// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2019 Intel Corporation. */ #include #include #include #include #include #include #include #include "fm10k.h" #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" char fm10k_driver_name[] = "fm10k"; static const char fm10k_driver_string[] = DRV_SUMMARY; static const char fm10k_copyright[] = "Copyright(c) 2013 - 2019 Intel Corporation."; MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION(DRV_SUMMARY); MODULE_LICENSE("GPL v2"); /* single workqueue for entire fm10k driver */ struct workqueue_struct *fm10k_workqueue; /** * fm10k_init_module - Driver Registration Routine * * fm10k_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init fm10k_init_module(void) { int ret; pr_info("%s\n", fm10k_driver_string); pr_info("%s\n", fm10k_copyright); /* create driver workqueue */ fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, fm10k_driver_name); if (!fm10k_workqueue) return -ENOMEM; fm10k_dbg_init(); ret = fm10k_register_pci_driver(); if (ret) { fm10k_dbg_exit(); destroy_workqueue(fm10k_workqueue); } return ret; } module_init(fm10k_init_module); /** * fm10k_exit_module - Driver Exit Cleanup Routine * * fm10k_exit_module is called just before the driver is removed * from memory. **/ static void __exit fm10k_exit_module(void) { fm10k_unregister_pci_driver(); fm10k_dbg_exit(); /* destroy driver workqueue */ destroy_workqueue(fm10k_workqueue); } module_exit(fm10k_exit_module); static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, struct fm10k_rx_buffer *bi) { struct page *page = bi->page; dma_addr_t dma; /* Only page will be NULL if buffer was consumed */ if (likely(page)) return true; /* alloc new page for storage */ page = dev_alloc_page(); if (unlikely(!page)) { rx_ring->rx_stats.alloc_failed++; return false; } /* map page for use */ dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); /* if mapping failed free memory back to system since * there isn't much point in holding memory we can't use */ if (dma_mapping_error(rx_ring->dev, dma)) { __free_page(page); rx_ring->rx_stats.alloc_failed++; return false; } bi->dma = dma; bi->page = page; bi->page_offset = 0; return true; } /** * fm10k_alloc_rx_buffers - Replace used receive buffers * @rx_ring: ring to place buffers on * @cleaned_count: number of buffers to replace **/ void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) { union fm10k_rx_desc *rx_desc; struct fm10k_rx_buffer *bi; u16 i = rx_ring->next_to_use; /* nothing to do */ if (!cleaned_count) return; rx_desc = FM10K_RX_DESC(rx_ring, i); bi = &rx_ring->rx_buffer[i]; i -= rx_ring->count; do { if (!fm10k_alloc_mapped_page(rx_ring, bi)) break; /* Refresh the desc even if buffer_addrs didn't change * because each write-back erases this info. */ rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); rx_desc++; bi++; i++; if (unlikely(!i)) { rx_desc = FM10K_RX_DESC(rx_ring, 0); bi = rx_ring->rx_buffer; i -= rx_ring->count; } /* clear the status bits for the next_to_use descriptor */ rx_desc->d.staterr = 0; cleaned_count--; } while (cleaned_count); i += rx_ring->count; if (rx_ring->next_to_use != i) { /* record the next descriptor to use */ rx_ring->next_to_use = i; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = i; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); /* notify hardware of new descriptors */ writel(i, rx_ring->tail); } } /** * fm10k_reuse_rx_page - page flip buffer and store it back on the ring * @rx_ring: rx descriptor ring to store buffers on * @old_buff: donor buffer to have page reused * * Synchronizes page for reuse by the interface **/ static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, struct fm10k_rx_buffer *old_buff) { struct fm10k_rx_buffer *new_buff; u16 nta = rx_ring->next_to_alloc; new_buff = &rx_ring->rx_buffer[nta]; /* update, and store next to alloc */ nta++; rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; /* transfer page from old buffer to new buffer */ *new_buff = *old_buff; /* sync the buffer for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, old_buff->page_offset, FM10K_RX_BUFSZ, DMA_FROM_DEVICE); } static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, struct page *page, unsigned int __maybe_unused truesize) { /* avoid re-using remote and pfmemalloc pages */ if (!dev_page_is_reusable(page)) return false; #if (PAGE_SIZE < 8192) /* if we are only owner of page we can reuse it */ if (unlikely(page_count(page) != 1)) return false; /* flip page offset to other buffer */ rx_buffer->page_offset ^= FM10K_RX_BUFSZ; #else /* move offset up to the next cache line */ rx_buffer->page_offset += truesize; if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) return false; #endif /* Even if we own the page, we are not allowed to use atomic_set() * This would break get_page_unless_zero() users. */ page_ref_inc(page); return true; } /** * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff * @rx_buffer: buffer containing page to add * @size: packet size from rx_desc * @rx_desc: descriptor containing length of buffer written by hardware * @skb: sk_buff to place the data into * * This function will add the data contained in rx_buffer->page to the skb. * This is done either through a direct copy if the data in the buffer is * less than the skb header size, otherwise it will just attach the page as * a frag to the skb. * * The function will then update the page offset if necessary and return * true if the buffer can be reused by the interface. **/ static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, unsigned int size, union fm10k_rx_desc *rx_desc, struct sk_buff *skb) { struct page *page = rx_buffer->page; unsigned char *va = page_address(page) + rx_buffer->page_offset; #if (PAGE_SIZE < 8192) unsigned int truesize = FM10K_RX_BUFSZ; #else unsigned int truesize = ALIGN(size, 512); #endif unsigned int pull_len; if (unlikely(skb_is_nonlinear(skb))) goto add_tail_frag; if (likely(size <= FM10K_RX_HDR_LEN)) { memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); /* page is reusable, we can reuse buffer as-is */ if (dev_page_is_reusable(page)) return true; /* this page cannot be reused so discard it */ __free_page(page); return false; } /* we need the header to contain the greater of either ETH_HLEN or * 60 bytes if the skb->len is less than 60 for skb_pad. */ pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN); /* align pull length to size of long to optimize memcpy performance */ memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); /* update all of the pointers */ va += pull_len; size -= pull_len; add_tail_frag: skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, (unsigned long)va & ~PAGE_MASK, size, truesize); return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); } static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, union fm10k_rx_desc *rx_desc, struct sk_buff *skb) { unsigned int size = le16_to_cpu(rx_desc->w.length); struct fm10k_rx_buffer *rx_buffer; struct page *page; rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; page = rx_buffer->page; prefetchw(page); if (likely(!skb)) { void *page_addr = page_address(page) + rx_buffer->page_offset; /* prefetch first cache line of first page */ net_prefetch(page_addr); /* allocate a skb to store the frags */ skb = napi_alloc_skb(&rx_ring->q_vector->napi, FM10K_RX_HDR_LEN); if (unlikely(!skb)) { rx_ring->rx_stats.alloc_failed++; return NULL; } /* we will be copying header into skb->data in * pskb_may_pull so it is in our interest to prefetch * it now to avoid a possible cache miss */ prefetchw(skb->data); } /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, size, DMA_FROM_DEVICE); /* pull page into skb */ if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { /* hand second half of page back to the ring */ fm10k_reuse_rx_page(rx_ring, rx_buffer); } else { /* we are not reusing the buffer so unmap it */ dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE, DMA_FROM_DEVICE); } /* clear contents of rx_buffer */ rx_buffer->page = NULL; return skb; } static inline void fm10k_rx_checksum(struct fm10k_ring *ring, union fm10k_rx_desc *rx_desc, struct sk_buff *skb) { skb_checksum_none_assert(skb); /* Rx checksum disabled via ethtool */ if (!(ring->netdev->features & NETIF_F_RXCSUM)) return; /* TCP/UDP checksum error bit is set */ if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4E | FM10K_RXD_STATUS_L4E2 | FM10K_RXD_STATUS_IPE | FM10K_RXD_STATUS_IPE2)) { ring->rx_stats.csum_err++; return; } /* It must be a TCP or UDP packet with a valid checksum */ if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) skb->encapsulation = true; else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) return; skb->ip_summed = CHECKSUM_UNNECESSARY; ring->rx_stats.csum_good++; } #define FM10K_RSS_L4_TYPES_MASK \ (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ BIT(FM10K_RSSTYPE_IPV4_UDP) | \ BIT(FM10K_RSSTYPE_IPV6_TCP) | \ BIT(FM10K_RSSTYPE_IPV6_UDP)) static inline void fm10k_rx_hash(struct fm10k_ring *ring, union fm10k_rx_desc *rx_desc, struct sk_buff *skb) { u16 rss_type; if (!(ring->netdev->features & NETIF_F_RXHASH)) return; rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; if (!rss_type) return; skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); } static void fm10k_type_trans(struct fm10k_ring *rx_ring, union fm10k_rx_desc __maybe_unused *rx_desc, struct sk_buff *skb) { struct net_device *dev = rx_ring->netdev; struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); /* check to see if DGLORT belongs to a MACVLAN */ if (l2_accel) { u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; idx -= l2_accel->dglort; if (idx < l2_accel->size && l2_accel->macvlan[idx]) dev = l2_accel->macvlan[idx]; else l2_accel = NULL; } /* Record Rx queue, or update macvlan statistics */ if (!l2_accel) skb_record_rx_queue(skb, rx_ring->queue_index); else macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, false); skb->protocol = eth_type_trans(skb, dev); } /** * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, VLAN, timestamp, protocol, and * other fields within the skb. **/ static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, union fm10k_rx_desc *rx_desc, struct sk_buff *skb) { unsigned int len = skb->len; fm10k_rx_hash(rx_ring, rx_desc, skb); fm10k_rx_checksum(rx_ring, rx_desc, skb); FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; if (rx_desc->w.vlan) { u16 vid = le16_to_cpu(rx_desc->w.vlan); if ((vid & VLAN_VID_MASK) != rx_ring->vid) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); else if (vid & VLAN_PRIO_MASK) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid & VLAN_PRIO_MASK); } fm10k_type_trans(rx_ring, rx_desc, skb); return len; } /** * fm10k_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer * * This function updates next to clean. If the buffer is an EOP buffer * this function exits returning false, otherwise it will place the * sk_buff in the next buffer to be chained and return true indicating * that this is in fact a non-EOP buffer. **/ static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, union fm10k_rx_desc *rx_desc) { u32 ntc = rx_ring->next_to_clean + 1; /* fetch, update, and store next to clean */ ntc = (ntc < rx_ring->count) ? ntc : 0; rx_ring->next_to_clean = ntc; prefetch(FM10K_RX_DESC(rx_ring, ntc)); if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) return false; return true; } /** * fm10k_cleanup_headers - Correct corrupted or empty headers * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being fixed * * Address the case where we are pulling data in on pages only * and as such no data is present in the skb header. * * In addition if skb is not at least 60 bytes we need to pad it so that * it is large enough to qualify as a valid Ethernet frame. * * Returns true if an error was encountered and skb was freed. **/ static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, union fm10k_rx_desc *rx_desc, struct sk_buff *skb) { if (unlikely((fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_RXE)))) { #define FM10K_TEST_RXD_BIT(rxd, bit) \ ((rxd)->w.csum_err & cpu_to_le16(bit)) if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) rx_ring->rx_stats.switch_errors++; if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) rx_ring->rx_stats.drops++; if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) rx_ring->rx_stats.pp_errors++; if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) rx_ring->rx_stats.link_errors++; if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) rx_ring->rx_stats.length_errors++; dev_kfree_skb_any(skb); rx_ring->rx_stats.errors++; return true; } /* if eth_skb_pad returns an error the skb was freed */ if (eth_skb_pad(skb)) return true; return false; } /** * fm10k_receive_skb - helper function to handle rx indications * @q_vector: structure containing interrupt and ring information * @skb: packet to send up **/ static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, struct sk_buff *skb) { napi_gro_receive(&q_vector->napi, skb); } static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, struct fm10k_ring *rx_ring, int budget) { struct sk_buff *skb = rx_ring->skb; unsigned int total_bytes = 0, total_packets = 0; u16 cleaned_count = fm10k_desc_unused(rx_ring); while (likely(total_packets < budget)) { union fm10k_rx_desc *rx_desc; /* return some buffers to hardware, one at a time is too slow */ if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { fm10k_alloc_rx_buffers(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); if (!rx_desc->d.staterr) break; /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we know the * descriptor has been written back */ dma_rmb(); /* retrieve a buffer from the ring */ skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); /* exit if we failed to retrieve a buffer */ if (!skb) break; cleaned_count++; /* fetch next buffer in frame if non-eop */ if (fm10k_is_non_eop(rx_ring, rx_desc)) continue; /* verify the packet layout is correct */ if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { skb = NULL; continue; } /* populate checksum, timestamp, VLAN, and protocol */ total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); fm10k_receive_skb(q_vector, skb); /* reset skb pointer */ skb = NULL; /* update budget accounting */ total_packets++; } /* place incomplete frames back on ring for completion */ rx_ring->skb = skb; u64_stats_update_begin(&rx_ring->syncp); rx_ring->stats.packets += total_packets; rx_ring->stats.bytes += total_bytes; u64_stats_update_end(&rx_ring->syncp); q_vector->rx.total_packets += total_packets; q_vector->rx.total_bytes += total_bytes; return total_packets; } #define VXLAN_HLEN (sizeof(struct udphdr) + 8) static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) { struct fm10k_intfc *interface = netdev_priv(skb->dev); if (interface->vxlan_port != udp_hdr(skb)->dest) return NULL; /* return offset of udp_hdr plus 8 bytes for VXLAN header */ return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); } #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) #define NVGRE_TNI htons(0x2000) struct fm10k_nvgre_hdr { __be16 flags; __be16 proto; __be32 tni; }; static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) { struct fm10k_nvgre_hdr *nvgre_hdr; int hlen = ip_hdrlen(skb); /* currently only IPv4 is supported due to hlen above */ if (vlan_get_protocol(skb) != htons(ETH_P_IP)) return NULL; /* our transport header should be NVGRE */ nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); /* verify all reserved flags are 0 */ if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) return NULL; /* report start of ethernet header */ if (nvgre_hdr->flags & NVGRE_TNI) return (struct ethhdr *)(nvgre_hdr + 1); return (struct ethhdr *)(&nvgre_hdr->tni); } __be16 fm10k_tx_encap_offload(struct sk_buff *skb) { u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; struct ethhdr *eth_hdr; if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || skb->inner_protocol != htons(ETH_P_TEB)) return 0; switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): l4_hdr = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): l4_hdr = ipv6_hdr(skb)->nexthdr; break; default: return 0; } switch (l4_hdr) { case IPPROTO_UDP: eth_hdr = fm10k_port_is_vxlan(skb); break; case IPPROTO_GRE: eth_hdr = fm10k_gre_is_nvgre(skb); break; default: return 0; } if (!eth_hdr) return 0; switch (eth_hdr->h_proto) { case htons(ETH_P_IP): inner_l4_hdr = inner_ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; break; default: return 0; } switch (inner_l4_hdr) { case IPPROTO_TCP: inner_l4_hlen = inner_tcp_hdrlen(skb); break; case IPPROTO_UDP: inner_l4_hlen = 8; break; default: return 0; } /* The hardware allows tunnel offloads only if the combined inner and * outer header is 184 bytes or less */ if (skb_inner_transport_header(skb) + inner_l4_hlen - skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) return 0; return eth_hdr->h_proto; } static int fm10k_tso(struct fm10k_ring *tx_ring, struct fm10k_tx_buffer *first) { struct sk_buff *skb = first->skb; struct fm10k_tx_desc *tx_desc; unsigned char *th; u8 hdrlen; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; /* compute header lengths */ if (skb->encapsulation) { if (!fm10k_tx_encap_offload(skb)) goto err_vxlan; th = skb_inner_transport_header(skb); } else { th = skb_transport_header(skb); } /* compute offset from SOF to transport header and add header len */ hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); first->tx_flags |= FM10K_TX_FLAGS_CSUM; /* update gso size and bytecount with header size */ first->gso_segs = skb_shinfo(skb)->gso_segs; first->bytecount += (first->gso_segs - 1) * hdrlen; /* populate Tx descriptor header size and mss */ tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); tx_desc->hdrlen = hdrlen; tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); return 1; err_vxlan: tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; if (net_ratelimit()) netdev_err(tx_ring->netdev, "TSO requested for unsupported tunnel, disabling offload\n"); return -1; } static void fm10k_tx_csum(struct fm10k_ring *tx_ring, struct fm10k_tx_buffer *first) { struct sk_buff *skb = first->skb; struct fm10k_tx_desc *tx_desc; union { struct iphdr *ipv4; struct ipv6hdr *ipv6; u8 *raw; } network_hdr; u8 *transport_hdr; __be16 frag_off; __be16 protocol; u8 l4_hdr = 0; if (skb->ip_summed != CHECKSUM_PARTIAL) goto no_csum; if (skb->encapsulation) { protocol = fm10k_tx_encap_offload(skb); if (!protocol) { if (skb_checksum_help(skb)) { dev_warn(tx_ring->dev, "failed to offload encap csum!\n"); tx_ring->tx_stats.csum_err++; } goto no_csum; } network_hdr.raw = skb_inner_network_header(skb); transport_hdr = skb_inner_transport_header(skb); } else { protocol = vlan_get_protocol(skb); network_hdr.raw = skb_network_header(skb); transport_hdr = skb_transport_header(skb); } switch (protocol) { case htons(ETH_P_IP): l4_hdr = network_hdr.ipv4->protocol; break; case htons(ETH_P_IPV6): l4_hdr = network_hdr.ipv6->nexthdr; if (likely((transport_hdr - network_hdr.raw) == sizeof(struct ipv6hdr))) break; ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + sizeof(struct ipv6hdr), &l4_hdr, &frag_off); if (unlikely(frag_off)) l4_hdr = NEXTHDR_FRAGMENT; break; default: break; } switch (l4_hdr) { case IPPROTO_TCP: case IPPROTO_UDP: break; case IPPROTO_GRE: if (skb->encapsulation) break; fallthrough; default: if (unlikely(net_ratelimit())) { dev_warn(tx_ring->dev, "partial checksum, version=%d l4 proto=%x\n", protocol, l4_hdr); } skb_checksum_help(skb); tx_ring->tx_stats.csum_err++; goto no_csum; } /* update TX checksum flag */ first->tx_flags |= FM10K_TX_FLAGS_CSUM; tx_ring->tx_stats.csum_good++; no_csum: /* populate Tx descriptor header size and mss */ tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); tx_desc->hdrlen = 0; tx_desc->mss = 0; } #define FM10K_SET_FLAG(_input, _flag, _result) \ ((_flag <= _result) ? \ ((u32)(_input & _flag) * (_result / _flag)) : \ ((u32)(_input & _flag) / (_flag / _result))) static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) { /* set type for advanced descriptor with frame checksum insertion */ u32 desc_flags = 0; /* set checksum offload bits */ desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, FM10K_TXD_FLAG_CSUM); return desc_flags; } static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, struct fm10k_tx_desc *tx_desc, u16 i, dma_addr_t dma, unsigned int size, u8 desc_flags) { /* set RS and INT for last frame in a cache line */ if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; /* record values to descriptor */ tx_desc->buffer_addr = cpu_to_le64(dma); tx_desc->flags = desc_flags; tx_desc->buflen = cpu_to_le16(size); /* return true if we just wrapped the ring */ return i == tx_ring->count; } static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) { netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); /* Memory barrier before checking head and tail */ smp_mb(); /* Check again in a case another CPU has just made room available */ if (likely(fm10k_desc_unused(tx_ring) < size)) return -EBUSY; /* A reprieve! - use start_queue because it doesn't call schedule */ netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; return 0; } static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) { if (likely(fm10k_desc_unused(tx_ring) >= size)) return 0; return __fm10k_maybe_stop_tx(tx_ring, size); } static void fm10k_tx_map(struct fm10k_ring *tx_ring, struct fm10k_tx_buffer *first) { struct sk_buff *skb = first->skb; struct fm10k_tx_buffer *tx_buffer; struct fm10k_tx_desc *tx_desc; skb_frag_t *frag; unsigned char *data; dma_addr_t dma; unsigned int data_len, size; u32 tx_flags = first->tx_flags; u16 i = tx_ring->next_to_use; u8 flags = fm10k_tx_desc_flags(skb, tx_flags); tx_desc = FM10K_TX_DESC(tx_ring, i); /* add HW VLAN tag */ if (skb_vlan_tag_present(skb)) tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); else tx_desc->vlan = 0; size = skb_headlen(skb); data = skb->data; dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); data_len = skb->data_len; tx_buffer = first; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { if (dma_mapping_error(tx_ring->dev, dma)) goto dma_error; /* record length, and DMA address */ dma_unmap_len_set(tx_buffer, len, size); dma_unmap_addr_set(tx_buffer, dma, dma); while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, FM10K_MAX_DATA_PER_TXD, flags)) { tx_desc = FM10K_TX_DESC(tx_ring, 0); i = 0; } dma += FM10K_MAX_DATA_PER_TXD; size -= FM10K_MAX_DATA_PER_TXD; } if (likely(!data_len)) break; if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, size, flags)) { tx_desc = FM10K_TX_DESC(tx_ring, 0); i = 0; } size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, DMA_TO_DEVICE); tx_buffer = &tx_ring->tx_buffer[i]; } /* write last descriptor with LAST bit set */ flags |= FM10K_TXD_FLAG_LAST; if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) i = 0; /* record bytecount for BQL */ netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); /* record SW timestamp if HW timestamp is not available */ skb_tx_timestamp(first->skb); /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. (Only applicable for weak-ordered * memory model archs, such as IA-64). * * We also need this memory barrier to make certain all of the * status bits have been updated before next_to_watch is written. */ wmb(); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; tx_ring->next_to_use = i; /* Make sure there is space in the ring for the next send. */ fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); /* notify HW of packet */ if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { writel(i, tx_ring->tail); } return; dma_error: dev_err(tx_ring->dev, "TX DMA map failed\n"); /* clear dma mappings for failed tx_buffer map */ for (;;) { tx_buffer = &tx_ring->tx_buffer[i]; fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); if (tx_buffer == first) break; if (i == 0) i = tx_ring->count; i--; } tx_ring->next_to_use = i; } netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, struct fm10k_ring *tx_ring) { u16 count = TXD_USE_COUNT(skb_headlen(skb)); struct fm10k_tx_buffer *first; unsigned short f; u32 tx_flags = 0; int tso; /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, * + 2 desc gap to keep tail from touching head * otherwise try next time */ for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; count += TXD_USE_COUNT(skb_frag_size(frag)); } if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { tx_ring->tx_stats.tx_busy++; return NETDEV_TX_BUSY; } /* record the location of the first descriptor for this packet */ first = &tx_ring->tx_buffer[tx_ring->next_to_use]; first->skb = skb; first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); first->gso_segs = 1; /* record initial flags and protocol */ first->tx_flags = tx_flags; tso = fm10k_tso(tx_ring, first); if (tso < 0) goto out_drop; else if (!tso) fm10k_tx_csum(tx_ring, first); fm10k_tx_map(tx_ring, first); return NETDEV_TX_OK; out_drop: dev_kfree_skb_any(first->skb); first->skb = NULL; return NETDEV_TX_OK; } static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) { return ring->stats.packets; } /** * fm10k_get_tx_pending - how many Tx descriptors not processed * @ring: the ring structure * @in_sw: is tx_pending being checked in SW or in HW? */ u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) { struct fm10k_intfc *interface = ring->q_vector->interface; struct fm10k_hw *hw = &interface->hw; u32 head, tail; if (likely(in_sw)) { head = ring->next_to_clean; tail = ring->next_to_use; } else { head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); } return ((head <= tail) ? tail : tail + ring->count) - head; } bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) { u32 tx_done = fm10k_get_tx_completed(tx_ring); u32 tx_done_old = tx_ring->tx_stats.tx_done_old; u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); clear_check_for_tx_hang(tx_ring); /* Check for a hung queue, but be thorough. This verifies * that a transmit has been completed since the previous * check AND there is at least one packet pending. By * requiring this to fail twice we avoid races with * clearing the ARMED bit and conditions where we * run the check_tx_hang logic with a transmit completion * pending but without time to complete it yet. */ if (!tx_pending || (tx_done_old != tx_done)) { /* update completed stats and continue */ tx_ring->tx_stats.tx_done_old = tx_done; /* reset the countdown */ clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); return false; } /* make sure it is true for two checks in a row */ return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); } /** * fm10k_tx_timeout_reset - initiate reset due to Tx timeout * @interface: driver private struct **/ void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) { /* Do the reset outside of interrupt context */ if (!test_bit(__FM10K_DOWN, interface->state)) { interface->tx_timeout_count++; set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); fm10k_service_event_schedule(interface); } } /** * fm10k_clean_tx_irq - Reclaim resources after transmit completes * @q_vector: structure containing interrupt and ring information * @tx_ring: tx ring to clean * @napi_budget: Used to determine if we are in netpoll **/ static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, struct fm10k_ring *tx_ring, int napi_budget) { struct fm10k_intfc *interface = q_vector->interface; struct fm10k_tx_buffer *tx_buffer; struct fm10k_tx_desc *tx_desc; unsigned int total_bytes = 0, total_packets = 0; unsigned int budget = q_vector->tx.work_limit; unsigned int i = tx_ring->next_to_clean; if (test_bit(__FM10K_DOWN, interface->state)) return true; tx_buffer = &tx_ring->tx_buffer[i]; tx_desc = FM10K_TX_DESC(tx_ring, i); i -= tx_ring->count; do { struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; /* prevent any other reads prior to eop_desc */ smp_rmb(); /* if DD is not set pending work has not been completed */ if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) break; /* clear next_to_watch to prevent false hangs */ tx_buffer->next_to_watch = NULL; /* update the statistics for this packet */ total_bytes += tx_buffer->bytecount; total_packets += tx_buffer->gso_segs; /* free the skb */ napi_consume_skb(tx_buffer->skb, napi_budget); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); /* clear tx_buffer data */ tx_buffer->skb = NULL; dma_unmap_len_set(tx_buffer, len, 0); /* unmap remaining buffers */ while (tx_desc != eop_desc) { tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer; tx_desc = FM10K_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buffer, len)) { dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buffer, len, 0); } } /* move us one more past the eop_desc for start of next pkt */ tx_buffer++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buffer = tx_ring->tx_buffer; tx_desc = FM10K_TX_DESC(tx_ring, 0); } /* issue prefetch for next Tx descriptor */ prefetch(tx_desc); /* update budget accounting */ budget--; } while (likely(budget)); i += tx_ring->count; tx_ring->next_to_clean = i; u64_stats_update_begin(&tx_ring->syncp); tx_ring->stats.bytes += total_bytes; tx_ring->stats.packets += total_packets; u64_stats_update_end(&tx_ring->syncp); q_vector->tx.total_bytes += total_bytes; q_vector->tx.total_packets += total_packets; if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { /* schedule immediate reset if we believe we hung */ struct fm10k_hw *hw = &interface->hw; netif_err(interface, drv, tx_ring->netdev, "Detected Tx Unit Hang\n" " Tx Queue <%d>\n" " TDH, TDT <%x>, <%x>\n" " next_to_use <%x>\n" " next_to_clean <%x>\n", tx_ring->queue_index, fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), tx_ring->next_to_use, i); netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); netif_info(interface, probe, tx_ring->netdev, "tx hang %d detected on queue %d, resetting interface\n", interface->tx_timeout_count + 1, tx_ring->queue_index); fm10k_tx_timeout_reset(interface); /* the netdev is about to reset, no point in enabling stuff */ return true; } /* notify netdev of completed buffers */ netdev_tx_completed_queue(txring_txq(tx_ring), total_packets, total_bytes); #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (__netif_subqueue_stopped(tx_ring->netdev, tx_ring->queue_index) && !test_bit(__FM10K_DOWN, interface->state)) { netif_wake_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; } } return !!budget; } /** * fm10k_update_itr - update the dynamic ITR value based on packet size * * Stores a new ITR value based on strictly on packet size. The * divisors and thresholds used by this function were determined based * on theoretical maximum wire speed and testing data, in order to * minimize response time while increasing bulk throughput. * * @ring_container: Container for rings to have ITR updated **/ static void fm10k_update_itr(struct fm10k_ring_container *ring_container) { unsigned int avg_wire_size, packets, itr_round; /* Only update ITR if we are using adaptive setting */ if (!ITR_IS_ADAPTIVE(ring_container->itr)) goto clear_counts; packets = ring_container->total_packets; if (!packets) goto clear_counts; avg_wire_size = ring_container->total_bytes / packets; /* The following is a crude approximation of: * wmem_default / (size + overhead) = desired_pkts_per_int * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value * * Assuming wmem_default is 212992 and overhead is 640 bytes per * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the * formula down to * * (34 * (size + 24)) / (size + 640) = ITR * * We first do some math on the packet size and then finally bitshift * by 8 after rounding up. We also have to account for PCIe link speed * difference as ITR scales based on this. */ if (avg_wire_size <= 360) { /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ avg_wire_size *= 8; avg_wire_size += 376; } else if (avg_wire_size <= 1152) { /* 77K ints/sec to 45K ints/sec */ avg_wire_size *= 3; avg_wire_size += 2176; } else if (avg_wire_size <= 1920) { /* 45K ints/sec to 38K ints/sec */ avg_wire_size += 4480; } else { /* plateau at a limit of 38K ints/sec */ avg_wire_size = 6656; } /* Perform final bitshift for division after rounding up to ensure * that the calculation will never get below a 1. The bit shift * accounts for changes in the ITR due to PCIe link speed. */ itr_round = READ_ONCE(ring_container->itr_scale) + 8; avg_wire_size += BIT(itr_round) - 1; avg_wire_size >>= itr_round; /* write back value and retain adaptive flag */ ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; clear_counts: ring_container->total_bytes = 0; ring_container->total_packets = 0; } static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) { /* Enable auto-mask and clear the current mask */ u32 itr = FM10K_ITR_ENABLE; /* Update Tx ITR */ fm10k_update_itr(&q_vector->tx); /* Update Rx ITR */ fm10k_update_itr(&q_vector->rx); /* Store Tx itr in timer slot 0 */ itr |= (q_vector->tx.itr & FM10K_ITR_MAX); /* Shift Rx itr to timer slot 1 */ itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; /* Write the final value to the ITR register */ writel(itr, q_vector->itr); } static int fm10k_poll(struct napi_struct *napi, int budget) { struct fm10k_q_vector *q_vector = container_of(napi, struct fm10k_q_vector, napi); struct fm10k_ring *ring; int per_ring_budget, work_done = 0; bool clean_complete = true; fm10k_for_each_ring(ring, q_vector->tx) { if (!fm10k_clean_tx_irq(q_vector, ring, budget)) clean_complete = false; } /* Handle case where we are called by netpoll with a budget of 0 */ if (budget <= 0) return budget; /* attempt to distribute budget to each queue fairly, but don't * allow the budget to go below 1 because we'll exit polling */ if (q_vector->rx.count > 1) per_ring_budget = max(budget / q_vector->rx.count, 1); else per_ring_budget = budget; fm10k_for_each_ring(ring, q_vector->rx) { int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); work_done += work; if (work >= per_ring_budget) clean_complete = false; } /* If all work not completed, return budget and keep polling */ if (!clean_complete) return budget; /* Exit the polling mode, but don't re-enable interrupts if stack might * poll us due to busy-polling */ if (likely(napi_complete_done(napi, work_done))) fm10k_qv_enable(q_vector); return min(work_done, budget - 1); } /** * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device * @interface: board private structure to initialize * * When QoS (Quality of Service) is enabled, allocate queues for * each traffic class. If multiqueue isn't available,then abort QoS * initialization. * * This function handles all combinations of Qos and RSS. * **/ static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) { struct net_device *dev = interface->netdev; struct fm10k_ring_feature *f; int rss_i, i; int pcs; /* Map queue offset and counts onto allocated tx queues */ pcs = netdev_get_num_tc(dev); if (pcs <= 1) return false; /* set QoS mask and indices */ f = &interface->ring_feature[RING_F_QOS]; f->indices = pcs; f->mask = BIT(fls(pcs - 1)) - 1; /* determine the upper limit for our current DCB mode */ rss_i = interface->hw.mac.max_queues / pcs; rss_i = BIT(fls(rss_i) - 1); /* set RSS mask and indices */ f = &interface->ring_feature[RING_F_RSS]; rss_i = min_t(u16, rss_i, f->limit); f->indices = rss_i; f->mask = BIT(fls(rss_i - 1)) - 1; /* configure pause class to queue mapping */ for (i = 0; i < pcs; i++) netdev_set_tc_queue(dev, i, rss_i, rss_i * i); interface->num_rx_queues = rss_i * pcs; interface->num_tx_queues = rss_i * pcs; return true; } /** * fm10k_set_rss_queues: Allocate queues for RSS * @interface: board private structure to initialize * * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. * **/ static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) { struct fm10k_ring_feature *f; u16 rss_i; f = &interface->ring_feature[RING_F_RSS]; rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); /* record indices and power of 2 mask for RSS */ f->indices = rss_i; f->mask = BIT(fls(rss_i - 1)) - 1; interface->num_rx_queues = rss_i; interface->num_tx_queues = rss_i; return true; } /** * fm10k_set_num_queues: Allocate queues for device, feature dependent * @interface: board private structure to initialize * * This is the top level queue allocation routine. The order here is very * important, starting with the "most" number of features turned on at once, * and ending with the smallest set of features. This way large combinations * can be allocated if they're turned on, and smaller combinations are the * fall through conditions. * **/ static void fm10k_set_num_queues(struct fm10k_intfc *interface) { /* Attempt to setup QoS and RSS first */ if (fm10k_set_qos_queues(interface)) return; /* If we don't have QoS, just fallback to only RSS. */ fm10k_set_rss_queues(interface); } /** * fm10k_reset_num_queues - Reset the number of queues to zero * @interface: board private structure * * This function should be called whenever we need to reset the number of * queues after an error condition. */ static void fm10k_reset_num_queues(struct fm10k_intfc *interface) { interface->num_tx_queues = 0; interface->num_rx_queues = 0; interface->num_q_vectors = 0; } /** * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector * @interface: board private structure to initialize * @v_count: q_vectors allocated on interface, used for ring interleaving * @v_idx: index of vector in interface struct * @txr_count: total number of Tx rings to allocate * @txr_idx: index of first Tx ring to allocate * @rxr_count: total number of Rx rings to allocate * @rxr_idx: index of first Rx ring to allocate * * We allocate one q_vector. If allocation fails we return -ENOMEM. **/ static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, unsigned int v_count, unsigned int v_idx, unsigned int txr_count, unsigned int txr_idx, unsigned int rxr_count, unsigned int rxr_idx) { struct fm10k_q_vector *q_vector; struct fm10k_ring *ring; int ring_count; ring_count = txr_count + rxr_count; /* allocate q_vector and rings */ q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); if (!q_vector) return -ENOMEM; /* initialize NAPI */ netif_napi_add(interface->netdev, &q_vector->napi, fm10k_poll, NAPI_POLL_WEIGHT); /* tie q_vector and interface together */ interface->q_vector[v_idx] = q_vector; q_vector->interface = interface; q_vector->v_idx = v_idx; /* initialize pointer to rings */ ring = q_vector->ring; /* save Tx ring container info */ q_vector->tx.ring = ring; q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; q_vector->tx.itr = interface->tx_itr; q_vector->tx.itr_scale = interface->hw.mac.itr_scale; q_vector->tx.count = txr_count; while (txr_count) { /* assign generic ring traits */ ring->dev = &interface->pdev->dev; ring->netdev = interface->netdev; /* configure backlink on ring */ ring->q_vector = q_vector; /* apply Tx specific ring traits */ ring->count = interface->tx_ring_count; ring->queue_index = txr_idx; /* assign ring to interface */ interface->tx_ring[txr_idx] = ring; /* update count and index */ txr_count--; txr_idx += v_count; /* push pointer to next ring */ ring++; } /* save Rx ring container info */ q_vector->rx.ring = ring; q_vector->rx.itr = interface->rx_itr; q_vector->rx.itr_scale = interface->hw.mac.itr_scale; q_vector->rx.count = rxr_count; while (rxr_count) { /* assign generic ring traits */ ring->dev = &interface->pdev->dev; ring->netdev = interface->netdev; rcu_assign_pointer(ring->l2_accel, interface->l2_accel); /* configure backlink on ring */ ring->q_vector = q_vector; /* apply Rx specific ring traits */ ring->count = interface->rx_ring_count; ring->queue_index = rxr_idx; /* assign ring to interface */ interface->rx_ring[rxr_idx] = ring; /* update count and index */ rxr_count--; rxr_idx += v_count; /* push pointer to next ring */ ring++; } fm10k_dbg_q_vector_init(q_vector); return 0; } /** * fm10k_free_q_vector - Free memory allocated for specific interrupt vector * @interface: board private structure to initialize * @v_idx: Index of vector to be freed * * This function frees the memory allocated to the q_vector. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) { struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; struct fm10k_ring *ring; fm10k_dbg_q_vector_exit(q_vector); fm10k_for_each_ring(ring, q_vector->tx) interface->tx_ring[ring->queue_index] = NULL; fm10k_for_each_ring(ring, q_vector->rx) interface->rx_ring[ring->queue_index] = NULL; interface->q_vector[v_idx] = NULL; netif_napi_del(&q_vector->napi); kfree_rcu(q_vector, rcu); } /** * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors * @interface: board private structure to initialize * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) { unsigned int q_vectors = interface->num_q_vectors; unsigned int rxr_remaining = interface->num_rx_queues; unsigned int txr_remaining = interface->num_tx_queues; unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; int err; if (q_vectors >= (rxr_remaining + txr_remaining)) { for (; rxr_remaining; v_idx++) { err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, 0, 0, 1, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining--; rxr_idx++; } } for (; v_idx < q_vectors; v_idx++) { int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, tqpv, txr_idx, rqpv, rxr_idx); if (err) goto err_out; /* update counts and index */ rxr_remaining -= rqpv; txr_remaining -= tqpv; rxr_idx++; txr_idx++; } return 0; err_out: fm10k_reset_num_queues(interface); while (v_idx--) fm10k_free_q_vector(interface, v_idx); return -ENOMEM; } /** * fm10k_free_q_vectors - Free memory allocated for interrupt vectors * @interface: board private structure to initialize * * This function frees the memory allocated to the q_vectors. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void fm10k_free_q_vectors(struct fm10k_intfc *interface) { int v_idx = interface->num_q_vectors; fm10k_reset_num_queues(interface); while (v_idx--) fm10k_free_q_vector(interface, v_idx); } /** * fm10k_reset_msix_capability - reset MSI-X capability * @interface: board private structure to initialize * * Reset the MSI-X capability back to its starting state **/ static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) { pci_disable_msix(interface->pdev); kfree(interface->msix_entries); interface->msix_entries = NULL; } /** * fm10k_init_msix_capability - configure MSI-X capability * @interface: board private structure to initialize * * Attempt to configure the interrupts using the best available * capabilities of the hardware and the kernel. **/ static int fm10k_init_msix_capability(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; int v_budget, vector; /* It's easy to be greedy for MSI-X vectors, but it really * doesn't do us much good if we have a lot more vectors * than CPU's. So let's be conservative and only ask for * (roughly) the same number of vectors as there are CPU's. * the default is to use pairs of vectors */ v_budget = max(interface->num_rx_queues, interface->num_tx_queues); v_budget = min_t(u16, v_budget, num_online_cpus()); /* account for vectors not related to queues */ v_budget += NON_Q_VECTORS; /* At the same time, hardware can only support a maximum of * hw.mac->max_msix_vectors vectors. With features * such as RSS and VMDq, we can easily surpass the number of Rx and Tx * descriptor queues supported by our device. Thus, we cap it off in * those rare cases where the cpu count also exceeds our vector limit. */ v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); /* A failure in MSI-X entry allocation is fatal. */ interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), GFP_KERNEL); if (!interface->msix_entries) return -ENOMEM; /* populate entry values */ for (vector = 0; vector < v_budget; vector++) interface->msix_entries[vector].entry = vector; /* Attempt to enable MSI-X with requested value */ v_budget = pci_enable_msix_range(interface->pdev, interface->msix_entries, MIN_MSIX_COUNT(hw), v_budget); if (v_budget < 0) { kfree(interface->msix_entries); interface->msix_entries = NULL; return v_budget; } /* record the number of queues available for q_vectors */ interface->num_q_vectors = v_budget - NON_Q_VECTORS; return 0; } /** * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS * @interface: Interface structure continaining rings and devices * * Cache the descriptor ring offsets for Qos **/ static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) { struct net_device *dev = interface->netdev; int pc, offset, rss_i, i; u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; u8 num_pcs = netdev_get_num_tc(dev); if (num_pcs <= 1) return false; rss_i = interface->ring_feature[RING_F_RSS].indices; for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { int q_idx = pc; for (i = 0; i < rss_i; i++) { interface->tx_ring[offset + i]->reg_idx = q_idx; interface->tx_ring[offset + i]->qos_pc = pc; interface->rx_ring[offset + i]->reg_idx = q_idx; interface->rx_ring[offset + i]->qos_pc = pc; q_idx += pc_stride; } } return true; } /** * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS * @interface: Interface structure continaining rings and devices * * Cache the descriptor ring offsets for RSS **/ static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) { int i; for (i = 0; i < interface->num_rx_queues; i++) interface->rx_ring[i]->reg_idx = i; for (i = 0; i < interface->num_tx_queues; i++) interface->tx_ring[i]->reg_idx = i; } /** * fm10k_assign_rings - Map rings to network devices * @interface: Interface structure containing rings and devices * * This function is meant to go though and configure both the network * devices so that they contain rings, and configure the rings so that * they function with their network devices. **/ static void fm10k_assign_rings(struct fm10k_intfc *interface) { if (fm10k_cache_ring_qos(interface)) return; fm10k_cache_ring_rss(interface); } static void fm10k_init_reta(struct fm10k_intfc *interface) { u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; u32 reta; /* If the Rx flow indirection table has been configured manually, we * need to maintain it when possible. */ if (netif_is_rxfh_configured(interface->netdev)) { for (i = FM10K_RETA_SIZE; i--;) { reta = interface->reta[i]; if ((((reta << 24) >> 24) < rss_i) && (((reta << 16) >> 24) < rss_i) && (((reta << 8) >> 24) < rss_i) && (((reta) >> 24) < rss_i)) continue; /* this should never happen */ dev_err(&interface->pdev->dev, "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); goto repopulate_reta; } /* do nothing if all of the elements are in bounds */ return; } repopulate_reta: fm10k_write_reta(interface, NULL); } /** * fm10k_init_queueing_scheme - Determine proper queueing scheme * @interface: board private structure to initialize * * We determine which queueing scheme to use based on... * - Hardware queue count (num_*_queues) * - defined by miscellaneous hardware support/features (RSS, etc.) **/ int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) { int err; /* Number of supported queues */ fm10k_set_num_queues(interface); /* Configure MSI-X capability */ err = fm10k_init_msix_capability(interface); if (err) { dev_err(&interface->pdev->dev, "Unable to initialize MSI-X capability\n"); goto err_init_msix; } /* Allocate memory for queues */ err = fm10k_alloc_q_vectors(interface); if (err) { dev_err(&interface->pdev->dev, "Unable to allocate queue vectors\n"); goto err_alloc_q_vectors; } /* Map rings to devices, and map devices to physical queues */ fm10k_assign_rings(interface); /* Initialize RSS redirection table */ fm10k_init_reta(interface); return 0; err_alloc_q_vectors: fm10k_reset_msix_capability(interface); err_init_msix: fm10k_reset_num_queues(interface); return err; } /** * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings * @interface: board private structure to clear queueing scheme on * * We go through and clear queueing specific resources and reset the structure * to pre-load conditions **/ void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) { fm10k_free_q_vectors(interface); fm10k_reset_msix_capability(interface); }