd_uninit(hdev); err_cmd_queue_init: hclgevf_devlink_uninit(hdev); err_devlink_init: hclgevf_pci_uninit(hdev); clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); return ret; } static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) { struct hclge_vf_to_pf_msg send_msg; hclgevf_state_uninit(hdev); hclgevf_uninit_rxd_adv_layout(hdev); hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { hclgevf_misc_irq_uninit(hdev); hclgevf_uninit_msi(hdev); } hclgevf_cmd_uninit(hdev); hclgevf_devlink_uninit(hdev); hclgevf_pci_uninit(hdev); hclgevf_uninit_mac_list(hdev); } static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) { struct pci_dev *pdev = ae_dev->pdev; int ret; ret = hclgevf_alloc_hdev(ae_dev); if (ret) { dev_err(&pdev->dev, "hclge device allocation failed\n"); return ret; } ret = hclgevf_init_hdev(ae_dev->priv); if (ret) { dev_err(&pdev->dev, "hclge device initialization failed\n"); return ret; } return 0; } static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) { struct hclgevf_dev *hdev = ae_dev->priv; hclgevf_uninit_hdev(hdev); ae_dev->priv = NULL; } static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) { struct hnae3_handle *nic = &hdev->nic; struct hnae3_knic_private_info *kinfo = &nic->kinfo; return min_t(u32, hdev->rss_size_max, hdev->num_tqps / kinfo->tc_info.num_tc); } /** * hclgevf_get_channels - Get the current channels enabled and max supported. * @handle: hardware information for network interface * @ch: ethtool channels structure * * We don't support separate tx and rx queues as channels. The other count * represents how many queues are being used for control. max_combined counts * how many queue pairs we can support. They may not be mapped 1 to 1 with * q_vectors since we support a lot more queue pairs than q_vectors. **/ static void hclgevf_get_channels(struct hnae3_handle *handle, struct ethtool_channels *ch) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); ch->max_combined = hclgevf_get_max_channels(hdev); ch->other_count = 0; ch->max_other = 0; ch->combined_count = handle->kinfo.rss_size; } static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, u16 *alloc_tqps, u16 *max_rss_size) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); *alloc_tqps = hdev->num_tqps; *max_rss_size = hdev->rss_size_max; } static void hclgevf_update_rss_size(struct hnae3_handle *handle, u32 new_tqps_num) { struct hnae3_knic_private_info *kinfo = &handle->kinfo; struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); u16 max_rss_size; kinfo->req_rss_size = new_tqps_num; max_rss_size = min_t(u16, hdev->rss_size_max, hdev->num_tqps / kinfo->tc_info.num_tc); /* Use the user's configuration when it is not larger than * max_rss_size, otherwise, use the maximum specification value. */ if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && kinfo->req_rss_size <= max_rss_size) kinfo->rss_size = kinfo->req_rss_size; else if (kinfo->rss_size > max_rss_size || (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) kinfo->rss_size = max_rss_size; kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size; } static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, bool rxfh_configured) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); struct hnae3_knic_private_info *kinfo = &handle->kinfo; u16 cur_rss_size = kinfo->rss_size; u16 cur_tqps = kinfo->num_tqps; u32 *rss_indir; unsigned int i; int ret; hclgevf_update_rss_size(handle, new_tqps_num); ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size); if (ret) return ret; /* RSS indirection table has been configured by user */ if (rxfh_configured) goto out; /* Reinitializes the rss indirect table according to the new RSS size */ rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size, sizeof(u32), GFP_KERNEL); if (!rss_indir) return -ENOMEM; for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) rss_indir[i] = i % kinfo->rss_size; hdev->rss_cfg.rss_size = kinfo->rss_size; ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); if (ret) dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", ret); kfree(rss_indir); out: if (!ret) dev_info(&hdev->pdev->dev, "Channels changed, rss_size from %u to %u, tqps from %u to %u", cur_rss_size, kinfo->rss_size, cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); return ret; } static int hclgevf_get_status(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hdev->hw.mac.link; } static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, u8 *auto_neg, u32 *speed, u8 *duplex) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); if (speed) *speed = hdev->hw.mac.speed; if (duplex) *duplex = hdev->hw.mac.duplex; if (auto_neg) *auto_neg = AUTONEG_DISABLE; } void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, u8 duplex) { hdev->hw.mac.speed = speed; hdev->hw.mac.duplex = duplex; } static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); bool gro_en_old = hdev->gro_en; int ret; hdev->gro_en = enable; ret = hclgevf_config_gro(hdev); if (ret) hdev->gro_en = gro_en_old; return ret; } static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, u8 *module_type) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); if (media_type) *media_type = hdev->hw.mac.media_type; if (module_type) *module_type = hdev->hw.mac.module_type; } static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); } static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); } static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); } static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); return hdev->rst_stats.hw_rst_done_cnt; } static void hclgevf_get_link_mode(struct hnae3_handle *handle, unsigned long *supported, unsigned long *advertising) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); *supported = hdev->hw.mac.supported; *advertising = hdev->hw.mac.advertising; } #define MAX_SEPARATE_NUM 4 #define SEPARATOR_VALUE 0xFDFCFBFA #define REG_NUM_PER_LINE 4 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) static int hclgevf_get_regs_len(struct hnae3_handle *handle) { int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1; common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1; ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1; tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1; return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps + tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE; } static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version, void *data) { struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); int i, j, reg_um, separator_num; u32 *reg = data; *version = hdev->fw_version; /* fetching per-VF registers values from VF PCIe register space */ reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (i = 0; i < reg_um; i++) *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; reg_um = sizeof(common_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (i = 0; i < reg_um; i++) *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; reg_um = sizeof(ring_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (j = 0; j < hdev->num_tqps; j++) { for (i = 0; i < reg_um; i++) *reg++ = hclgevf_read_dev(&hdev->hw, ring_reg_addr_list[i] + 0x200 * j); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; } reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32); separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; for (j = 0; j < hdev->num_msi_used - 1; j++) { for (i = 0; i < reg_um; i++) *reg++ = hclgevf_read_dev(&hdev->hw, tqp_intr_reg_addr_list[i] + 4 * j); for (i = 0; i < separator_num; i++) *reg++ = SEPARATOR_VALUE; } } void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, struct hclge_mbx_port_base_vlan *port_base_vlan) { struct hnae3_handle *nic = &hdev->nic; struct hclge_vf_to_pf_msg send_msg; int ret; rtnl_lock(); if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { dev_warn(&hdev->pdev->dev, "is resetting when updating port based vlan info\n"); rtnl_unlock(); return; } ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); if (ret) { rtnl_unlock(); return; } /* send msg to PF and wait update port based vlan info */ hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, HCLGE_MBX_PORT_BASE_VLAN_CFG); memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan)); ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); if (!ret) { if (state == HNAE3_PORT_BASE_VLAN_DISABLE) nic->port_base_vlan_state = state; else nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; } hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); rtnl_unlock(); } static const struct hnae3_ae_ops hclgevf_ops = { .init_ae_dev = hclgevf_init_ae_dev, .uninit_ae_dev = hclgevf_uninit_ae_dev, .reset_prepare = hclgevf_reset_prepare_general, .reset_done = hclgevf_reset_done, .init_client_instance = hclgevf_init_client_instance, .uninit_client_instance = hclgevf_uninit_client_instance, .start = hclgevf_ae_start, .stop = hclgevf_ae_stop, .client_start = hclgevf_client_start, .client_stop = hclgevf_client_stop, .map_ring_to_vector = hclgevf_map_ring_to_vector, .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, .get_vector = hclgevf_get_vector, .put_vector = hclgevf_put_vector, .reset_queue = hclgevf_reset_tqp, .get_mac_addr = hclgevf_get_mac_addr, .set_mac_addr = hclgevf_set_mac_addr, .add_uc_addr = hclgevf_add_uc_addr, .rm_uc_addr = hclgevf_rm_uc_addr, .add_mc_addr = hclgevf_add_mc_addr, .rm_mc_addr = hclgevf_rm_mc_addr, .get_stats = hclgevf_get_stats, .update_stats = hclgevf_update_stats, .get_strings = hclgevf_get_strings, .get_sset_count = hclgevf_get_sset_count, .get_rss_key_size = hclgevf_get_rss_key_size, .get_rss = hclgevf_get_rss, .set_rss = hclgevf_set_rss, .get_rss_tuple = hclgevf_get_rss_tuple, .set_rss_tuple = hclgevf_set_rss_tuple, .get_tc_size = hclgevf_get_tc_size, .get_fw_version = hclgevf_get_fw_version, .set_vlan_filter = hclgevf_set_vlan_filter, .enable_vlan_filter = hclgevf_enable_vlan_filter, .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, .reset_event = hclgevf_reset_event, .set_default_reset_request = hclgevf_set_def_reset_request, .set_channels = hclgevf_set_channels, .get_channels = hclgevf_get_channels, .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, .get_regs_len = hclgevf_get_regs_len, .get_regs = hclgevf_get_regs, .get_status = hclgevf_get_status, .get_ksettings_an_result = hclgevf_get_ksettings_an_result, .get_media_type = hclgevf_get_media_type, .get_hw_reset_stat = hclgevf_get_hw_reset_stat, .ae_dev_resetting = hclgevf_ae_dev_resetting, .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, .set_gro_en = hclgevf_gro_en, .set_mtu = hclgevf_set_mtu, .get_global_queue_id = hclgevf_get_qid_global, .set_timer_task = hclgevf_set_timer_task, .get_link_mode = hclgevf_get_link_mode, .set_promisc_mode = hclgevf_set_promisc_mode, .request_update_promisc_mode = hclgevf_request_update_promisc_mode, .get_cmdq_stat = hclgevf_get_cmdq_stat, }; static struct hnae3_ae_algo ae_algovf = { .ops = &hclgevf_ops, .pdev_id_table = ae_algovf_pci_tbl, }; static int hclgevf_init(void) { pr_info("%s is initializing\n", HCLGEVF_NAME); hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME); if (!hclgevf_wq) { pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); return -ENOMEM; } hnae3_register_ae_algo(&ae_algovf); return 0; } static void hclgevf_exit(void) { hnae3_unregister_ae_algo(&ae_algovf); destroy_workqueue(hclgevf_wq); } module_init(hclgevf_init); module_exit(hclgevf_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Huawei Tech. Co., Ltd."); MODULE_DESCRIPTION("HCLGEVF Driver"); MODULE_VERSION(HCLGEVF_MOD_VERSION);