// SPDX-License-Identifier: GPL-2.0 /* * NVMe admin command implementation. * Copyright (c) 2015-2016 HGST, a Western Digital Company. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include "nvmet.h" u32 nvmet_get_log_page_len(struct nvme_command *cmd) { u32 len = le16_to_cpu(cmd->get_log_page.numdu); len <<= 16; len += le16_to_cpu(cmd->get_log_page.numdl); /* NUMD is a 0's based value */ len += 1; len *= sizeof(u32); return len; } static u32 nvmet_feat_data_len(struct nvmet_req *req, u32 cdw10) { switch (cdw10 & 0xff) { case NVME_FEAT_HOST_ID: return sizeof(req->sq->ctrl->hostid); default: return 0; } } u64 nvmet_get_log_page_offset(struct nvme_command *cmd) { return le64_to_cpu(cmd->get_log_page.lpo); } static void nvmet_execute_get_log_page_noop(struct nvmet_req *req) { nvmet_req_complete(req, nvmet_zero_sgl(req, 0, req->transfer_len)); } static void nvmet_execute_get_log_page_error(struct nvmet_req *req) { struct nvmet_ctrl *ctrl = req->sq->ctrl; unsigned long flags; off_t offset = 0; u64 slot; u64 i; spin_lock_irqsave(&ctrl->error_lock, flags); slot = ctrl->err_counter % NVMET_ERROR_LOG_SLOTS; for (i = 0; i < NVMET_ERROR_LOG_SLOTS; i++) { if (nvmet_copy_to_sgl(req, offset, &ctrl->slots[slot], sizeof(struct nvme_error_slot))) break; if (slot == 0) slot = NVMET_ERROR_LOG_SLOTS - 1; else slot--; offset += sizeof(struct nvme_error_slot); } spin_unlock_irqrestore(&ctrl->error_lock, flags); nvmet_req_complete(req, 0); } static u16 nvmet_get_smart_log_nsid(struct nvmet_req *req, struct nvme_smart_log *slog) { u64 host_reads, host_writes, data_units_read, data_units_written; u16 status; status = nvmet_req_find_ns(req); if (status) return status; /* we don't have the right data for file backed ns */ if (!req->ns->bdev) return NVME_SC_SUCCESS; host_reads = part_stat_read(req->ns->bdev, ios[READ]); data_units_read = DIV_ROUND_UP(part_stat_read(req->ns->bdev, sectors[READ]), 1000); host_writes = part_stat_read(req->ns->bdev, ios[WRITE]); data_units_written = DIV_ROUND_UP(part_stat_read(req->ns->bdev, sectors[WRITE]), 1000); put_unaligned_le64(host_reads, &slog->host_reads[0]); put_unaligned_le64(data_units_read, &slog->data_units_read[0]); put_unaligned_le64(host_writes, &slog->host_writes[0]); put_unaligned_le64(data_units_written, &slog->data_units_written[0]); return NVME_SC_SUCCESS; } static u16 nvmet_get_smart_log_all(struct nvmet_req *req, struct nvme_smart_log *slog) { u64 host_reads = 0, host_writes = 0; u64 data_units_read = 0, data_units_written = 0; struct nvmet_ns *ns; struct nvmet_ctrl *ctrl; unsigned long idx; ctrl = req->sq->ctrl; xa_for_each(&ctrl->subsys->namespaces, idx, ns) { /* we don't have the right data for file backed ns */ if (!ns->bdev) continue; host_reads += part_stat_read(ns->bdev, ios[READ]); data_units_read += DIV_ROUND_UP( part_stat_read(ns->bdev, sectors[READ]), 1000); host_writes += part_stat_read(ns->bdev, ios[WRITE]); data_units_written += DIV_ROUND_UP( part_stat_read(ns->bdev, sectors[WRITE]), 1000); } put_unaligned_le64(host_reads, &slog->host_reads[0]); put_unaligned_le64(data_units_read, &slog->data_units_read[0]); put_unaligned_le64(host_writes, &slog->host_writes[0]); put_unaligned_le64(data_units_written, &slog->data_units_written[0]); return NVME_SC_SUCCESS; } static void nvmet_execute_get_log_page_smart(struct nvmet_req *req) { struct nvme_smart_log *log; u16 status = NVME_SC_INTERNAL; unsigned long flags; if (req->transfer_len != sizeof(*log)) goto out; log = kzalloc(sizeof(*log), GFP_KERNEL); if (!log) goto out; if (req->cmd->get_log_page.nsid == cpu_to_le32(NVME_NSID_ALL)) status = nvmet_get_smart_log_all(req, log); else status = nvmet_get_smart_log_nsid(req, log); if (status) goto out_free_log; spin_lock_irqsave(&req->sq->ctrl->error_lock, flags); put_unaligned_le64(req->sq->ctrl->err_counter, &log->num_err_log_entries); spin_unlock_irqrestore(&req->sq->ctrl->error_lock, flags); status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); out_free_log: kfree(log); out: nvmet_req_complete(req, status); } static void nvmet_get_cmd_effects_nvm(struct nvme_effects_log *log) { log->acs[nvme_admin_get_log_page] = log->acs[nvme_admin_identify] = log->acs[nvme_admin_abort_cmd] = log->acs[nvme_admin_set_features] = log->acs[nvme_admin_get_features] = log->acs[nvme_admin_async_event] = log->acs[nvme_admin_keep_alive] = cpu_to_le32(NVME_CMD_EFFECTS_CSUPP); log->iocs[nvme_cmd_read] = log->iocs[nvme_cmd_write] = log->iocs[nvme_cmd_flush] = log->iocs[nvme_cmd_dsm] = log->iocs[nvme_cmd_write_zeroes] = cpu_to_le32(NVME_CMD_EFFECTS_CSUPP); } static void nvmet_get_cmd_effects_zns(struct nvme_effects_log *log) { log->iocs[nvme_cmd_zone_append] = log->iocs[nvme_cmd_zone_mgmt_send] = log->iocs[nvme_cmd_zone_mgmt_recv] = cpu_to_le32(NVME_CMD_EFFECTS_CSUPP); } static void nvmet_execute_get_log_cmd_effects_ns(struct nvmet_req *req) { struct nvme_effects_log *log; u16 status = NVME_SC_SUCCESS; log = kzalloc(sizeof(*log), GFP_KERNEL); if (!log) { status = NVME_SC_INTERNAL; goto out; } switch (req->cmd->get_log_page.csi) { case NVME_CSI_NVM: nvmet_get_cmd_effects_nvm(log); break; case NVME_CSI_ZNS: if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { status = NVME_SC_INVALID_IO_CMD_SET; goto free; } nvmet_get_cmd_effects_nvm(log); nvmet_get_cmd_effects_zns(log); break; default: status = NVME_SC_INVALID_LOG_PAGE; goto free; } status = nvmet_copy_to_sgl(req, 0, log, sizeof(*log)); free: kfree(log); out: nvmet_req_complete(req, status); } static void nvmet_execute_get_log_changed_ns(struct nvmet_req *req) { struct nvmet_ctrl *ctrl = req->sq->ctrl; u16 status = NVME_SC_INTERNAL; size_t len; if (req->transfer_len != NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32)) goto out; mutex_lock(&ctrl->lock); if (ctrl->nr_changed_ns == U32_MAX) len = sizeof(__le32); else len = ctrl->nr_changed_ns * sizeof(__le32); status = nvmet_copy_to_sgl(req, 0, ctrl->changed_ns_list, len); if (!status) status = nvmet_zero_sgl(req, len, req->transfer_len - len); ctrl->nr_changed_ns = 0; nvmet_clear_aen_bit(req, NVME_AEN_BIT_NS_ATTR); mutex_unlock(&ctrl->lock); out: nvmet_req_complete(req, status); } static u32 nvmet_format_ana_group(struct nvmet_req *req, u32 grpid, struct nvme_ana_group_desc *desc) { struct nvmet_ctrl *ctrl = req->sq->ctrl; struct nvmet_ns *ns; unsigned long idx; u32 count = 0; if (!(req->cmd->get_log_page.lsp & NVME_ANA_LOG_RGO)) { xa_for_each(&ctrl->subsys->namespaces, idx, ns) if (ns->anagrpid == grpid) desc->nsids[count++] = cpu_to_le32(ns->nsid); } desc->grpid = cpu_to_le32(grpid); desc->nnsids = cpu_to_le32(count); desc->chgcnt = cpu_to_le64(nvmet_ana_chgcnt); desc->state = req->port->ana_state[grpid]; memset(desc->rsvd17, 0, sizeof(desc->rsvd17)); return sizeof(struct nvme_ana_group_desc) + count * sizeof(__le32); } static void nvmet_execute_get_log_page_ana(struct nvmet_req *req) { struct nvme_ana_rsp_hdr hdr = { 0, }; struct nvme_ana_group_desc *desc; size_t offset = sizeof(struct nvme_ana_rsp_hdr); /* start beyond hdr */ size_t len; u32 grpid; u16 ngrps = 0; u16 status; status = NVME_SC_INTERNAL; desc = kmalloc(sizeof(struct nvme_ana_group_desc) + NVMET_MAX_NAMESPACES * sizeof(__le32), GFP_KERNEL); if (!desc) goto out; down_read(&nvmet_ana_sem); for (grpid = 1; grpid <= NVMET_MAX_ANAGRPS; grpid++) { if (!nvmet_ana_group_enabled[grpid]) continue; len = nvmet_format_ana_group(req, grpid, desc); status = nvmet_copy_to_sgl(req, offset, desc, len); if (status) break; offset += len; ngrps++; } for ( ; grpid <= NVMET_MAX_ANAGRPS; grpid++) { if (nvmet_ana_group_enabled[grpid]) ngrps++; } hdr.chgcnt = cpu_to_le64(nvmet_ana_chgcnt); hdr.ngrps = cpu_to_le16(ngrps); nvmet_clear_aen_bit(req, NVME_AEN_BIT_ANA_CHANGE); up_read(&nvmet_ana_sem); kfree(desc); /* copy the header last once we know the number of groups */ status = nvmet_copy_to_sgl(req, 0, &hdr, sizeof(hdr)); out: nvmet_req_complete(req, status); } static void nvmet_execute_get_log_page(struct nvmet_req *req) { if (!nvmet_check_transfer_len(req, nvmet_get_log_page_len(req->cmd))) return; switch (req->cmd->get_log_page.lid) { case NVME_LOG_ERROR: return nvmet_execute_get_log_page_error(req); case NVME_LOG_SMART: return nvmet_execute_get_log_page_smart(req); case NVME_LOG_FW_SLOT: /* * We only support a single firmware slot which always is * active, so we can zero out the whole firmware slot log and * still claim to fully implement this mandatory log page. */ return nvmet_execute_get_log_page_noop(req); case NVME_LOG_CHANGED_NS: return nvmet_execute_get_log_changed_ns(req); case NVME_LOG_CMD_EFFECTS: return nvmet_execute_get_log_cmd_effects_ns(req); case NVME_LOG_ANA: return nvmet_execute_get_log_page_ana(req); } pr_debug("unhandled lid %d on qid %d\n", req->cmd->get_log_page.lid, req->sq->qid); req->error_loc = offsetof(struct nvme_get_log_page_command, lid); nvmet_req_complete(req, NVME_SC_INVALID_FIELD | NVME_SC_DNR); } static void nvmet_execute_identify_ctrl(struct nvmet_req *req) { struct nvmet_ctrl *ctrl = req->sq->ctrl; struct nvmet_subsys *subsys = ctrl->subsys; struct nvme_id_ctrl *id; u32 cmd_capsule_size; u16 status = 0; if (!subsys->subsys_discovered) { mutex_lock(&subsys->lock); subsys->subsys_discovered = true; mutex_unlock(&subsys->lock); } id = kzalloc(sizeof(*id), GFP_KERNEL); if (!id) { status = NVME_SC_INTERNAL; goto out; } /* XXX: figure out how to assign real vendors IDs. */ id->vid = 0; id->ssvid = 0; memcpy(id->sn, ctrl->subsys->serial, NVMET_SN_MAX_SIZE); memcpy_and_pad(id->mn, sizeof(id->mn), subsys->model_number, strlen(subsys->model_number), ' '); memcpy_and_pad(id->fr, sizeof(id->fr), UTS_RELEASE, strlen(UTS_RELEASE), ' '); id->rab = 6; /* * XXX: figure out how we can assign a IEEE OUI, but until then * the safest is to leave it as zeroes. */ /* we support multiple ports, multiples hosts and ANA: */ id->cmic = (1 << 0) | (1 << 1) | (1 << 3); /* Limit MDTS according to transport capability */ if (ctrl->ops->get_mdts) id->mdts = ctrl->ops->get_mdts(ctrl); else id->mdts = 0; id->cntlid = cpu_to_le16(ctrl->cntlid); id->ver = cpu_to_le32(ctrl->subsys->ver); /* XXX: figure out what to do about RTD3R/RTD3 */ id->oaes = cpu_to_le32(NVMET_AEN_CFG_OPTIONAL); id->ctratt = cpu_to_le32(NVME_CTRL_ATTR_HID_128_BIT | NVME_CTRL_ATTR_TBKAS); id->oacs = 0; /* * We don't really have a practical limit on the number of abort * comands. But we don't do anything useful for abort either, so * no point in allowing more abort commands than the spec requires. */ id->acl = 3; id->aerl = NVMET_ASYNC_EVENTS - 1; /* first slot is read-only, only one slot supported */ id->frmw = (1 << 0) | (1 << 1); id->lpa = (1 << 0) | (1 << 1) | (1 << 2); id->elpe = NVMET_ERROR_LOG_SLOTS - 1; id->npss = 0; /* We support keep-alive timeout in granularity of seconds */ id->kas = cpu_to_le16(NVMET_KAS); id->sqes = (0x6 << 4) | 0x6; id->cqes = (0x4 << 4) | 0x4; /* no enforcement soft-limit for maxcmd - pick arbitrary high value */ id->maxcmd = cpu_to_le16(NVMET_MAX_CMD); id->nn = cpu_to_le32(NVMET_MAX_NAMESPACES); id->mnan = cpu_to_le32(NVMET_MAX_NAMESPACES); id->oncs = cpu_to_le16(NVME_CTRL_ONCS_DSM | NVME_CTRL_ONCS_WRITE_ZEROES); /* XXX: don't report vwc if the underlying device is write through */ id->vwc = NVME_CTRL_VWC_PRESENT; /* * We can't support atomic writes bigger than a LBA without support * from the backend device. */ id->awun = 0; id->awupf = 0; id->sgls = cpu_to_le32(1 << 0); /* we always support SGLs */ if (ctrl->ops->flags & NVMF_KEYED_SGLS) id->sgls |= cpu_to_le32(1 << 2); if (req->port->inline_data_size) id->sgls |= cpu_to_le32(1 << 20); strlcpy(id->subnqn, ctrl->subsys->subsysnqn, sizeof(id->subnqn)); /* * Max command capsule size is sqe + in-capsule data size. * Disable in-capsule data for Metadata capable controllers. */ cmd_capsule_size = sizeof(struct nvme_command); if (!ctrl->pi_support) cmd_capsule_size += req->port->inline_data_size; id->ioccsz = cpu_to_le32(cmd_capsule_size / 16); /* Max response capsule size is cqe */ id->iorcsz = cpu_to_le32(sizeof(struct nvme_completion) / 16); id->msdbd = ctrl->ops->msdbd; id->anacap = (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3) | (1 << 4); id->anatt = 10; /* random value */ id->anagrpmax = cpu_to_le32(NVMET_MAX_ANAGRPS); id->nanagrpid = cpu_to_le32(NVMET_MAX_ANAGRPS); /* * Meh, we don't really support any power state. Fake up the same * values that qemu does. */ id->psd[0].max_power = cpu_to_le16(0x9c4); id->psd[0].entry_lat = cpu_to_le32(0x10); id->psd[0].exit_lat = cpu_to_le32(0x4); id->nwpc = 1 << 0; /* write protect and no write protect */ status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); kfree(id); out: nvmet_req_complete(req, status); } static void nvmet_execute_identify_ns(struct nvmet_req *req) { struct nvme_id_ns *id; u16 status; if (le32_to_cpu(req->cmd->identify.nsid) == NVME_NSID_ALL) { req->error_loc = offsetof(struct nvme_identify, nsid); status = NVME_SC_INVALID_NS | NVME_SC_DNR; goto out; } id = kzalloc(sizeof(*id), GFP_KERNEL); if (!id) { status = NVME_SC_INTERNAL; goto out; } /* return an all zeroed buffer if we can't find an active namespace */ status = nvmet_req_find_ns(req); if (status) { status = 0; goto done; } if (nvmet_ns_revalidate(req->ns)) { mutex_lock(&req->ns->subsys->lock); nvmet_ns_changed(req->ns->subsys, req->ns->nsid); mutex_unlock(&req->ns->subsys->lock); } /* * nuse = ncap = nsze isn't always true, but we have no way to find * that out from the underlying device. */ id->ncap = id->nsze = cpu_to_le64(req->ns->size >> req->ns->blksize_shift); switch (req->port->ana_state[req->ns->anagrpid]) { case NVME_ANA_INACCESSIBLE: case NVME_ANA_PERSISTENT_LOSS: break; default: id->nuse = id->nsze; break; } if (req->ns->bdev) nvmet_bdev_set_limits(req->ns->bdev, id); /* * We just provide a single LBA format that matches what the * underlying device reports. */ id->nlbaf = 0; id->flbas = 0; /* * Our namespace might always be shared. Not just with other * controllers, but also with any other user of the block device. */ id->nmic = (1 << 0); id->anagrpid = cpu_to_le32(req->ns->anagrpid); memcpy(&id->nguid, &req->ns->nguid, sizeof(id->nguid)); id->lbaf[0].ds = req->ns->blksize_shift; if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) { id->dpc = NVME_NS_DPC_PI_FIRST | NVME_NS_DPC_PI_LAST | NVME_NS_DPC_PI_TYPE1 | NVME_NS_DPC_PI_TYPE2 | NVME_NS_DPC_PI_TYPE3; id->mc = NVME_MC_EXTENDED_LBA; id->dps = req->ns->pi_type; id->flbas = NVME_NS_FLBAS_META_EXT; id->lbaf[0].ms = cpu_to_le16(req->ns->metadata_size); } if (req->ns->readonly) id->nsattr |= (1 << 0); done: if (!status) status = nvmet_copy_to_sgl(req, 0, id, sizeof(*id)); kfree(id); out: nvmet_req_complete(req, status); } static void nvmet_execute_identify_nslist(struct nvmet_req *req) { static const int buf_size = NVME_IDENTIFY_DATA_SIZE; struct nvmet_ctrl *ctrl = req->sq->ctrl; struct nvmet_ns *ns; unsigned long idx; u32 min_nsid = le32_to_cpu(req->cmd->identify.nsid); __le32 *list; u16 status = 0; int i = 0; list = kzalloc(buf_size, GFP_KERNEL); if (!list) { status = NVME_SC_INTERNAL; goto out; } xa_for_each(&ctrl->subsys->namespaces, idx, ns) { if (ns->nsid <= min_nsid) continue; list[i++] = cpu_to_le32(ns->nsid); if (i == buf_size / sizeof(__le32)) break; } status = nvmet_copy_to_sgl(req, 0, list, buf_size); kfree(list); out: nvmet_req_complete(req, status); } static u16 nvmet_copy_ns_identifier(struct nvmet_req *req, u8 type, u8 len, void *id, off_t *off) { struct nvme_ns_id_desc desc = { .nidt = type, .nidl = len, }; u16 status; status = nvmet_copy_to_sgl(req, *off, &desc, sizeof(desc)); if (status) return status; *off += sizeof(desc); status = nvmet_copy_to_sgl(req, *off, id, len); if (status) return status; *off += len; return 0; } static void nvmet_execute_identify_desclist(struct nvmet_req *req) { off_t off = 0; u16 status; status = nvmet_req_find_ns(req); if (status) goto out; if (memchr_inv(&req->ns->uuid, 0, sizeof(req->ns->uuid))) { status = nvmet_copy_ns_identifier(req, NVME_NIDT_UUID, NVME_NIDT_UUID_LEN, &req->ns->uuid, &off); if (status) goto out; } if (memchr_inv(req->ns->nguid, 0, sizeof(req->ns->nguid))) { status = nvmet_copy_ns_identifier(req, NVME_NIDT_NGUID, NVME_NIDT_NGUID_LEN, &req->ns->nguid, &off); if (status) goto out; } status = nvmet_copy_ns_identifier(req, NVME_NIDT_CSI, NVME_NIDT_CSI_LEN, &req->ns->csi, &off); if (status) goto out; if (sg_zero_buffer(req->sg, req->sg_cnt, NVME_IDENTIFY_DATA_SIZE - off, off) != NVME_IDENTIFY_DATA_SIZE - off) status = NVME_SC_INTERNAL | NVME_SC_DNR; out: nvmet_req_complete(req, status); } static bool nvmet_handle_identify_desclist(struct nvmet_req *req) { switch (req->cmd->identify.csi) { case NVME_CSI_NVM: nvmet_execute_identify_desclist(req); return true; case NVME_CSI_ZNS: if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { nvmet_execute_identify_desclist(req); return true; } return false; default: return false; } } static void nvmet_execute_identify_ctrl_nvm(struct nvmet_req *req) { /* Not supported: return zeroes */ nvmet_req_complete(req, nvmet_zero_sgl(req, 0, sizeof(struct nvme_id_ctrl_nvm))); } static void nvmet_execute_identify(struct nvmet_req *req) { if (!nvmet_check_transfer_len(req, NVME_IDENTIFY_DATA_SIZE)) return; switch (req->cmd->identify.cns) { case NVME_ID_CNS_NS: nvmet_execute_identify_ns(req); return; case NVME_ID_CNS_CS_NS: if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { switch (req->cmd->identify.csi) { case NVME_CSI_ZNS: return nvmet_execute_identify_cns_cs_ns(req); default: break; } } break; case NVME_ID_CNS_CTRL: nvmet_execute_identify_ctrl(req); return; case NVME_ID_CNS_CS_CTRL: switch (req->cmd->identify.csi) { case NVME_CSI_NVM: nvmet_execute_identify_ctrl_nvm(req); return; case NVME_CSI_ZNS: if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { nvmet_execute_identify_ctrl_zns(req); return; } break; } break; case NVME_ID_CNS_NS_ACTIVE_LIST: nvmet_execute_identify_nslist(req); return; case NVME_ID_CNS_NS_DESC_LIST: if (nvmet_handle_identify_desclist(req) == true) return; break; } nvmet_req_cns_error_complete(req); } /* * A "minimum viable" abort implementation: the command is mandatory in the * spec, but we are not required to do any useful work. We couldn't really * do a useful abort, so don't bother even with waiting for the command * to be exectuted and return immediately telling the command to abort * wasn't found. */ static void nvmet_execute_abort(struct nvmet_req *req) { if (!nvmet_check_transfer_len(req, 0)) return; nvmet_set_result(req, 1); nvmet_req_complete(req, 0); } static u16 nvmet_write_protect_flush_sync(struct nvmet_req *req) { u16 status; if (req->ns->file) status = nvmet_file_flush(req); else status = nvmet_bdev_flush(req); if (status) pr_err("write protect flush failed nsid: %u\n", req->ns->nsid); return status; } static u16 nvmet_set_feat_write_protect(struct nvmet_req *req) { u32 write_protect = le32_to_cpu(req->cmd->common.cdw11); struct nvmet_subsys *subsys = nvmet_req_subsys(req); u16 status; status = nvmet_req_find_ns(req); if (status) return status; mutex_lock(&subsys->lock); switch (write_protect) { case NVME_NS_WRITE_PROTECT: req->ns->readonly = true; status = nvmet_write_protect_flush_sync(req); if (status) req->ns->readonly = false; break; case NVME_NS_NO_WRITE_PROTECT: req->ns->readonly = false; status = 0; break; default: break; } if (!status) nvmet_ns_changed(subsys, req->ns->nsid); mutex_unlock(&subsys->lock); return status; } u16 nvmet_set_feat_kato(struct nvmet_req *req) { u32 val32 = le32_to_cpu(req->cmd->common.cdw11); nvmet_stop_keep_alive_timer(req->sq->ctrl); req->sq->ctrl->kato = DIV_ROUND_UP(val32, 1000); nvmet_start_keep_alive_timer(req->sq->ctrl); nvmet_set_result(req, req->sq->ctrl->kato); return 0; } u16 nvmet_set_feat_async_event(struct nvmet_req *req, u32 mask) { u32 val32 = le32_to_cpu(req->cmd->common.cdw11); if (val32 & ~mask) { req->error_loc = offsetof(struct nvme_common_command, cdw11); return NVME_SC_INVALID_FIELD | NVME_SC_DNR; } WRITE_ONCE(req->sq->ctrl->aen_enabled, val32); nvmet_set_result(req, val32); return 0; } void nvmet_execute_set_features(struct nvmet_req *req) { struct nvmet_subsys *subsys = nvmet_req_subsys(req); u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); u32 cdw11 = le32_to_cpu(req->cmd->common.cdw11); u16 status = 0; u16 nsqr; u16 ncqr; if (!nvmet_check_transfer_len(req, 0)) return; switch (cdw10 & 0xff) { case NVME_FEAT_NUM_QUEUES: ncqr = (cdw11 >> 16) & 0xffff; nsqr = cdw11 & 0xffff; if (ncqr == 0xffff || nsqr == 0xffff) { status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; break; } nvmet_set_result(req, (subsys->max_qid - 1) | ((subsys->max_qid - 1) << 16)); break; case NVME_FEAT_KATO: status = nvmet_set_feat_kato(req); break; case NVME_FEAT_ASYNC_EVENT: status = nvmet_set_feat_async_event(req, NVMET_AEN_CFG_ALL); break; case NVME_FEAT_HOST_ID: status = NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; break; case NVME_FEAT_WRITE_PROTECT: status = nvmet_set_feat_write_protect(req); break; default: req->error_loc = offsetof(struct nvme_common_command, cdw10); status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; break; } nvmet_req_complete(req, status); } static u16 nvmet_get_feat_write_protect(struct nvmet_req *req) { struct nvmet_subsys *subsys = nvmet_req_subsys(req); u32 result; result = nvmet_req_find_ns(req); if (result) return result; mutex_lock(&subsys->lock); if (req->ns->readonly == true) result = NVME_NS_WRITE_PROTECT; else result = NVME_NS_NO_WRITE_PROTECT; nvmet_set_result(req, result); mutex_unlock(&subsys->lock); return 0; } void nvmet_get_feat_kato(struct nvmet_req *req) { nvmet_set_result(req, req->sq->ctrl->kato * 1000); } void nvmet_get_feat_async_event(struct nvmet_req *req) { nvmet_set_result(req, READ_ONCE(req->sq->ctrl->aen_enabled)); } void nvmet_execute_get_features(struct nvmet_req *req) { struct nvmet_subsys *subsys = nvmet_req_subsys(req); u32 cdw10 = le32_to_cpu(req->cmd->common.cdw10); u16 status = 0; if (!nvmet_check_transfer_len(req, nvmet_feat_data_len(req, cdw10))) return; switch (cdw10 & 0xff) { /* * These features are mandatory in the spec, but we don't * have a useful way to implement them. We'll eventually * need to come up with some fake values for these. */ #if 0 case NVME_FEAT_ARBITRATION: break; case NVME_FEAT_POWER_MGMT: break; case NVME_FEAT_TEMP_THRESH: break; case NVME_FEAT_ERR_RECOVERY: break; case NVME_FEAT_IRQ_COALESCE: break; case NVME_FEAT_IRQ_CONFIG: break; case NVME_FEAT_WRITE_ATOMIC: break; #endif case NVME_FEAT_ASYNC_EVENT: nvmet_get_feat_async_event(req); break; case NVME_FEAT_VOLATILE_WC: nvmet_set_result(req, 1); break; case NVME_FEAT_NUM_QUEUES: nvmet_set_result(req, (subsys->max_qid-1) | ((subsys->max_qid-1) << 16)); break; case NVME_FEAT_KATO: nvmet_get_feat_kato(req); break; case NVME_FEAT_HOST_ID: /* need 128-bit host identifier flag */ if (!(req->cmd->common.cdw11 & cpu_to_le32(1 << 0))) { req->error_loc = offsetof(struct nvme_common_command, cdw11); status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; break; } status = nvmet_copy_to_sgl(req, 0, &req->sq->ctrl->hostid, sizeof(req->sq->ctrl->hostid)); break; case NVME_FEAT_WRITE_PROTECT: status = nvmet_get_feat_write_protect(req); break; default: req->error_loc = offsetof(struct nvme_common_command, cdw10); status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; break; } nvmet_req_complete(req, status); } void nvmet_execute_async_event(struct nvmet_req *req) { struct nvmet_ctrl *ctrl = req->sq->ctrl; if (!nvmet_check_transfer_len(req, 0)) return; mutex_lock(&ctrl->lock); if (ctrl->nr_async_event_cmds >= NVMET_ASYNC_EVENTS) { mutex_unlock(&ctrl->lock); nvmet_req_complete(req, NVME_SC_ASYNC_LIMIT | NVME_SC_DNR); return; } ctrl->async_event_cmds[ctrl->nr_async_event_cmds++] = req; mutex_unlock(&ctrl->lock); queue_work(nvmet_wq, &ctrl->async_event_work); } void nvmet_execute_keep_alive(struct nvmet_req *req) { struct nvmet_ctrl *ctrl = req->sq->ctrl; u16 status = 0; if (!nvmet_check_transfer_len(req, 0)) return; if (!ctrl->kato) { status = NVME_SC_KA_TIMEOUT_INVALID; goto out; } pr_debug("ctrl %d update keep-alive timer for %d secs\n", ctrl->cntlid, ctrl->kato); mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ); out: nvmet_req_complete(req, status); } u16 nvmet_parse_admin_cmd(struct nvmet_req *req) { struct nvme_command *cmd = req->cmd; u16 ret; if (nvme_is_fabrics(cmd)) return nvmet_parse_fabrics_cmd(req); if (nvmet_req_subsys(req)->type == NVME_NQN_DISC) return nvmet_parse_discovery_cmd(req); ret = nvmet_check_ctrl_status(req); if (unlikely(ret)) return ret; if (nvmet_is_passthru_req(req)) return nvmet_parse_passthru_admin_cmd(req); switch (cmd->common.opcode) { case nvme_admin_get_log_page: req->execute = nvmet_execute_get_log_page; return 0; case nvme_admin_identify: req->execute = nvmet_execute_identify; return 0; case nvme_admin_abort_cmd: req->execute = nvmet_execute_abort; return 0; case nvme_admin_set_features: req->execute = nvmet_execute_set_features; return 0; case nvme_admin_get_features: req->execute = nvmet_execute_get_features; return 0; case nvme_admin_async_event: req->execute = nvmet_execute_async_event; return 0; case nvme_admin_keep_alive: req->execute = nvmet_execute_keep_alive; return 0; default: return nvmet_report_invalid_opcode(req); } }