/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright(c) 1999 - 2018 Intel Corporation. */ /* Linux PRO/1000 Ethernet Driver main header file */ #ifndef _E1000_H_ #define _E1000_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hw.h" struct e1000_info; #define e_dbg(format, arg...) \ netdev_dbg(hw->adapter->netdev, format, ## arg) #define e_err(format, arg...) \ netdev_err(adapter->netdev, format, ## arg) #define e_info(format, arg...) \ netdev_info(adapter->netdev, format, ## arg) #define e_warn(format, arg...) \ netdev_warn(adapter->netdev, format, ## arg) #define e_notice(format, arg...) \ netdev_notice(adapter->netdev, format, ## arg) /* Interrupt modes, as used by the IntMode parameter */ #define E1000E_INT_MODE_LEGACY 0 #define E1000E_INT_MODE_MSI 1 #define E1000E_INT_MODE_MSIX 2 /* Tx/Rx descriptor defines */ #define E1000_DEFAULT_TXD 256 #define E1000_MAX_TXD 4096 #define E1000_MIN_TXD 64 #define E1000_DEFAULT_RXD 256 #define E1000_MAX_RXD 4096 #define E1000_MIN_RXD 64 #define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */ #define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */ #define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ /* How many Tx Descriptors do we need to call netif_wake_queue ? */ /* How many Rx Buffers do we bundle into one write to the hardware ? */ #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ #define AUTO_ALL_MODES 0 #define E1000_EEPROM_APME 0x0400 #define E1000_MNG_VLAN_NONE (-1) #define DEFAULT_JUMBO 9234 /* Time to wait before putting the device into D3 if there's no link (in ms). */ #define LINK_TIMEOUT 100 /* Count for polling __E1000_RESET condition every 10-20msec. * Experimentation has shown the reset can take approximately 210msec. */ #define E1000_CHECK_RESET_COUNT 25 #define PCICFG_DESC_RING_STATUS 0xe4 #define FLUSH_DESC_REQUIRED 0x100 /* in the case of WTHRESH, it appears at least the 82571/2 hardware * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when * WTHRESH=4, so a setting of 5 gives the most efficient bus * utilization but to avoid possible Tx stalls, set it to 1 */ #define E1000_TXDCTL_DMA_BURST_ENABLE \ (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \ E1000_TXDCTL_COUNT_DESC | \ (1u << 16) | /* wthresh must be +1 more than desired */\ (1u << 8) | /* hthresh */ \ 0x1f) /* pthresh */ #define E1000_RXDCTL_DMA_BURST_ENABLE \ (0x01000000 | /* set descriptor granularity */ \ (4u << 16) | /* set writeback threshold */ \ (4u << 8) | /* set prefetch threshold */ \ 0x20) /* set hthresh */ #define E1000_TIDV_FPD BIT(31) #define E1000_RDTR_FPD BIT(31) enum e1000_boards { board_82571, board_82572, board_82573, board_82574, board_82583, board_80003es2lan, board_ich8lan, board_ich9lan, board_ich10lan, board_pchlan, board_pch2lan, board_pch_lpt, board_pch_spt, board_pch_cnp, board_pch_tgp, board_pch_adp }; struct e1000_ps_page { struct page *page; u64 dma; /* must be u64 - written to hw */ }; /* wrappers around a pointer to a socket buffer, * so a DMA handle can be stored along with the buffer */ struct e1000_buffer { dma_addr_t dma; struct sk_buff *skb; union { /* Tx */ struct { unsigned long time_stamp; u16 length; u16 next_to_watch; unsigned int segs; unsigned int bytecount; u16 mapped_as_page; }; /* Rx */ struct { /* arrays of page information for packet split */ struct e1000_ps_page *ps_pages; struct page *page; }; }; }; struct e1000_ring { struct e1000_adapter *adapter; /* back pointer to adapter */ void *desc; /* pointer to ring memory */ dma_addr_t dma; /* phys address of ring */ unsigned int size; /* length of ring in bytes */ unsigned int count; /* number of desc. in ring */ u16 next_to_use; u16 next_to_clean; void __iomem *head; void __iomem *tail; /* array of buffer information structs */ struct e1000_buffer *buffer_info; char name[IFNAMSIZ + 5]; u32 ims_val; u32 itr_val; void __iomem *itr_register; int set_itr; struct sk_buff *rx_skb_top; }; /* PHY register snapshot values */ struct e1000_phy_regs { u16 bmcr; /* basic mode control register */ u16 bmsr; /* basic mode status register */ u16 advertise; /* auto-negotiation advertisement */ u16 lpa; /* link partner ability register */ u16 expansion; /* auto-negotiation expansion reg */ u16 ctrl1000; /* 1000BASE-T control register */ u16 stat1000; /* 1000BASE-T status register */ u16 estatus; /* extended status register */ }; /* board specific private data structure */ struct e1000_adapter { struct timer_list watchdog_timer; struct timer_list phy_info_timer; struct timer_list blink_timer; struct work_struct reset_task; struct work_struct watchdog_task; const struct e1000_info *ei; unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; u32 bd_number; u32 rx_buffer_len; u16 mng_vlan_id; u16 link_speed; u16 link_duplex; u16 eeprom_vers; /* track device up/down/testing state */ unsigned long state; /* Interrupt Throttle Rate */ u32 itr; u32 itr_setting; u16 tx_itr; u16 rx_itr; /* Tx - one ring per active queue */ struct e1000_ring *tx_ring ____cacheline_aligned_in_smp; u32 tx_fifo_limit; struct napi_struct napi; unsigned int uncorr_errors; /* uncorrectable ECC errors */ unsigned int corr_errors; /* correctable ECC errors */ unsigned int restart_queue; u32 txd_cmd; bool detect_tx_hung; bool tx_hang_recheck; u8 tx_timeout_factor; u32 tx_int_delay; u32 tx_abs_int_delay; unsigned int total_tx_bytes; unsigned int total_tx_packets; unsigned int total_rx_bytes; unsigned int total_rx_packets; /* Tx stats */ u64 tpt_old; u64 colc_old; u32 gotc; u64 gotc_old; u32 tx_timeout_count; u32 tx_fifo_head; u32 tx_head_addr; u32 tx_fifo_size; u32 tx_dma_failed; u32 tx_hwtstamp_timeouts; u32 tx_hwtstamp_skipped; /* Rx */ bool (*clean_rx)(struct e1000_ring *ring, int *work_done, int work_to_do) ____cacheline_aligned_in_smp; void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count, gfp_t gfp); struct e1000_ring *rx_ring; u32 rx_int_delay; u32 rx_abs_int_delay; /* Rx stats */ u64 hw_csum_err; u64 hw_csum_good; u64 rx_hdr_split; u32 gorc; u64 gorc_old; u32 alloc_rx_buff_failed; u32 rx_dma_failed; u32 rx_hwtstamp_cleared; unsigned int rx_ps_pages; u16 rx_ps_bsize0; u32 max_frame_size; u32 min_frame_size; /* OS defined structs */ struct net_device *netdev; struct pci_dev *pdev; /* structs defined in e1000_hw.h */ struct e1000_hw hw; spinlock_t stats64_lock; /* protects statistics counters */ struct e1000_hw_stats stats; struct e1000_phy_info phy_info; struct e1000_phy_stats phy_stats; /* Snapshot of PHY registers */ struct e1000_phy_regs phy_regs; struct e1000_ring test_tx_ring; struct e1000_ring test_rx_ring; u32 test_icr; u32 msg_enable; unsigned int num_vectors; struct msix_entry *msix_entries; int int_mode; u32 eiac_mask; u32 eeprom_wol; u32 wol; u32 pba; u32 max_hw_frame_size; bool fc_autoneg; unsigned int flags; unsigned int flags2; struct work_struct downshift_task; struct work_struct update_phy_task; struct work_struct print_hang_task; int phy_hang_count; u16 tx_ring_count; u16 rx_ring_count; struct hwtstamp_config hwtstamp_config; struct delayed_work systim_overflow_work; struct sk_buff *tx_hwtstamp_skb; unsigned long tx_hwtstamp_start; struct work_struct tx_hwtstamp_work; spinlock_t systim_lock; /* protects SYSTIML/H regsters */ struct cyclecounter cc; struct timecounter tc; struct ptp_clock *ptp_clock; struct ptp_clock_info ptp_clock_info; struct pm_qos_request pm_qos_req; s32 ptp_delta; u16 eee_advert; }; struct e1000_info { enum e1000_mac_type mac; unsigned int flags; unsigned int flags2; u32 pba; u32 max_hw_frame_size; s32 (*get_variants)(struct e1000_adapter *); const struct e1000_mac_operations *mac_ops; const struct e1000_phy_operations *phy_ops; const struct e1000_nvm_operations *nvm_ops; }; s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca); /* The system time is maintained by a 64-bit counter comprised of the 32-bit * SYSTIMH and SYSTIML registers. How the counter increments (and therefore * its resolution) is based on the contents of the TIMINCA register - it * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0). * For the best accuracy, the incperiod should be as small as possible. The * incvalue is scaled by a factor as large as possible (while still fitting * in bits 23:0) so that relatively small clock corrections can be made. * * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n) * bits to count nanoseconds leaving the rest for fractional nonseconds. */ #define INCVALUE_96MHZ 125 #define INCVALUE_SHIFT_96MHZ 17 #define INCPERIOD_SHIFT_96MHZ 2 #define INCPERIOD_96MHZ (12 >> INCPERIOD_SHIFT_96MHZ) #define INCVALUE_25MHZ 40 #define INCVALUE_SHIFT_25MHZ 18 #define INCPERIOD_25MHZ 1 #define INCVALUE_24MHZ 125 #define INCVALUE_SHIFT_24MHZ 14 #define INCPERIOD_24MHZ 3 #define INCVALUE_38400KHZ 26 #define INCVALUE_SHIFT_38400KHZ 19 #define INCPERIOD_38400KHZ 1 /* Another drawback of scaling the incvalue by a large factor is the * 64-bit SYSTIM register overflows more quickly. This is dealt with * by simply reading the clock before it overflows. * * Clock ns bits Overflows after * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~ * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours */ #define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4) #define E1000_MAX_82574_SYSTIM_REREADS 50 #define E1000_82574_SYSTIM_EPSILON (1ULL << 35ULL) /* hardware capability, feature, and workaround flags */ #define FLAG_HAS_AMT BIT(0) #define FLAG_HAS_FLASH BIT(1) #define FLAG_HAS_HW_VLAN_FILTER BIT(2) #define FLAG_HAS_WOL BIT(3) /* reserved BIT(4) */ #define FLAG_HAS_CTRLEXT_ON_LOAD BIT(5) #define FLAG_HAS_SWSM_ON_LOAD BIT(6) #define FLAG_HAS_JUMBO_FRAMES BIT(7) #define FLAG_READ_ONLY_NVM BIT(8) #define FLAG_IS_ICH BIT(9) #define FLAG_HAS_MSIX BIT(10) #define FLAG_HAS_SMART_POWER_DOWN BIT(11) #define FLAG_IS_QUAD_PORT_A BIT(12) #define FLAG_IS_QUAD_PORT BIT(13) #define FLAG_HAS_HW_TIMESTAMP BIT(14) #define FLAG_APME_IN_WUC BIT(15) #define FLAG_APME_IN_CTRL3 BIT(16) #define FLAG_APME_CHECK_PORT_B BIT(17) #define FLAG_DISABLE_FC_PAUSE_TIME BIT(18) #define FLAG_NO_WAKE_UCAST BIT(19) #define FLAG_MNG_PT_ENABLED BIT(20) #define FLAG_RESET_OVERWRITES_LAA BIT(21) #define FLAG_TARC_SPEED_MODE_BIT BIT(22) #define FLAG_TARC_SET_BIT_ZERO BIT(23) #define FLAG_RX_NEEDS_RESTART BIT(24) #define FLAG_LSC_GIG_SPEED_DROP BIT(25) #define FLAG_SMART_POWER_DOWN BIT(26) #define FLAG_MSI_ENABLED BIT(27) /* reserved BIT(28) */ #define FLAG_TSO_FORCE BIT(29) #define FLAG_RESTART_NOW BIT(30) #define FLAG_MSI_TEST_FAILED BIT(31) #define FLAG2_CRC_STRIPPING BIT(0) #define FLAG2_HAS_PHY_WAKEUP BIT(1) #define FLAG2_IS_DISCARDING BIT(2) #define FLAG2_DISABLE_ASPM_L1 BIT(3) #define FLAG2_HAS_PHY_STATS BIT(4) #define FLAG2_HAS_EEE BIT(5) #define FLAG2_DMA_BURST BIT(6) #define FLAG2_DISABLE_ASPM_L0S BIT(7) #define FLAG2_DISABLE_AIM BIT(8) #define FLAG2_CHECK_PHY_HANG BIT(9) #define FLAG2_NO_DISABLE_RX BIT(10) #define FLAG2_PCIM2PCI_ARBITER_WA BIT(11) #define FLAG2_DFLT_CRC_STRIPPING BIT(12) #define FLAG2_CHECK_RX_HWTSTAMP BIT(13) #define FLAG2_CHECK_SYSTIM_OVERFLOW BIT(14) #define FLAG2_ENABLE_S0IX_FLOWS BIT(15) #define E1000_RX_DESC_PS(R, i) \ (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) #define E1000_RX_DESC_EXT(R, i) \ (&(((union e1000_rx_desc_extended *)((R).desc))[i])) #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) #define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) enum e1000_state_t { __E1000_TESTING, __E1000_RESETTING, __E1000_ACCESS_SHARED_RESOURCE, __E1000_DOWN }; enum latency_range { lowest_latency = 0, low_latency = 1, bulk_latency = 2, latency_invalid = 255 }; extern char e1000e_driver_name[]; void e1000e_check_options(struct e1000_adapter *adapter); void e1000e_set_ethtool_ops(struct net_device *netdev); int e1000e_open(struct net_device *netdev); int e1000e_close(struct net_device *netdev); void e1000e_up(struct e1000_adapter *adapter); void e1000e_down(struct e1000_adapter *adapter, bool reset); void e1000e_reinit_locked(struct e1000_adapter *adapter); void e1000e_reset(struct e1000_adapter *adapter); void e1000e_power_up_phy(struct e1000_adapter *adapter); int e1000e_setup_rx_resources(struct e1000_ring *ring); int e1000e_setup_tx_resources(struct e1000_ring *ring); void e1000e_free_rx_resources(struct e1000_ring *ring); void e1000e_free_tx_resources(struct e1000_ring *ring); void e1000e_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats); void e1000e_set_interrupt_capability(struct e1000_adapter *adapter); void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter); void e1000e_get_hw_control(struct e1000_adapter *adapter); void e1000e_release_hw_control(struct e1000_adapter *adapter); void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr); extern unsigned int copybreak; extern const struct e1000_info e1000_82571_info; extern const struct e1000_info e1000_82572_info; extern const struct e1000_info e1000_82573_info; extern const struct e1000_info e1000_82574_info; extern const struct e1000_info e1000_82583_info; extern const struct e1000_info e1000_ich8_info; extern const struct e1000_info e1000_ich9_info; extern const struct e1000_info e1000_ich10_info; extern const struct e1000_info e1000_pch_info; extern const struct e1000_info e1000_pch2_info; extern const struct e1000_info e1000_pch_lpt_info; extern const struct e1000_info e1000_pch_spt_info; extern const struct e1000_info e1000_pch_cnp_info; extern const struct e1000_info e1000_pch_tgp_info; extern const struct e1000_info e1000_pch_adp_info; extern const struct e1000_info e1000_es2_info; void e1000e_ptp_init(struct e1000_adapter *adapter); void e1000e_ptp_remove(struct e1000_adapter *adapter); u64 e1000e_read_systim(struct e1000_adapter *adapter, struct ptp_system_timestamp *sts); static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw) { return hw->phy.ops.reset(hw); } static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data) { return hw->phy.ops.read_reg(hw, offset, data); } static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data) { return hw->phy.ops.read_reg_locked(hw, offset, data); } static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data) { return hw->phy.ops.write_reg(hw, offset, data); } static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data) { return hw->phy.ops.write_reg_locked(hw, offset, data); } void e1000e_reload_nvm_generic(struct e1000_hw *hw); static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw) { if (hw->mac.ops.read_mac_addr) return hw->mac.ops.read_mac_addr(hw); return e1000_read_mac_addr_generic(hw); } static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) { return hw->nvm.ops.validate(hw); } static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw) { return hw->nvm.ops.update(hw); } static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { return hw->nvm.ops.read(hw, offset, words, data); } static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { return hw->nvm.ops.write(hw, offset, words, data); } static inline s32 e1000_get_phy_info(struct e1000_hw *hw) { return hw->phy.ops.get_info(hw); } static inline u32 __er32(struct e1000_hw *hw, unsigned long reg) { return readl(hw->hw_addr + reg); } #define er32(reg) __er32(hw, E1000_##reg) void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val); #define ew32(reg, val) __ew32(hw, E1000_##reg, (val)) #define e1e_flush() er32(STATUS) #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ (__ew32((a), (reg + ((offset) << 2)), (value))) #define E1000_READ_REG_ARRAY(a, reg, offset) \ (readl((a)->hw_addr + reg + ((offset) << 2))) #endif /* _E1000_H_ */