// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux MegaRAID driver for SAS based RAID controllers * * Copyright (c) 2009-2013 LSI Corporation * Copyright (c) 2013-2016 Avago Technologies * Copyright (c) 2016-2018 Broadcom Inc. * * FILE: megaraid_sas_fusion.c * * Authors: Broadcom Inc. * Sumant Patro * Adam Radford * Kashyap Desai * Sumit Saxena * * Send feedback to: megaraidlinux.pdl@broadcom.com */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "megaraid_sas_fusion.h" #include "megaraid_sas.h" extern void megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, u8 alt_status); int wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd, int seconds); int megasas_clear_intr_fusion(struct megasas_instance *instance); int megasas_transition_to_ready(struct megasas_instance *instance, int ocr); extern u32 megasas_dbg_lvl; int megasas_sriov_start_heartbeat(struct megasas_instance *instance, int initial); extern struct megasas_mgmt_info megasas_mgmt_info; extern unsigned int resetwaittime; extern unsigned int dual_qdepth_disable; static void megasas_free_rdpq_fusion(struct megasas_instance *instance); static void megasas_free_reply_fusion(struct megasas_instance *instance); static inline void megasas_configure_queue_sizes(struct megasas_instance *instance); static void megasas_fusion_crash_dump(struct megasas_instance *instance); /** * megasas_adp_reset_wait_for_ready - initiate chip reset and wait for * controller to come to ready state * @instance: adapter's soft state * @do_adp_reset: If true, do a chip reset * @ocr_context: If called from OCR context this will * be set to 1, else 0 * * This function initates a chip reset followed by a wait for controller to * transition to ready state. * During this, driver will block all access to PCI config space from userspace */ int megasas_adp_reset_wait_for_ready(struct megasas_instance *instance, bool do_adp_reset, int ocr_context) { int ret = FAILED; /* * Block access to PCI config space from userspace * when diag reset is initiated from driver */ if (megasas_dbg_lvl & OCR_DEBUG) dev_info(&instance->pdev->dev, "Block access to PCI config space %s %d\n", __func__, __LINE__); pci_cfg_access_lock(instance->pdev); if (do_adp_reset) { if (instance->instancet->adp_reset (instance, instance->reg_set)) goto out; } /* Wait for FW to become ready */ if (megasas_transition_to_ready(instance, ocr_context)) { dev_warn(&instance->pdev->dev, "Failed to transition controller to ready for scsi%d.\n", instance->host->host_no); goto out; } ret = SUCCESS; out: if (megasas_dbg_lvl & OCR_DEBUG) dev_info(&instance->pdev->dev, "Unlock access to PCI config space %s %d\n", __func__, __LINE__); pci_cfg_access_unlock(instance->pdev); return ret; } /** * megasas_check_same_4gb_region - check if allocation * crosses same 4GB boundary or not * @instance: adapter's soft instance * @start_addr: start address of DMA allocation * @size: size of allocation in bytes * @return: true : allocation does not cross same * 4GB boundary * false: allocation crosses same * 4GB boundary */ static inline bool megasas_check_same_4gb_region (struct megasas_instance *instance, dma_addr_t start_addr, size_t size) { dma_addr_t end_addr; end_addr = start_addr + size; if (upper_32_bits(start_addr) != upper_32_bits(end_addr)) { dev_err(&instance->pdev->dev, "Failed to get same 4GB boundary: start_addr: 0x%llx end_addr: 0x%llx\n", (unsigned long long)start_addr, (unsigned long long)end_addr); return false; } return true; } /** * megasas_enable_intr_fusion - Enables interrupts * @instance: adapter's soft instance */ static void megasas_enable_intr_fusion(struct megasas_instance *instance) { struct megasas_register_set __iomem *regs; regs = instance->reg_set; instance->mask_interrupts = 0; /* For Thunderbolt/Invader also clear intr on enable */ writel(~0, ®s->outbound_intr_status); readl(®s->outbound_intr_status); writel(~MFI_FUSION_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ dev_info(&instance->pdev->dev, "%s is called outbound_intr_mask:0x%08x\n", __func__, readl(®s->outbound_intr_mask)); } /** * megasas_disable_intr_fusion - Disables interrupt * @instance: adapter's soft instance */ static void megasas_disable_intr_fusion(struct megasas_instance *instance) { u32 mask = 0xFFFFFFFF; struct megasas_register_set __iomem *regs; regs = instance->reg_set; instance->mask_interrupts = 1; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ dev_info(&instance->pdev->dev, "%s is called outbound_intr_mask:0x%08x\n", __func__, readl(®s->outbound_intr_mask)); } int megasas_clear_intr_fusion(struct megasas_instance *instance) { u32 status; struct megasas_register_set __iomem *regs; regs = instance->reg_set; /* * Check if it is our interrupt */ status = megasas_readl(instance, ®s->outbound_intr_status); if (status & 1) { writel(status, ®s->outbound_intr_status); readl(®s->outbound_intr_status); return 1; } if (!(status & MFI_FUSION_ENABLE_INTERRUPT_MASK)) return 0; return 1; } static inline void megasas_sdev_busy_inc(struct megasas_instance *instance, struct scsi_cmnd *scmd) { if (instance->perf_mode == MR_BALANCED_PERF_MODE) { struct MR_PRIV_DEVICE *mr_device_priv_data = scmd->device->hostdata; atomic_inc(&mr_device_priv_data->sdev_priv_busy); } } static inline void megasas_sdev_busy_dec(struct megasas_instance *instance, struct scsi_cmnd *scmd) { if (instance->perf_mode == MR_BALANCED_PERF_MODE) { struct MR_PRIV_DEVICE *mr_device_priv_data = scmd->device->hostdata; atomic_dec(&mr_device_priv_data->sdev_priv_busy); } } static inline int megasas_sdev_busy_read(struct megasas_instance *instance, struct scsi_cmnd *scmd) { if (instance->perf_mode == MR_BALANCED_PERF_MODE) { struct MR_PRIV_DEVICE *mr_device_priv_data = scmd->device->hostdata; return atomic_read(&mr_device_priv_data->sdev_priv_busy); } return 0; } /** * megasas_get_cmd_fusion - Get a command from the free pool * @instance: Adapter soft state * @blk_tag: Command tag * * Returns a blk_tag indexed mpt frame */ inline struct megasas_cmd_fusion *megasas_get_cmd_fusion(struct megasas_instance *instance, u32 blk_tag) { struct fusion_context *fusion; fusion = instance->ctrl_context; return fusion->cmd_list[blk_tag]; } /** * megasas_return_cmd_fusion - Return a cmd to free command pool * @instance: Adapter soft state * @cmd: Command packet to be returned to free command pool */ inline void megasas_return_cmd_fusion(struct megasas_instance *instance, struct megasas_cmd_fusion *cmd) { cmd->scmd = NULL; memset(cmd->io_request, 0, MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE); cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID; cmd->cmd_completed = false; } /** * megasas_write_64bit_req_desc - PCI writes 64bit request descriptor * @instance: Adapter soft state * @req_desc: 64bit Request descriptor */ static void megasas_write_64bit_req_desc(struct megasas_instance *instance, union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc) { #if defined(writeq) && defined(CONFIG_64BIT) u64 req_data = (((u64)le32_to_cpu(req_desc->u.high) << 32) | le32_to_cpu(req_desc->u.low)); writeq(req_data, &instance->reg_set->inbound_low_queue_port); #else unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel(le32_to_cpu(req_desc->u.low), &instance->reg_set->inbound_low_queue_port); writel(le32_to_cpu(req_desc->u.high), &instance->reg_set->inbound_high_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); #endif } /** * megasas_fire_cmd_fusion - Sends command to the FW * @instance: Adapter soft state * @req_desc: 32bit or 64bit Request descriptor * * Perform PCI Write. AERO SERIES supports 32 bit Descriptor. * Prior to AERO_SERIES support 64 bit Descriptor. */ static void megasas_fire_cmd_fusion(struct megasas_instance *instance, union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc) { if (instance->atomic_desc_support) writel(le32_to_cpu(req_desc->u.low), &instance->reg_set->inbound_single_queue_port); else megasas_write_64bit_req_desc(instance, req_desc); } /** * megasas_fusion_update_can_queue - Do all Adapter Queue depth related calculations here * @instance: Adapter soft state * @fw_boot_context: Whether this function called during probe or after OCR * * This function is only for fusion controllers. * Update host can queue, if firmware downgrade max supported firmware commands. * Firmware upgrade case will be skiped because underlying firmware has * more resource than exposed to the OS. * */ static void megasas_fusion_update_can_queue(struct megasas_instance *instance, int fw_boot_context) { u16 cur_max_fw_cmds = 0; u16 ldio_threshold = 0; /* ventura FW does not fill outbound_scratch_pad_2 with queue depth */ if (instance->adapter_type < VENTURA_SERIES) cur_max_fw_cmds = megasas_readl(instance, &instance->reg_set->outbound_scratch_pad_2) & 0x00FFFF; if (dual_qdepth_disable || !cur_max_fw_cmds) cur_max_fw_cmds = instance->instancet->read_fw_status_reg(instance) & 0x00FFFF; else ldio_threshold = (instance->instancet->read_fw_status_reg(instance) & 0x00FFFF) - MEGASAS_FUSION_IOCTL_CMDS; dev_info(&instance->pdev->dev, "Current firmware supports maximum commands: %d\t LDIO threshold: %d\n", cur_max_fw_cmds, ldio_threshold); if (fw_boot_context == OCR_CONTEXT) { cur_max_fw_cmds = cur_max_fw_cmds - 1; if (cur_max_fw_cmds < instance->max_fw_cmds) { instance->cur_can_queue = cur_max_fw_cmds - (MEGASAS_FUSION_INTERNAL_CMDS + MEGASAS_FUSION_IOCTL_CMDS); instance->host->can_queue = instance->cur_can_queue; instance->ldio_threshold = ldio_threshold; } } else { instance->max_fw_cmds = cur_max_fw_cmds; instance->ldio_threshold = ldio_threshold; if (reset_devices) instance->max_fw_cmds = min(instance->max_fw_cmds, (u16)MEGASAS_KDUMP_QUEUE_DEPTH); /* * Reduce the max supported cmds by 1. This is to ensure that the * reply_q_sz (1 more than the max cmd that driver may send) * does not exceed max cmds that the FW can support */ instance->max_fw_cmds = instance->max_fw_cmds-1; } } static inline void megasas_get_msix_index(struct megasas_instance *instance, struct scsi_cmnd *scmd, struct megasas_cmd_fusion *cmd, u8 data_arms) { if (instance->perf_mode == MR_BALANCED_PERF_MODE && (megasas_sdev_busy_read(instance, scmd) > (data_arms * MR_DEVICE_HIGH_IOPS_DEPTH))) { cmd->request_desc->SCSIIO.MSIxIndex = mega_mod64((atomic64_add_return(1, &instance->high_iops_outstanding) / MR_HIGH_IOPS_BATCH_COUNT), instance->low_latency_index_start); } else if (instance->msix_load_balance) { cmd->request_desc->SCSIIO.MSIxIndex = (mega_mod64(atomic64_add_return(1, &instance->total_io_count), instance->msix_vectors)); } else if (instance->host->nr_hw_queues > 1) { u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); cmd->request_desc->SCSIIO.MSIxIndex = blk_mq_unique_tag_to_hwq(tag) + instance->low_latency_index_start; } else { cmd->request_desc->SCSIIO.MSIxIndex = instance->reply_map[raw_smp_processor_id()]; } } /** * megasas_free_cmds_fusion - Free all the cmds in the free cmd pool * @instance: Adapter soft state */ void megasas_free_cmds_fusion(struct megasas_instance *instance) { int i; struct fusion_context *fusion = instance->ctrl_context; struct megasas_cmd_fusion *cmd; if (fusion->sense) dma_pool_free(fusion->sense_dma_pool, fusion->sense, fusion->sense_phys_addr); /* SG */ if (fusion->cmd_list) { for (i = 0; i < instance->max_mpt_cmds; i++) { cmd = fusion->cmd_list[i]; if (cmd) { if (cmd->sg_frame) dma_pool_free(fusion->sg_dma_pool, cmd->sg_frame, cmd->sg_frame_phys_addr); } kfree(cmd); } kfree(fusion->cmd_list); } if (fusion->sg_dma_pool) { dma_pool_destroy(fusion->sg_dma_pool); fusion->sg_dma_pool = NULL; } if (fusion->sense_dma_pool) { dma_pool_destroy(fusion->sense_dma_pool); fusion->sense_dma_pool = NULL; } /* Reply Frame, Desc*/ if (instance->is_rdpq) megasas_free_rdpq_fusion(instance); else megasas_free_reply_fusion(instance); /* Request Frame, Desc*/ if (fusion->req_frames_desc) dma_free_coherent(&instance->pdev->dev, fusion->request_alloc_sz, fusion->req_frames_desc, fusion->req_frames_desc_phys); if (fusion->io_request_frames) dma_pool_free(fusion->io_request_frames_pool, fusion->io_request_frames, fusion->io_request_frames_phys); if (fusion->io_request_frames_pool) { dma_pool_destroy(fusion->io_request_frames_pool); fusion->io_request_frames_pool = NULL; } } /** * megasas_create_sg_sense_fusion - Creates DMA pool for cmd frames * @instance: Adapter soft state * */ static int megasas_create_sg_sense_fusion(struct megasas_instance *instance) { int i; u16 max_cmd; struct fusion_context *fusion; struct megasas_cmd_fusion *cmd; int sense_sz; u32 offset; fusion = instance->ctrl_context; max_cmd = instance->max_fw_cmds; sense_sz = instance->max_mpt_cmds * SCSI_SENSE_BUFFERSIZE; fusion->sg_dma_pool = dma_pool_create("mr_sg", &instance->pdev->dev, instance->max_chain_frame_sz, MR_DEFAULT_NVME_PAGE_SIZE, 0); /* SCSI_SENSE_BUFFERSIZE = 96 bytes */ fusion->sense_dma_pool = dma_pool_create("mr_sense", &instance->pdev->dev, sense_sz, 64, 0); if (!fusion->sense_dma_pool || !fusion->sg_dma_pool) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } fusion->sense = dma_pool_alloc(fusion->sense_dma_pool, GFP_KERNEL, &fusion->sense_phys_addr); if (!fusion->sense) { dev_err(&instance->pdev->dev, "failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } /* sense buffer, request frame and reply desc pool requires to be in * same 4 gb region. Below function will check this. * In case of failure, new pci pool will be created with updated * alignment. * Older allocation and pool will be destroyed. * Alignment will be used such a way that next allocation if success, * will always meet same 4gb region requirement. * Actual requirement is not alignment, but we need start and end of * DMA address must have same upper 32 bit address. */ if (!megasas_check_same_4gb_region(instance, fusion->sense_phys_addr, sense_sz)) { dma_pool_free(fusion->sense_dma_pool, fusion->sense, fusion->sense_phys_addr); fusion->sense = NULL; dma_pool_destroy(fusion->sense_dma_pool); fusion->sense_dma_pool = dma_pool_create("mr_sense_align", &instance->pdev->dev, sense_sz, roundup_pow_of_two(sense_sz), 0); if (!fusion->sense_dma_pool) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } fusion->sense = dma_pool_alloc(fusion->sense_dma_pool, GFP_KERNEL, &fusion->sense_phys_addr); if (!fusion->sense) { dev_err(&instance->pdev->dev, "failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } } /* * Allocate and attach a frame to each of the commands in cmd_list */ for (i = 0; i < max_cmd; i++) { cmd = fusion->cmd_list[i]; cmd->sg_frame = dma_pool_alloc(fusion->sg_dma_pool, GFP_KERNEL, &cmd->sg_frame_phys_addr); offset = SCSI_SENSE_BUFFERSIZE * i; cmd->sense = (u8 *)fusion->sense + offset; cmd->sense_phys_addr = fusion->sense_phys_addr + offset; if (!cmd->sg_frame) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } } /* create sense buffer for the raid 1/10 fp */ for (i = max_cmd; i < instance->max_mpt_cmds; i++) { cmd = fusion->cmd_list[i]; offset = SCSI_SENSE_BUFFERSIZE * i; cmd->sense = (u8 *)fusion->sense + offset; cmd->sense_phys_addr = fusion->sense_phys_addr + offset; } return 0; } static int megasas_alloc_cmdlist_fusion(struct megasas_instance *instance) { u32 max_mpt_cmd, i, j; struct fusion_context *fusion; fusion = instance->ctrl_context; max_mpt_cmd = instance->max_mpt_cmds; /* * fusion->cmd_list is an array of struct megasas_cmd_fusion pointers. * Allocate the dynamic array first and then allocate individual * commands. */ fusion->cmd_list = kcalloc(max_mpt_cmd, sizeof(struct megasas_cmd_fusion *), GFP_KERNEL); if (!fusion->cmd_list) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } for (i = 0; i < max_mpt_cmd; i++) { fusion->cmd_list[i] = kzalloc(sizeof(struct megasas_cmd_fusion), GFP_KERNEL); if (!fusion->cmd_list[i]) { for (j = 0; j < i; j++) kfree(fusion->cmd_list[j]); kfree(fusion->cmd_list); dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } } return 0; } static int megasas_alloc_request_fusion(struct megasas_instance *instance) { struct fusion_context *fusion; fusion = instance->ctrl_context; retry_alloc: fusion->io_request_frames_pool = dma_pool_create("mr_ioreq", &instance->pdev->dev, fusion->io_frames_alloc_sz, 16, 0); if (!fusion->io_request_frames_pool) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } fusion->io_request_frames = dma_pool_alloc(fusion->io_request_frames_pool, GFP_KERNEL | __GFP_NOWARN, &fusion->io_request_frames_phys); if (!fusion->io_request_frames) { if (instance->max_fw_cmds >= (MEGASAS_REDUCE_QD_COUNT * 2)) { instance->max_fw_cmds -= MEGASAS_REDUCE_QD_COUNT; dma_pool_destroy(fusion->io_request_frames_pool); megasas_configure_queue_sizes(instance); goto retry_alloc; } else { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } } if (!megasas_check_same_4gb_region(instance, fusion->io_request_frames_phys, fusion->io_frames_alloc_sz)) { dma_pool_free(fusion->io_request_frames_pool, fusion->io_request_frames, fusion->io_request_frames_phys); fusion->io_request_frames = NULL; dma_pool_destroy(fusion->io_request_frames_pool); fusion->io_request_frames_pool = dma_pool_create("mr_ioreq_align", &instance->pdev->dev, fusion->io_frames_alloc_sz, roundup_pow_of_two(fusion->io_frames_alloc_sz), 0); if (!fusion->io_request_frames_pool) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } fusion->io_request_frames = dma_pool_alloc(fusion->io_request_frames_pool, GFP_KERNEL | __GFP_NOWARN, &fusion->io_request_frames_phys); if (!fusion->io_request_frames) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } } fusion->req_frames_desc = dma_alloc_coherent(&instance->pdev->dev, fusion->request_alloc_sz, &fusion->req_frames_desc_phys, GFP_KERNEL); if (!fusion->req_frames_desc) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } return 0; } static int megasas_alloc_reply_fusion(struct megasas_instance *instance) { int i, count; struct fusion_context *fusion; union MPI2_REPLY_DESCRIPTORS_UNION *reply_desc; fusion = instance->ctrl_context; count = instance->msix_vectors > 0 ? instance->msix_vectors : 1; count += instance->iopoll_q_count; fusion->reply_frames_desc_pool = dma_pool_create("mr_reply", &instance->pdev->dev, fusion->reply_alloc_sz * count, 16, 0); if (!fusion->reply_frames_desc_pool) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } fusion->reply_frames_desc[0] = dma_pool_alloc(fusion->reply_frames_desc_pool, GFP_KERNEL, &fusion->reply_frames_desc_phys[0]); if (!fusion->reply_frames_desc[0]) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } if (!megasas_check_same_4gb_region(instance, fusion->reply_frames_desc_phys[0], (fusion->reply_alloc_sz * count))) { dma_pool_free(fusion->reply_frames_desc_pool, fusion->reply_frames_desc[0], fusion->reply_frames_desc_phys[0]); fusion->reply_frames_desc[0] = NULL; dma_pool_destroy(fusion->reply_frames_desc_pool); fusion->reply_frames_desc_pool = dma_pool_create("mr_reply_align", &instance->pdev->dev, fusion->reply_alloc_sz * count, roundup_pow_of_two(fusion->reply_alloc_sz * count), 0); if (!fusion->reply_frames_desc_pool) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } fusion->reply_frames_desc[0] = dma_pool_alloc(fusion->reply_frames_desc_pool, GFP_KERNEL, &fusion->reply_frames_desc_phys[0]); if (!fusion->reply_frames_desc[0]) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } } reply_desc = fusion->reply_frames_desc[0]; for (i = 0; i < fusion->reply_q_depth * count; i++, reply_desc++) reply_desc->Words = cpu_to_le64(ULLONG_MAX); /* This is not a rdpq mode, but driver still populate * reply_frame_desc array to use same msix index in ISR path. */ for (i = 0; i < (count - 1); i++) fusion->reply_frames_desc[i + 1] = fusion->reply_frames_desc[i] + (fusion->reply_alloc_sz)/sizeof(union MPI2_REPLY_DESCRIPTORS_UNION); return 0; } static int megasas_alloc_rdpq_fusion(struct megasas_instance *instance) { int i, j, k, msix_count; struct fusion_context *fusion; union MPI2_REPLY_DESCRIPTORS_UNION *reply_desc; union MPI2_REPLY_DESCRIPTORS_UNION *rdpq_chunk_virt[RDPQ_MAX_CHUNK_COUNT]; dma_addr_t rdpq_chunk_phys[RDPQ_MAX_CHUNK_COUNT]; u8 dma_alloc_count, abs_index; u32 chunk_size, array_size, offset; fusion = instance->ctrl_context; chunk_size = fusion->reply_alloc_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK; array_size = sizeof(struct MPI2_IOC_INIT_RDPQ_ARRAY_ENTRY) * MAX_MSIX_QUEUES_FUSION; fusion->rdpq_virt = dma_alloc_coherent(&instance->pdev->dev, array_size, &fusion->rdpq_phys, GFP_KERNEL); if (!fusion->rdpq_virt) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } msix_count = instance->msix_vectors > 0 ? instance->msix_vectors : 1; msix_count += instance->iopoll_q_count; fusion->reply_frames_desc_pool = dma_pool_create("mr_rdpq", &instance->pdev->dev, chunk_size, 16, 0); fusion->reply_frames_desc_pool_align = dma_pool_create("mr_rdpq_align", &instance->pdev->dev, chunk_size, roundup_pow_of_two(chunk_size), 0); if (!fusion->reply_frames_desc_pool || !fusion->reply_frames_desc_pool_align) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } /* * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should be * within 4GB boundary and also reply queues in a set must have same * upper 32-bits in their memory address. so here driver is allocating the * DMA'able memory for reply queues according. Driver uses limitation of * VENTURA_SERIES to manage INVADER_SERIES as well. */ dma_alloc_count = DIV_ROUND_UP(msix_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK); for (i = 0; i < dma_alloc_count; i++) { rdpq_chunk_virt[i] = dma_pool_alloc(fusion->reply_frames_desc_pool, GFP_KERNEL, &rdpq_chunk_phys[i]); if (!rdpq_chunk_virt[i]) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } /* reply desc pool requires to be in same 4 gb region. * Below function will check this. * In case of failure, new pci pool will be created with updated * alignment. * For RDPQ buffers, driver always allocate two separate pci pool. * Alignment will be used such a way that next allocation if * success, will always meet same 4gb region requirement. * rdpq_tracker keep track of each buffer's physical, * virtual address and pci pool descriptor. It will help driver * while freeing the resources. * */ if (!megasas_check_same_4gb_region(instance, rdpq_chunk_phys[i], chunk_size)) { dma_pool_free(fusion->reply_frames_desc_pool, rdpq_chunk_virt[i], rdpq_chunk_phys[i]); rdpq_chunk_virt[i] = dma_pool_alloc(fusion->reply_frames_desc_pool_align, GFP_KERNEL, &rdpq_chunk_phys[i]); if (!rdpq_chunk_virt[i]) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } fusion->rdpq_tracker[i].dma_pool_ptr = fusion->reply_frames_desc_pool_align; } else { fusion->rdpq_tracker[i].dma_pool_ptr = fusion->reply_frames_desc_pool; } fusion->rdpq_tracker[i].pool_entry_phys = rdpq_chunk_phys[i]; fusion->rdpq_tracker[i].pool_entry_virt = rdpq_chunk_virt[i]; } for (k = 0; k < dma_alloc_count; k++) { for (i = 0; i < RDPQ_MAX_INDEX_IN_ONE_CHUNK; i++) { abs_index = (k * RDPQ_MAX_INDEX_IN_ONE_CHUNK) + i; if (abs_index == msix_count) break; offset = fusion->reply_alloc_sz * i; fusion->rdpq_virt[abs_index].RDPQBaseAddress = cpu_to_le64(rdpq_chunk_phys[k] + offset); fusion->reply_frames_desc_phys[abs_index] = rdpq_chunk_phys[k] + offset; fusion->reply_frames_desc[abs_index] = (union MPI2_REPLY_DESCRIPTORS_UNION *)((u8 *)rdpq_chunk_virt[k] + offset); reply_desc = fusion->reply_frames_desc[abs_index]; for (j = 0; j < fusion->reply_q_depth; j++, reply_desc++) reply_desc->Words = ULLONG_MAX; } } return 0; } static void megasas_free_rdpq_fusion(struct megasas_instance *instance) { int i; struct fusion_context *fusion; fusion = instance->ctrl_context; for (i = 0; i < RDPQ_MAX_CHUNK_COUNT; i++) { if (fusion->rdpq_tracker[i].pool_entry_virt) dma_pool_free(fusion->rdpq_tracker[i].dma_pool_ptr, fusion->rdpq_tracker[i].pool_entry_virt, fusion->rdpq_tracker[i].pool_entry_phys); } dma_pool_destroy(fusion->reply_frames_desc_pool); dma_pool_destroy(fusion->reply_frames_desc_pool_align); if (fusion->rdpq_virt) dma_free_coherent(&instance->pdev->dev, sizeof(struct MPI2_IOC_INIT_RDPQ_ARRAY_ENTRY) * MAX_MSIX_QUEUES_FUSION, fusion->rdpq_virt, fusion->rdpq_phys); } static void megasas_free_reply_fusion(struct megasas_instance *instance) { struct fusion_context *fusion; fusion = instance->ctrl_context; if (fusion->reply_frames_desc[0]) dma_pool_free(fusion->reply_frames_desc_pool, fusion->reply_frames_desc[0], fusion->reply_frames_desc_phys[0]); dma_pool_destroy(fusion->reply_frames_desc_pool); } /** * megasas_alloc_cmds_fusion - Allocates the command packets * @instance: Adapter soft state * * * Each frame has a 32-bit field called context. This context is used to get * back the megasas_cmd_fusion from the frame when a frame gets completed * In this driver, the 32 bit values are the indices into an array cmd_list. * This array is used only to look up the megasas_cmd_fusion given the context. * The free commands themselves are maintained in a linked list called cmd_pool. * * cmds are formed in the io_request and sg_frame members of the * megasas_cmd_fusion. The context field is used to get a request descriptor * and is used as SMID of the cmd. * SMID value range is from 1 to max_fw_cmds. */ static int megasas_alloc_cmds_fusion(struct megasas_instance *instance) { int i; struct fusion_context *fusion; struct megasas_cmd_fusion *cmd; u32 offset; dma_addr_t io_req_base_phys; u8 *io_req_base; fusion = instance->ctrl_context; if (megasas_alloc_request_fusion(instance)) goto fail_exit; if (instance->is_rdpq) { if (megasas_alloc_rdpq_fusion(instance)) goto fail_exit; } else if (megasas_alloc_reply_fusion(instance)) goto fail_exit; if (megasas_alloc_cmdlist_fusion(instance)) goto fail_exit; /* The first 256 bytes (SMID 0) is not used. Don't add to the cmd list */ io_req_base = fusion->io_request_frames + MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE; io_req_base_phys = fusion->io_request_frames_phys + MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE; /* * Add all the commands to command pool (fusion->cmd_pool) */ /* SMID 0 is reserved. Set SMID/index from 1 */ for (i = 0; i < instance->max_mpt_cmds; i++) { cmd = fusion->cmd_list[i]; offset = MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE * i; memset(cmd, 0, sizeof(struct megasas_cmd_fusion)); cmd->index = i + 1; cmd->scmd = NULL; cmd->sync_cmd_idx = (i >= instance->max_scsi_cmds && i < instance->max_fw_cmds) ? (i - instance->max_scsi_cmds) : (u32)ULONG_MAX; /* Set to Invalid */ cmd->instance = instance; cmd->io_request = (struct MPI2_RAID_SCSI_IO_REQUEST *) (io_req_base + offset); memset(cmd->io_request, 0, sizeof(struct MPI2_RAID_SCSI_IO_REQUEST)); cmd->io_request_phys_addr = io_req_base_phys + offset; cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID; } if (megasas_create_sg_sense_fusion(instance)) goto fail_exit; return 0; fail_exit: megasas_free_cmds_fusion(instance); return -ENOMEM; } /** * wait_and_poll - Issues a polling command * @instance: Adapter soft state * @cmd: Command packet to be issued * @seconds: Maximum poll time * * For polling, MFI requires the cmd_status to be set to 0xFF before posting. */ int wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd, int seconds) { int i; struct megasas_header *frame_hdr = &cmd->frame->hdr; u32 status_reg; u32 msecs = seconds * 1000; /* * Wait for cmd_status to change */ for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i += 20) { rmb(); msleep(20); if (!(i % 5000)) { status_reg = instance->instancet->read_fw_status_reg(instance) & MFI_STATE_MASK; if (status_reg == MFI_STATE_FAULT) break; } } if (frame_hdr->cmd_status == MFI_STAT_INVALID_STATUS) return DCMD_TIMEOUT; else if (frame_hdr->cmd_status == MFI_STAT_OK) return DCMD_SUCCESS; else return DCMD_FAILED; } /** * megasas_ioc_init_fusion - Initializes the FW * @instance: Adapter soft state * * Issues the IOC Init cmd */ int megasas_ioc_init_fusion(struct megasas_instance *instance) { struct megasas_init_frame *init_frame; struct MPI2_IOC_INIT_REQUEST *IOCInitMessage = NULL; dma_addr_t ioc_init_handle; struct megasas_cmd *cmd; u8 ret, cur_rdpq_mode; struct fusion_context *fusion; union MEGASAS_REQUEST_DESCRIPTOR_UNION req_desc; int i; struct megasas_header *frame_hdr; const char *sys_info; MFI_CAPABILITIES *drv_ops; u32 scratch_pad_1; ktime_t time; bool cur_fw_64bit_dma_capable; bool cur_intr_coalescing; fusion = instance->ctrl_context; ioc_init_handle = fusion->ioc_init_request_phys; IOCInitMessage = fusion->ioc_init_request; cmd = fusion->ioc_init_cmd; scratch_pad_1 = megasas_readl (instance, &instance->reg_set->outbound_scratch_pad_1); cur_rdpq_mode = (scratch_pad_1 & MR_RDPQ_MODE_OFFSET) ? 1 : 0; if (instance->adapter_type == INVADER_SERIES) { cur_fw_64bit_dma_capable = (scratch_pad_1 & MR_CAN_HANDLE_64_BIT_DMA_OFFSET) ? true : false; if (instance->consistent_mask_64bit && !cur_fw_64bit_dma_capable) { dev_err(&instance->pdev->dev, "Driver was operating on 64bit " "DMA mask, but upcoming FW does not support 64bit DMA mask\n"); megaraid_sas_kill_hba(instance); ret = 1; goto fail_fw_init; } } if (instance->is_rdpq && !cur_rdpq_mode) { dev_err(&instance->pdev->dev, "Firmware downgrade *NOT SUPPORTED*" " from RDPQ mode to non RDPQ mode\n"); ret = 1; goto fail_fw_init; } cur_intr_coalescing = (scratch_pad_1 & MR_INTR_COALESCING_SUPPORT_OFFSET) ? true : false; if ((instance->low_latency_index_start == MR_HIGH_IOPS_QUEUE_COUNT) && cur_intr_coalescing) instance->perf_mode = MR_BALANCED_PERF_MODE; dev_info(&instance->pdev->dev, "Performance mode :%s (latency index = %d)\n", MEGASAS_PERF_MODE_2STR(instance->perf_mode), instance->low_latency_index_start); instance->fw_sync_cache_support = (scratch_pad_1 & MR_CAN_HANDLE_SYNC_CACHE_OFFSET) ? 1 : 0; dev_info(&instance->pdev->dev, "FW supports sync cache\t: %s\n", instance->fw_sync_cache_support ? "Yes" : "No"); memset(IOCInitMessage, 0, sizeof(struct MPI2_IOC_INIT_REQUEST)); IOCInitMessage->Function = MPI2_FUNCTION_IOC_INIT; IOCInitMessage->WhoInit = MPI2_WHOINIT_HOST_DRIVER; IOCInitMessage->MsgVersion = cpu_to_le16(MPI2_VERSION); IOCInitMessage->HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); IOCInitMessage->SystemRequestFrameSize = cpu_to_le16(MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE / 4); IOCInitMessage->ReplyDescriptorPostQueueDepth = cpu_to_le16(fusion->reply_q_depth); IOCInitMessage->ReplyDescriptorPostQueueAddress = instance->is_rdpq ? cpu_to_le64(fusion->rdpq_phys) : cpu_to_le64(fusion->reply_frames_desc_phys[0]); IOCInitMessage->MsgFlags = instance->is_rdpq ? MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE : 0; IOCInitMessage->SystemRequestFrameBaseAddress = cpu_to_le64(fusion->io_request_frames_phys); IOCInitMessage->SenseBufferAddressHigh = cpu_to_le32(upper_32_bits(fusion->sense_phys_addr)); IOCInitMessage->HostMSIxVectors = instance->msix_vectors + instance->iopoll_q_count; IOCInitMessage->HostPageSize = MR_DEFAULT_NVME_PAGE_SHIFT; time = ktime_get_real(); /* Convert to milliseconds as per FW requirement */ IOCInitMessage->TimeStamp = cpu_to_le64(ktime_to_ms(time)); init_frame = (struct megasas_init_frame *)cmd->frame; memset(init_frame, 0, IOC_INIT_FRAME_SIZE); frame_hdr = &cmd->frame->hdr; frame_hdr->cmd_status = 0xFF; frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE); init_frame->cmd = MFI_CMD_INIT; init_frame->cmd_status = 0xFF; drv_ops = (MFI_CAPABILITIES *) &(init_frame->driver_operations); /* driver support Extended MSIX */ if (instance->adapter_type >= INVADER_SERIES) drv_ops->mfi_capabilities.support_additional_msix = 1; /* driver supports HA / Remote LUN over Fast Path interface */ drv_ops->mfi_capabilities.support_fp_remote_lun = 1; drv_ops->mfi_capabilities.support_max_255lds = 1; drv_ops->mfi_capabilities.support_ndrive_r1_lb = 1; drv_ops->mfi_capabilities.security_protocol_cmds_fw = 1; if (instance->max_chain_frame_sz > MEGASAS_CHAIN_FRAME_SZ_MIN) drv_ops->mfi_capabilities.support_ext_io_size = 1; drv_ops->mfi_capabilities.support_fp_rlbypass = 1; if (!dual_qdepth_disable) drv_ops->mfi_capabilities.support_ext_queue_depth = 1; drv_ops->mfi_capabilities.support_qd_throttling = 1; drv_ops->mfi_capabilities.support_pd_map_target_id = 1; drv_ops->mfi_capabilities.support_nvme_passthru = 1; drv_ops->mfi_capabilities.support_fw_exposed_dev_list = 1; if (instance->consistent_mask_64bit) drv_ops->mfi_capabilities.support_64bit_mode = 1; /* Convert capability to LE32 */ cpu_to_le32s((u32 *)&init_frame->driver_operations.mfi_capabilities); sys_info = dmi_get_system_info(DMI_PRODUCT_UUID); if (instance->system_info_buf && sys_info) { memcpy(instance->system_info_buf->systemId, sys_info, strlen(sys_info) > 64 ? 64 : strlen(sys_info)); instance->system_info_buf->systemIdLength = strlen(sys_info) > 64 ? 64 : strlen(sys_info); init_frame->system_info_lo = cpu_to_le32(lower_32_bits(instance->system_info_h)); init_frame->system_info_hi = cpu_to_le32(upper_32_bits(instance->system_info_h)); } init_frame->queue_info_new_phys_addr_hi = cpu_to_le32(upper_32_bits(ioc_init_handle)); init_frame->queue_info_new_phys_addr_lo = cpu_to_le32(lower_32_bits(ioc_init_handle)); init_frame->data_xfer_len = cpu_to_le32(sizeof(struct MPI2_IOC_INIT_REQUEST)); /* * Each bit in replyqueue_mask represents one group of MSI-x vectors * (each group has 8 vectors) */ switch (instance->perf_mode) { case MR_BALANCED_PERF_MODE: init_frame->replyqueue_mask = cpu_to_le16(~(~0 << instance->low_latency_index_start/8)); break; case MR_IOPS_PERF_MODE: init_frame->replyqueue_mask = cpu_to_le16(~(~0 << instance->msix_vectors/8)); break; } req_desc.u.low = cpu_to_le32(lower_32_bits(cmd->frame_phys_addr)); req_desc.u.high = cpu_to_le32(upper_32_bits(cmd->frame_phys_addr)); req_desc.MFAIo.RequestFlags = (MEGASAS_REQ_DESCRIPT_FLAGS_MFA << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); /* * disable the intr before firing the init frame */ instance->instancet->disable_intr(instance); for (i = 0; i < (10 * 1000); i += 20) { if (megasas_readl(instance, &instance->reg_set->doorbell) & 1) msleep(20); else break; } /* For AERO also, IOC_INIT requires 64 bit descriptor write */ megasas_write_64bit_req_desc(instance, &req_desc); wait_and_poll(instance, cmd, MFI_IO_TIMEOUT_SECS); frame_hdr = &cmd->frame->hdr; if (frame_hdr->cmd_status != 0) { ret = 1; goto fail_fw_init; } if (instance->adapter_type >= AERO_SERIES) { scratch_pad_1 = megasas_readl (instance, &instance->reg_set->outbound_scratch_pad_1); instance->atomic_desc_support = (scratch_pad_1 & MR_ATOMIC_DESCRIPTOR_SUPPORT_OFFSET) ? 1 : 0; dev_info(&instance->pdev->dev, "FW supports atomic descriptor\t: %s\n", instance->atomic_desc_support ? "Yes" : "No"); } return 0; fail_fw_init: dev_err(&instance->pdev->dev, "Init cmd return status FAILED for SCSI host %d\n", instance->host->host_no); return ret; } /** * megasas_sync_pd_seq_num - JBOD SEQ MAP * @instance: Adapter soft state * @pend: set to 1, if it is pended jbod map. * * Issue Jbod map to the firmware. If it is pended command, * issue command and return. If it is first instance of jbod map * issue and receive command. */ int megasas_sync_pd_seq_num(struct megasas_instance *instance, bool pend) { int ret = 0; size_t pd_seq_map_sz; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct fusion_context *fusion = instance->ctrl_context; struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync; dma_addr_t pd_seq_h; pd_sync = (void *)fusion->pd_seq_sync[(instance->pd_seq_map_id & 1)]; pd_seq_h = fusion->pd_seq_phys[(instance->pd_seq_map_id & 1)]; pd_seq_map_sz = struct_size(pd_sync, seq, MAX_PHYSICAL_DEVICES - 1); cmd = megasas_get_cmd(instance); if (!cmd) { dev_err(&instance->pdev->dev, "Could not get mfi cmd. Fail from %s %d\n", __func__, __LINE__); return -ENOMEM; } dcmd = &cmd->frame->dcmd; memset(pd_sync, 0, pd_seq_map_sz); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); if (pend) { dcmd->mbox.b[0] = MEGASAS_DCMD_MBOX_PEND_FLAG; dcmd->flags = MFI_FRAME_DIR_WRITE; instance->jbod_seq_cmd = cmd; } else { dcmd->flags = MFI_FRAME_DIR_READ; } dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(pd_seq_map_sz); dcmd->opcode = cpu_to_le32(MR_DCMD_SYSTEM_PD_MAP_GET_INFO); megasas_set_dma_settings(instance, dcmd, pd_seq_h, pd_seq_map_sz); if (pend) { instance->instancet->issue_dcmd(instance, cmd); return 0; } /* Below code is only for non pended DCMD */ if (!instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); else ret = megasas_issue_polled(instance, cmd); if (le32_to_cpu(pd_sync->count) > MAX_PHYSICAL_DEVICES) { dev_warn(&instance->pdev->dev, "driver supports max %d JBOD, but FW reports %d\n", MAX_PHYSICAL_DEVICES, le32_to_cpu(pd_sync->count)); ret = -EINVAL; } if (ret == DCMD_TIMEOUT) dev_warn(&instance->pdev->dev, "%s DCMD timed out, continue without JBOD sequence map\n", __func__); if (ret == DCMD_SUCCESS) instance->pd_seq_map_id++; megasas_return_cmd(instance, cmd); return ret; } /* * megasas_get_ld_map_info - Returns FW's ld_map structure * @instance: Adapter soft state * @pend: Pend the command or not * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. * dcmd.mbox value setting for MR_DCMD_LD_MAP_GET_INFO * dcmd.mbox.b[0] - number of LDs being sync'd * dcmd.mbox.b[1] - 0 - complete command immediately. * - 1 - pend till config change * dcmd.mbox.b[2] - 0 - supports max 64 lds and uses legacy MR_FW_RAID_MAP * - 1 - supports max MAX_LOGICAL_DRIVES_EXT lds and * uses extended struct MR_FW_RAID_MAP_EXT */ static int megasas_get_ld_map_info(struct megasas_instance *instance) { int ret = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; void *ci; dma_addr_t ci_h = 0; u32 size_map_info; struct fusion_context *fusion; cmd = megasas_get_cmd(instance); if (!cmd) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to get cmd for map info\n"); return -ENOMEM; } fusion = instance->ctrl_context; if (!fusion) { megasas_return_cmd(instance, cmd); return -ENXIO; } dcmd = &cmd->frame->dcmd; size_map_info = fusion->current_map_sz; ci = (void *) fusion->ld_map[(instance->map_id & 1)]; ci_h = fusion->ld_map_phys[(instance->map_id & 1)]; if (!ci) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to alloc mem for ld_map_info\n"); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(ci, 0, fusion->max_map_sz); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(size_map_info); dcmd->opcode = cpu_to_le32(MR_DCMD_LD_MAP_GET_INFO); megasas_set_dma_settings(instance, dcmd, ci_h, size_map_info); if (!instance->mask_interrupts) ret = megasas_issue_blocked_cmd(instance, cmd, MFI_IO_TIMEOUT_SECS); else ret = megasas_issue_polled(instance, cmd); if (ret == DCMD_TIMEOUT) dev_warn(&instance->pdev->dev, "%s DCMD timed out, RAID map is disabled\n", __func__); megasas_return_cmd(instance, cmd); return ret; } u8 megasas_get_map_info(struct megasas_instance *instance) { struct fusion_context *fusion = instance->ctrl_context; fusion->fast_path_io = 0; if (!megasas_get_ld_map_info(instance)) { if (MR_ValidateMapInfo(instance, instance->map_id)) { fusion->fast_path_io = 1; return 0; } } return 1; } /* * megasas_sync_map_info - Returns FW's ld_map structure * @instance: Adapter soft state * * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. */ int megasas_sync_map_info(struct megasas_instance *instance) { int i; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; u16 num_lds; struct fusion_context *fusion; struct MR_LD_TARGET_SYNC *ci = NULL; struct MR_DRV_RAID_MAP_ALL *map; struct MR_LD_RAID *raid; struct MR_LD_TARGET_SYNC *ld_sync; dma_addr_t ci_h = 0; u32 size_map_info; cmd = megasas_get_cmd(instance); if (!cmd) { dev_printk(KERN_DEBUG, &instance->pdev->dev, "Failed to get cmd for sync info\n"); return -ENOMEM; } fusion = instance->ctrl_context; if (!fusion) { megasas_return_cmd(instance, cmd); return 1; } map = fusion->ld_drv_map[instance->map_id & 1]; num_lds = le16_to_cpu(map->raidMap.ldCount); dcmd = &cmd->frame->dcmd; memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); ci = (struct MR_LD_TARGET_SYNC *) fusion->ld_map[(instance->map_id - 1) & 1]; memset(ci, 0, fusion->max_map_sz); ci_h = fusion->ld_map_phys[(instance->map_id - 1) & 1]; ld_sync = (struct MR_LD_TARGET_SYNC *)ci; for (i = 0; i < num_lds; i++, ld_sync++) { raid = MR_LdRaidGet(i, map); ld_sync->targetId = MR_GetLDTgtId(i, map); ld_sync->seqNum = raid->seqNum; } size_map_info = fusion->current_map_sz; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_WRITE; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = cpu_to_le32(size_map_info); dcmd->mbox.b[0] = num_lds; dcmd->mbox.b[1] = MEGASAS_DCMD_MBOX_PEND_FLAG; dcmd->opcode = cpu_to_le32(MR_DCMD_LD_MAP_GET_INFO); megasas_set_dma_settings(instance, dcmd, ci_h, size_map_info); instance->map_update_cmd = cmd; instance->instancet->issue_dcmd(instance, cmd); return 0; } /* * meagasas_display_intel_branding - Display branding string * @instance: per adapter object * * Return nothing. */ static void megasas_display_intel_branding(struct megasas_instance *instance) { if (instance->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL) return; switch (instance->pdev->device) { case PCI_DEVICE_ID_LSI_INVADER: switch (instance->pdev->subsystem_device) { case MEGARAID_INTEL_RS3DC080_SSDID: dev_info(&instance->pdev->dev, "scsi host %d: %s\n", instance->host->host_no, MEGARAID_INTEL_RS3DC080_BRANDING); break; case MEGARAID_INTEL_RS3DC040_SSDID: dev_info(&instance->pdev->dev, "scsi host %d: %s\n", instance->host->host_no, MEGARAID_INTEL_RS3DC040_BRANDING); break; case MEGARAID_INTEL_RS3SC008_SSDID: dev_info(&instance->pdev->dev, "scsi host %d: %s\n", instance->host->host_no, MEGARAID_INTEL_RS3SC008_BRANDING); break; case MEGARAID_INTEL_RS3MC044_SSDID: dev_info(&instance->pdev->dev, "scsi host %d: %s\n", instance->host->host_no, MEGARAID_INTEL_RS3MC044_BRANDING); break; default: break; } break; case PCI_DEVICE_ID_LSI_FURY: switch (instance->pdev->subsystem_device) { case MEGARAID_INTEL_RS3WC080_SSDID: dev_info(&instance->pdev->dev, "scsi host %d: %s\n", instance->host->host_no, MEGARAID_INTEL_RS3WC080_BRANDING); break; case MEGARAID_INTEL_RS3WC040_SSDID: dev_info(&instance->pdev->dev, "scsi host %d: %s\n", instance->host->host_no, MEGARAID_INTEL_RS3WC040_BRANDING); break; default: break; } break; case PCI_DEVICE_ID_LSI_CUTLASS_52: case PCI_DEVICE_ID_LSI_CUTLASS_53: switch (instance->pdev->subsystem_device) { case MEGARAID_INTEL_RMS3BC160_SSDID: dev_info(&instance->pdev->dev, "scsi host %d: %s\n", instance->host->host_no, MEGARAID_INTEL_RMS3BC160_BRANDING); break; default: break; } break; default: break; } } /** * megasas_allocate_raid_maps - Allocate memory for RAID maps * @instance: Adapter soft state * * return: if success: return 0 * failed: return -ENOMEM */ static inline int megasas_allocate_raid_maps(struct megasas_instance *instance) { struct fusion_context *fusion; int i = 0; fusion = instance->ctrl_context; fusion->drv_map_pages = get_order(fusion->drv_map_sz); for (i = 0; i < 2; i++) { fusion->ld_map[i] = NULL; fusion->ld_drv_map[i] = (void *) __get_free_pages(__GFP_ZERO | GFP_KERNEL, fusion->drv_map_pages); if (!fusion->ld_drv_map[i]) { fusion->ld_drv_map[i] = vzalloc(fusion->drv_map_sz); if (!fusion->ld_drv_map[i]) { dev_err(&instance->pdev->dev, "Could not allocate memory for local map" " size requested: %d\n", fusion->drv_map_sz); goto ld_drv_map_alloc_fail; } } } for (i = 0; i < 2; i++) { fusion->ld_map[i] = dma_alloc_coherent(&instance->pdev->dev, fusion->max_map_sz, &fusion->ld_map_phys[i], GFP_KERNEL); if (!fusion->ld_map[i]) { dev_err(&instance->pdev->dev, "Could not allocate memory for map info %s:%d\n", __func__, __LINE__); goto ld_map_alloc_fail; } } return 0; ld_map_alloc_fail: for (i = 0; i < 2; i++) { if (fusion->ld_map[i]) dma_free_coherent(&instance->pdev->dev, fusion->max_map_sz, fusion->ld_map[i], fusion->ld_map_phys[i]); } ld_drv_map_alloc_fail: for (i = 0; i < 2; i++) { if (fusion->ld_drv_map[i]) { if (is_vmalloc_addr(fusion->ld_drv_map[i])) vfree(fusion->ld_drv_map[i]); else free_pages((ulong)fusion->ld_drv_map[i], fusion->drv_map_pages); } } return -ENOMEM; } /** * megasas_configure_queue_sizes - Calculate size of request desc queue, * reply desc queue, * IO request frame queue, set can_queue. * @instance: Adapter soft state * @return: void */ static inline void megasas_configure_queue_sizes(struct megasas_instance *instance) { struct fusion_context *fusion; u16 max_cmd; fusion = instance->ctrl_context; max_cmd = instance->max_fw_cmds; if (instance->adapter_type >= VENTURA_SERIES) instance->max_mpt_cmds = instance->max_fw_cmds * RAID_1_PEER_CMDS; else instance->max_mpt_cmds = instance->max_fw_cmds; instance->max_scsi_cmds = instance->max_fw_cmds - instance->max_mfi_cmds; instance->cur_can_queue = instance->max_scsi_cmds; instance->host->can_queue = instance->cur_can_queue; fusion->reply_q_depth = 2 * ((max_cmd + 1 + 15) / 16) * 16; fusion->request_alloc_sz = sizeof(union MEGASAS_REQUEST_DESCRIPTOR_UNION) * instance->max_mpt_cmds; fusion->reply_alloc_sz = sizeof(union MPI2_REPLY_DESCRIPTORS_UNION) * (fusion->reply_q_depth); fusion->io_frames_alloc_sz = MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE + (MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE * (instance->max_mpt_cmds + 1)); /* Extra 1 for SMID 0 */ } static int megasas_alloc_ioc_init_frame(struct megasas_instance *instance) { struct fusion_context *fusion; struct megasas_cmd *cmd; fusion = instance->ctrl_context; cmd = kzalloc(sizeof(struct megasas_cmd), GFP_KERNEL); if (!cmd) { dev_err(&instance->pdev->dev, "Failed from func: %s line: %d\n", __func__, __LINE__); return -ENOMEM; } cmd->frame = dma_alloc_coherent(&instance->pdev->dev, IOC_INIT_FRAME_SIZE, &cmd->frame_phys_addr, GFP_KERNEL); if (!cmd->frame) { dev_err(&instance->pdev->dev, "Failed from func: %s line: %d\n", __func__, __LINE__); kfree(cmd); return -ENOMEM; } fusion->ioc_init_cmd = cmd; return 0; } /** * megasas_free_ioc_init_cmd - Free IOC INIT command frame * @instance: Adapter soft state */ static inline void megasas_free_ioc_init_cmd(struct megasas_instance *instance) { struct fusion_context *fusion; fusion = instance->ctrl_context; if (fusion->ioc_init_cmd && fusion->ioc_init_cmd->frame) dma_free_coherent(&instance->pdev->dev, IOC_INIT_FRAME_SIZE, fusion->ioc_init_cmd->frame, fusion->ioc_init_cmd->frame_phys_addr); kfree(fusion->ioc_init_cmd); } /** * megasas_init_adapter_fusion - Initializes the FW * @instance: Adapter soft state * * This is the main function for initializing firmware. */ static u32 megasas_init_adapter_fusion(struct megasas_instance *instance) { struct fusion_context *fusion; u32 scratch_pad_1; int i = 0, count; u32 status_reg; fusion = instance->ctrl_context; megasas_fusion_update_can_queue(instance, PROBE_CONTEXT); /* * Only Driver's internal DCMDs and IOCTL DCMDs needs to have MFI frames */ instance->max_mfi_cmds = MEGASAS_FUSION_INTERNAL_CMDS + MEGASAS_FUSION_IOCTL_CMDS; megasas_configure_queue_sizes(instance); scratch_pad_1 = megasas_readl(instance, &instance->reg_set->outbound_scratch_pad_1); /* If scratch_pad_1 & MEGASAS_MAX_CHAIN_SIZE_UNITS_MASK is set, * Firmware support extended IO chain frame which is 4 times more than * legacy Firmware. * Legacy Firmware - Frame size is (8 * 128) = 1K * 1M IO Firmware - Frame size is (8 * 128 * 4) = 4K */ if (scratch_pad_1 & MEGASAS_MAX_CHAIN_SIZE_UNITS_MASK) instance->max_chain_frame_sz = ((scratch_pad_1 & MEGASAS_MAX_CHAIN_SIZE_MASK) >> MEGASAS_MAX_CHAIN_SHIFT) * MEGASAS_1MB_IO; else instance->max_chain_frame_sz = ((scratch_pad_1 & MEGASAS_MAX_CHAIN_SIZE_MASK) >> MEGASAS_MAX_CHAIN_SHIFT) * MEGASAS_256K_IO; if (instance->max_chain_frame_sz < MEGASAS_CHAIN_FRAME_SZ_MIN) { dev_warn(&instance->pdev->dev, "frame size %d invalid, fall back to legacy max frame size %d\n", instance->max_chain_frame_sz, MEGASAS_CHAIN_FRAME_SZ_MIN); instance->max_chain_frame_sz = MEGASAS_CHAIN_FRAME_SZ_MIN; } fusion->max_sge_in_main_msg = (MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE - offsetof(struct MPI2_RAID_SCSI_IO_REQUEST, SGL))/16; fusion->max_sge_in_chain = instance->max_chain_frame_sz / sizeof(union MPI2_SGE_IO_UNION); instance->max_num_sge = rounddown_pow_of_two(fusion->max_sge_in_main_msg + fusion->max_sge_in_chain - 2); /* Used for pass thru MFI frame (DCMD) */ fusion->chain_offset_mfi_pthru = offsetof(struct MPI2_RAID_SCSI_IO_REQUEST, SGL)/16; fusion->chain_offset_io_request = (MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE - sizeof(union MPI2_SGE_IO_UNION))/16; count = instance->msix_vectors > 0 ? instance->msix_vectors : 1; count += instance->iopoll_q_count; for (i = 0 ; i < count; i++) fusion->last_reply_idx[i] = 0; /* * For fusion adapters, 3 commands for IOCTL and 8 commands * for driver's internal DCMDs. */ instance->max_scsi_cmds = instance->max_fw_cmds - (MEGASAS_FUSION_INTERNAL_CMDS + MEGASAS_FUSION_IOCTL_CMDS); sema_init(&instance->ioctl_sem, MEGASAS_FUSION_IOCTL_CMDS); for (i = 0; i < MAX_MSIX_QUEUES_FUSION; i++) atomic_set(&fusion->busy_mq_poll[i], 0); if (megasas_alloc_ioc_init_frame(instance)) return 1; /* * Allocate memory for descriptors * Create a pool of commands */ if (megasas_alloc_cmds(instance)) goto fail_alloc_mfi_cmds; if (megasas_alloc_cmds_fusion(instance)) goto fail_alloc_cmds; if (megasas_ioc_init_fusion(instance)) { status_reg = instance->instancet->read_fw_status_reg(instance); if (((status_reg & MFI_STATE_MASK) == MFI_STATE_FAULT) && (status_reg & MFI_RESET_ADAPTER)) { /* Do a chip reset and then retry IOC INIT once */ if (megasas_adp_reset_wait_for_ready (instance, true, 0) == FAILED) goto fail_ioc_init; if (megasas_ioc_init_fusion(instance)) goto fail_ioc_init; } else { goto fail_ioc_init; } } megasas_display_intel_branding(instance); if (megasas_get_ctrl_info(instance)) { dev_err(&instance->pdev->dev, "Could not get controller info. Fail from %s %d\n", __func__, __LINE__); goto fail_ioc_init; } instance->flag_ieee = 1; instance->r1_ldio_hint_default = MR_R1_LDIO_PIGGYBACK_DEFAULT; instance->threshold_reply_count = instance->max_fw_cmds / 4; fusion->fast_path_io = 0; if (megasas_allocate_raid_maps(instance)) goto fail_ioc_init; if (!megasas_get_map_info(instance)) megasas_sync_map_info(instance); return 0; fail_ioc_init: megasas_free_cmds_fusion(instance); fail_alloc_cmds: megasas_free_cmds(instance); fail_alloc_mfi_cmds: megasas_free_ioc_init_cmd(instance); return 1; } /** * megasas_fault_detect_work - Worker function of * FW fault handling workqueue. * @work: FW fault work struct */ static void megasas_fault_detect_work(struct work_struct *work) { struct megasas_instance *instance = container_of(work, struct megasas_instance, fw_fault_work.work); u32 fw_state, dma_state, status; /* Check the fw state */ fw_state = instance->instancet->read_fw_status_reg(instance) & MFI_STATE_MASK; if (fw_state == MFI_STATE_FAULT) { dma_state = instance->instancet->read_fw_status_reg(instance) & MFI_STATE_DMADONE; /* Start collecting crash, if DMA bit is done */ if (instance->crash_dump_drv_support && instance->crash_dump_app_support && dma_state) { megasas_fusion_crash_dump(instance); } else { if (instance->unload == 0) { status = megasas_reset_fusion(instance->host, 0); if (status != SUCCESS) { dev_err(&instance->pdev->dev, "Failed from %s %d, do not re-arm timer\n", __func__, __LINE__); return; } } } } if (instance->fw_fault_work_q) queue_delayed_work(instance->fw_fault_work_q, &instance->fw_fault_work, msecs_to_jiffies(MEGASAS_WATCHDOG_THREAD_INTERVAL)); } int megasas_fusion_start_watchdog(struct megasas_instance *instance) { /* Check if the Fault WQ is already started */ if (instance->fw_fault_work_q) return SUCCESS; INIT_DELAYED_WORK(&instance->fw_fault_work, megasas_fault_detect_work); snprintf(instance->fault_handler_work_q_name, sizeof(instance->fault_handler_work_q_name), "poll_megasas%d_status", instance->host->host_no); instance->fw_fault_work_q = create_singlethread_workqueue(instance->fault_handler_work_q_name); if (!instance->fw_fault_work_q) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return FAILED; } queue_delayed_work(instance->fw_fault_work_q, &instance->fw_fault_work, msecs_to_jiffies(MEGASAS_WATCHDOG_THREAD_INTERVAL)); return SUCCESS; } void megasas_fusion_stop_watchdog(struct megasas_instance *instance) { struct workqueue_struct *wq; if (instance->fw_fault_work_q) { wq = instance->fw_fault_work_q; instance->fw_fault_work_q = NULL; if (!cancel_delayed_work_sync(&instance->fw_fault_work)) flush_workqueue(wq); destroy_workqueue(wq); } } /** * map_cmd_status - Maps FW cmd status to OS cmd status * @fusion: fusion context * @scmd: Pointer to cmd * @status: status of cmd returned by FW * @ext_status: ext status of cmd returned by FW * @data_length: command data length * @sense: command sense data */ static void map_cmd_status(struct fusion_context *fusion, struct scsi_cmnd *scmd, u8 status, u8 ext_status, u32 data_length, u8 *sense) { u8 cmd_type; int resid; cmd_type = megasas_cmd_type(scmd); switch (status) { case MFI_STAT_OK: scmd->result = DID_OK << 16; break; case MFI_STAT_SCSI_IO_FAILED: case MFI_STAT_LD_INIT_IN_PROGRESS: scmd->result = (DID_ERROR << 16) | ext_status; break; case MFI_STAT_SCSI_DONE_WITH_ERROR: scmd->result = (DID_OK << 16) | ext_status; if (ext_status == SAM_STAT_CHECK_CONDITION) { memset(scmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); memcpy(scmd->sense_buffer, sense, SCSI_SENSE_BUFFERSIZE); } /* * If the IO request is partially completed, then MR FW will * update "io_request->DataLength" field with actual number of * bytes transferred.Driver will set residual bytes count in * SCSI command structure. */ resid = (scsi_bufflen(scmd) - data_length); scsi_set_resid(scmd, resid); if (resid && ((cmd_type == READ_WRITE_LDIO) || (cmd_type == READ_WRITE_SYSPDIO))) scmd_printk(KERN_INFO, scmd, "BRCM Debug mfi stat 0x%x, data len" " requested/completed 0x%x/0x%x\n", status, scsi_bufflen(scmd), data_length); break; case MFI_STAT_LD_OFFLINE: case MFI_STAT_DEVICE_NOT_FOUND: scmd->result = DID_BAD_TARGET << 16; break; case MFI_STAT_CONFIG_SEQ_MISMATCH: scmd->result = DID_IMM_RETRY << 16; break; default: scmd->result = DID_ERROR << 16; break; } } /** * megasas_is_prp_possible - * Checks if native NVMe PRPs can be built for the IO * * @instance: Adapter soft state * @scmd: SCSI command from the mid-layer * @sge_count: scatter gather element count. * * Returns: true: PRPs can be built * false: IEEE SGLs needs to be built */ static bool megasas_is_prp_possible(struct megasas_instance *instance, struct scsi_cmnd *scmd, int sge_count) { u32 data_length = 0; struct scatterlist *sg_scmd; bool build_prp = false; u32 mr_nvme_pg_size; mr_nvme_pg_size = max_t(u32, instance->nvme_page_size, MR_DEFAULT_NVME_PAGE_SIZE); data_length = scsi_bufflen(scmd); sg_scmd = scsi_sglist(scmd); /* * NVMe uses one PRP for each page (or part of a page) * look at the data length - if 4 pages or less then IEEE is OK * if > 5 pages then we need to build a native SGL * if > 4 and <= 5 pages, then check physical address of 1st SG entry * if this first size in the page is >= the residual beyond 4 pages * then use IEEE, otherwise use native SGL */ if (data_length > (mr_nvme_pg_size * 5)) { build_prp = true; } else if ((data_length > (mr_nvme_pg_size * 4)) && (data_length <= (mr_nvme_pg_size * 5))) { /* check if 1st SG entry size is < residual beyond 4 pages */ if (sg_dma_len(sg_scmd) < (data_length - (mr_nvme_pg_size * 4))) build_prp = true; } return build_prp; } /** * megasas_make_prp_nvme - * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only * * @instance: Adapter soft state * @scmd: SCSI command from the mid-layer * @sgl_ptr: SGL to be filled in * @cmd: Fusion command frame * @sge_count: scatter gather element count. * * Returns: true: PRPs are built * false: IEEE SGLs needs to be built */ static bool megasas_make_prp_nvme(struct megasas_instance *instance, struct scsi_cmnd *scmd, struct MPI25_IEEE_SGE_CHAIN64 *sgl_ptr, struct megasas_cmd_fusion *cmd, int sge_count) { int sge_len, offset, num_prp_in_chain = 0; struct MPI25_IEEE_SGE_CHAIN64 *main_chain_element, *ptr_first_sgl; u64 *ptr_sgl; dma_addr_t ptr_sgl_phys; u64 sge_addr; u32 page_mask, page_mask_result; struct scatterlist *sg_scmd; u32 first_prp_len; bool build_prp = false; int data_len = scsi_bufflen(scmd); u32 mr_nvme_pg_size = max_t(u32, instance->nvme_page_size, MR_DEFAULT_NVME_PAGE_SIZE); build_prp = megasas_is_prp_possible(instance, scmd, sge_count); if (!build_prp) return false; /* * Nvme has a very convoluted prp format. One prp is required * for each page or partial page. Driver need to split up OS sg_list * entries if it is longer than one page or cross a page * boundary. Driver also have to insert a PRP list pointer entry as * the last entry in each physical page of the PRP list. * * NOTE: The first PRP "entry" is actually placed in the first * SGL entry in the main message as IEEE 64 format. The 2nd * entry in the main message is the chain element, and the rest * of the PRP entries are built in the contiguous pcie buffer. */ page_mask = mr_nvme_pg_size - 1; ptr_sgl = (u64 *)cmd->sg_frame; ptr_sgl_phys = cmd->sg_frame_phys_addr; memset(ptr_sgl, 0, instance->max_chain_frame_sz); /* Build chain frame element which holds all prps except first*/ main_chain_element = (struct MPI25_IEEE_SGE_CHAIN64 *) ((u8 *)sgl_ptr + sizeof(struct MPI25_IEEE_SGE_CHAIN64)); main_chain_element->Address = cpu_to_le64(ptr_sgl_phys); main_chain_element->NextChainOffset = 0; main_chain_element->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT | IEEE_SGE_FLAGS_SYSTEM_ADDR | MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP; /* Build first prp, sge need not to be page aligned*/ ptr_first_sgl = sgl_ptr; sg_scmd = scsi_sglist(scmd); sge_addr = sg_dma_address(sg_scmd); sge_len = sg_dma_len(sg_scmd); offset = (u32)(sge_addr & page_mask); first_prp_len = mr_nvme_pg_size - offset; ptr_first_sgl->Address = cpu_to_le64(sge_addr); ptr_first_sgl->Length = cpu_to_le32(first_prp_len); data_len -= first_prp_len; if (sge_len > first_prp_len) { sge_addr += first_prp_len; sge_len -= first_prp_len; } else if (sge_len == first_prp_len) { sg_scmd = sg_next(sg_scmd); sge_addr = sg_dma_address(sg_scmd); sge_len = sg_dma_len(sg_scmd); } for (;;) { offset = (u32)(sge_addr & page_mask); /* Put PRP pointer due to page boundary*/ page_mask_result = (uintptr_t)(ptr_sgl + 1) & page_mask; if (unlikely(!page_mask_result)) { scmd_printk(KERN_NOTICE, scmd, "page boundary ptr_sgl: 0x%p\n", ptr_sgl); ptr_sgl_phys += 8; *ptr_sgl = cpu_to_le64(ptr_sgl_phys); ptr_sgl++; num_prp_in_chain++; } *ptr_sgl = cpu_to_le64(sge_addr); ptr_sgl++; ptr_sgl_phys += 8; num_prp_in_chain++; sge_addr += mr_nvme_pg_size; sge_len -= mr_nvme_pg_size; data_len -= mr_nvme_pg_size; if (data_len <= 0) break; if (sge_len > 0) continue; sg_scmd = sg_next(sg_scmd); sge_addr = sg_dma_address(sg_scmd); sge_len = sg_dma_len(sg_scmd); } main_chain_element->Length = cpu_to_le32(num_prp_in_chain * sizeof(u64)); return build_prp; } /** * megasas_make_sgl_fusion - Prepares 32-bit SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @sgl_ptr: SGL to be filled in * @cmd: cmd we are working on * @sge_count: sge count * */ static void megasas_make_sgl_fusion(struct megasas_instance *instance, struct scsi_cmnd *scp, struct MPI25_IEEE_SGE_CHAIN64 *sgl_ptr, struct megasas_cmd_fusion *cmd, int sge_count) { int i, sg_processed; struct scatterlist *os_sgl; struct fusion_context *fusion; fusion = instance->ctrl_context; if (instance->adapter_type >= INVADER_SERIES) { struct MPI25_IEEE_SGE_CHAIN64 *sgl_ptr_end = sgl_ptr; sgl_ptr_end += fusion->max_sge_in_main_msg - 1; sgl_ptr_end->Flags = 0; } scsi_for_each_sg(scp, os_sgl, sge_count, i) { sgl_ptr->Length = cpu_to_le32(sg_dma_len(os_sgl)); sgl_ptr->Address = cpu_to_le64(sg_dma_address(os_sgl)); sgl_ptr->Flags = 0; if (instance->adapter_type >= INVADER_SERIES) if (i == sge_count - 1) sgl_ptr->Flags = IEEE_SGE_FLAGS_END_OF_LIST; sgl_ptr++; sg_processed = i + 1; if ((sg_processed == (fusion->max_sge_in_main_msg - 1)) && (sge_count > fusion->max_sge_in_main_msg)) { struct MPI25_IEEE_SGE_CHAIN64 *sg_chain; if (instance->adapter_type >= INVADER_SERIES) { if ((le16_to_cpu(cmd->io_request->IoFlags) & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) != MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) cmd->io_request->ChainOffset = fusion-> chain_offset_io_request; else cmd->io_request->ChainOffset = 0; } else cmd->io_request->ChainOffset = fusion->chain_offset_io_request; sg_chain = sgl_ptr; /* Prepare chain element */ sg_chain->NextChainOffset = 0; if (instance->adapter_type >= INVADER_SERIES) sg_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT; else sg_chain->Flags = (IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR); sg_chain->Length = cpu_to_le32((sizeof(union MPI2_SGE_IO_UNION) * (sge_count - sg_processed))); sg_chain->Address = cpu_to_le64(cmd->sg_frame_phys_addr); sgl_ptr = (struct MPI25_IEEE_SGE_CHAIN64 *)cmd->sg_frame; memset(sgl_ptr, 0, instance->max_chain_frame_sz); } } } /** * megasas_make_sgl - Build Scatter Gather List(SGLs) * @scp: SCSI command pointer * @instance: Soft instance of controller * @cmd: Fusion command pointer * * This function will build sgls based on device type. * For nvme drives, there is different way of building sgls in nvme native * format- PRPs(Physical Region Page). * * Returns the number of sg lists actually used, zero if the sg lists * is NULL, or -ENOMEM if the mapping failed */ static int megasas_make_sgl(struct megasas_instance *instance, struct scsi_cmnd *scp, struct megasas_cmd_fusion *cmd) { int sge_count; bool build_prp = false; struct MPI25_IEEE_SGE_CHAIN64 *sgl_chain64; sge_count = scsi_dma_map(scp); if ((sge_count > instance->max_num_sge) || (sge_count <= 0)) return sge_count; sgl_chain64 = (struct MPI25_IEEE_SGE_CHAIN64 *)&cmd->io_request->SGL; if ((le16_to_cpu(cmd->io_request->IoFlags) & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) && (cmd->pd_interface == NVME_PD)) build_prp = megasas_make_prp_nvme(instance, scp, sgl_chain64, cmd, sge_count); if (!build_prp) megasas_make_sgl_fusion(instance, scp, sgl_chain64, cmd, sge_count); return sge_count; } /** * megasas_set_pd_lba - Sets PD LBA * @io_request: IO request * @cdb_len: cdb length * @io_info: IO information * @scp: SCSI command * @local_map_ptr: Raid map * @ref_tag: Primary reference tag * * Used to set the PD LBA in CDB for FP IOs */ static void megasas_set_pd_lba(struct MPI2_RAID_SCSI_IO_REQUEST *io_request, u8 cdb_len, struct IO_REQUEST_INFO *io_info, struct scsi_cmnd *scp, struct MR_DRV_RAID_MAP_ALL *local_map_ptr, u32 ref_tag) { struct MR_LD_RAID *raid; u16 ld; u64 start_blk = io_info->pdBlock; u8 *cdb = io_request->CDB.CDB32; u32 num_blocks = io_info->numBlocks; u8 opcode = 0, flagvals = 0, groupnum = 0, control = 0; /* Check if T10 PI (DIF) is enabled for this LD */ ld = MR_TargetIdToLdGet(io_info->ldTgtId, local_map_ptr); raid = MR_LdRaidGet(ld, local_map_ptr); if (raid->capability.ldPiMode == MR_PROT_INFO_TYPE_CONTROLLER) { memset(cdb, 0, sizeof(io_request->CDB.CDB32)); cdb[0] = MEGASAS_SCSI_VARIABLE_LENGTH_CMD; cdb[7] = MEGASAS_SCSI_ADDL_CDB_LEN; if (scp->sc_data_direction == DMA_FROM_DEVICE) cdb[9] = MEGASAS_SCSI_SERVICE_ACTION_READ32; else cdb[9] = MEGASAS_SCSI_SERVICE_ACTION_WRITE32; cdb[10] = MEGASAS_RD_WR_PROTECT_CHECK_ALL; /* LBA */ cdb[12] = (u8)((start_blk >> 56) & 0xff); cdb[13] = (u8)((start_blk >> 48) & 0xff); cdb[14] = (u8)((start_blk >> 40) & 0xff); cdb[15] = (u8)((start_blk >> 32) & 0xff); cdb[16] = (u8)((start_blk >> 24) & 0xff); cdb[17] = (u8)((start_blk >> 16) & 0xff); cdb[18] = (u8)((start_blk >> 8) & 0xff); cdb[19] = (u8)(start_blk & 0xff); /* Logical block reference tag */ io_request->CDB.EEDP32.PrimaryReferenceTag = cpu_to_be32(ref_tag); io_request->CDB.EEDP32.PrimaryApplicationTagMask = cpu_to_be16(0xffff); io_request->IoFlags = cpu_to_le16(32); /* Specify 32-byte cdb */ /* Transfer length */ cdb[28] = (u8)((num_blocks >> 24) & 0xff); cdb[29] = (u8)((num_blocks >> 16) & 0xff); cdb[30] = (u8)((num_blocks >> 8) & 0xff); cdb[31] = (u8)(num_blocks & 0xff); /* set SCSI IO EEDPFlags */ if (scp->sc_data_direction == DMA_FROM_DEVICE) { io_request->EEDPFlags = cpu_to_le16( MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG | MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG | MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP | MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG | MPI25_SCSIIO_EEDPFLAGS_DO_NOT_DISABLE_MODE | MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD); } else { io_request->EEDPFlags = cpu_to_le16( MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG | MPI2_SCSIIO_EEDPFLAGS_INSERT_OP); } io_request->Control |= cpu_to_le32((0x4 << 26)); io_request->EEDPBlockSize = cpu_to_le32(scp->device->sector_size); } else { /* Some drives don't support 16/12 byte CDB's, convert to 10 */ if (((cdb_len == 12) || (cdb_len == 16)) && (start_blk <= 0xffffffff)) { if (cdb_len == 16) { opcode = cdb[0] == READ_16 ? READ_10 : WRITE_10; flagvals = cdb[1]; groupnum = cdb[14]; control = cdb[15]; } else { opcode = cdb[0] == READ_12 ? READ_10 : WRITE_10; flagvals = cdb[1]; groupnum = cdb[10]; control = cdb[11]; } memset(cdb, 0, sizeof(io_request->CDB.CDB32)); cdb[0] = opcode; cdb[1] = flagvals; cdb[6] = groupnum; cdb[9] = control; /* Transfer length */ cdb[8] = (u8)(num_blocks & 0xff); cdb[7] = (u8)((num_blocks >> 8) & 0xff); io_request->IoFlags = cpu_to_le16(10); /* Specify 10-byte cdb */ cdb_len = 10; } else if ((cdb_len < 16) && (start_blk > 0xffffffff)) { /* Convert to 16 byte CDB for large LBA's */ switch (cdb_len) { case 6: opcode = cdb[0] == READ_6 ? READ_16 : WRITE_16; control = cdb[5]; break; case 10: opcode = cdb[0] == READ_10 ? READ_16 : WRITE_16; flagvals = cdb[1]; groupnum = cdb[6]; control = cdb[9]; break; case 12: opcode = cdb[0] == READ_12 ? READ_16 : WRITE_16; flagvals = cdb[1]; groupnum = cdb[10]; control = cdb[11]; break; } memset(cdb, 0, sizeof(io_request->CDB.CDB32)); cdb[0] = opcode; cdb[1] = flagvals; cdb[14] = groupnum; cdb[15] = control; /* Transfer length */ cdb[13] = (u8)(num_blocks & 0xff); cdb[12] = (u8)((num_blocks >> 8) & 0xff); cdb[11] = (u8)((num_blocks >> 16) & 0xff); cdb[10] = (u8)((num_blocks >> 24) & 0xff); io_request->IoFlags = cpu_to_le16(16); /* Specify 16-byte cdb */ cdb_len = 16; } /* Normal case, just load LBA here */ switch (cdb_len) { case 6: { u8 val = cdb[1] & 0xE0; cdb[3] = (u8)(start_blk & 0xff); cdb[2] = (u8)((start_blk >> 8) & 0xff); cdb[1] = val | ((u8)(start_blk >> 16) & 0x1f); break; } case 10: cdb[5] = (u8)(start_blk & 0xff); cdb[4] = (u8)((start_blk >> 8) & 0xff); cdb[3] = (u8)((start_blk >> 16) & 0xff); cdb[2] = (u8)((start_blk >> 24) & 0xff); break; case 12: cdb[5] = (u8)(start_blk & 0xff); cdb[4] = (u8)((start_blk >> 8) & 0xff); cdb[3] = (u8)((start_blk >> 16) & 0xff); cdb[2] = (u8)((start_blk >> 24) & 0xff); break; case 16: cdb[9] = (u8)(start_blk & 0xff); cdb[8] = (u8)((start_blk >> 8) & 0xff); cdb[7] = (u8)((start_blk >> 16) & 0xff); cdb[6] = (u8)((start_blk >> 24) & 0xff); cdb[5] = (u8)((start_blk >> 32) & 0xff); cdb[4] = (u8)((start_blk >> 40) & 0xff); cdb[3] = (u8)((start_blk >> 48) & 0xff); cdb[2] = (u8)((start_blk >> 56) & 0xff); break; } } } /** * megasas_stream_detect - stream detection on read and and write IOs * @instance: Adapter soft state * @cmd: Command to be prepared * @io_info: IO Request info * */ /** stream detection on read and and write IOs */ static void megasas_stream_detect(struct megasas_instance *instance, struct megasas_cmd_fusion *cmd, struct IO_REQUEST_INFO *io_info) { struct fusion_context *fusion = instance->ctrl_context; u32 device_id = io_info->ldTgtId; struct LD_STREAM_DETECT *current_ld_sd = fusion->stream_detect_by_ld[device_id]; u32 *track_stream = ¤t_ld_sd->mru_bit_map, stream_num; u32 shifted_values, unshifted_values; u32 index_value_mask, shifted_values_mask; int i; bool is_read_ahead = false; struct STREAM_DETECT *current_sd; /* find possible stream */ for (i = 0; i < MAX_STREAMS_TRACKED; ++i) { stream_num = (*track_stream >> (i * BITS_PER_INDEX_STREAM)) & STREAM_MASK; current_sd = ¤t_ld_sd->stream_track[stream_num]; /* if we found a stream, update the raid * context and also update the mruBitMap */ /* boundary condition */ if ((current_sd->next_seq_lba) && (io_info->ldStartBlock >= current_sd->next_seq_lba) && (io_info->ldStartBlock <= (current_sd->next_seq_lba + 32)) && (current_sd->is_read == io_info->isRead)) { if ((io_info->ldStartBlock != current_sd->next_seq_lba) && ((!io_info->isRead) || (!is_read_ahead))) /* * Once the API availible we need to change this. * At this point we are not allowing any gap */ continue; SET_STREAM_DETECTED(cmd->io_request->RaidContext.raid_context_g35); current_sd->next_seq_lba = io_info->ldStartBlock + io_info->numBlocks; /* * update the mruBitMap LRU */ shifted_values_mask = (1 << i * BITS_PER_INDEX_STREAM) - 1; shifted_values = ((*track_stream & shifted_values_mask) << BITS_PER_INDEX_STREAM); index_value_mask = STREAM_MASK << i * BITS_PER_INDEX_STREAM; unshifted_values = *track_stream & ~(shifted_values_mask | index_value_mask); *track_stream = unshifted_values | shifted_values | stream_num; return; } } /* * if we did not find any stream, create a new one * from the least recently used */ stream_num = (*track_stream >> ((MAX_STREAMS_TRACKED - 1) * BITS_PER_INDEX_STREAM)) & STREAM_MASK; current_sd = ¤t_ld_sd->stream_track[stream_num]; current_sd->is_read = io_info->isRead; current_sd->next_seq_lba = io_info->ldStartBlock + io_info->numBlocks; *track_stream = (((*track_stream & ZERO_LAST_STREAM) << 4) | stream_num); return; } /** * megasas_set_raidflag_cpu_affinity - This function sets the cpu * affinity (cpu of the controller) and raid_flags in the raid context * based on IO type. * * @fusion: Fusion context * @praid_context: IO RAID context * @raid: LD raid map * @fp_possible: Is fast path possible? * @is_read: Is read IO? * @scsi_buff_len: SCSI command buffer length * */ static void megasas_set_raidflag_cpu_affinity(struct fusion_context *fusion, union RAID_CONTEXT_UNION *praid_context, struct MR_LD_RAID *raid, bool fp_possible, u8 is_read, u32 scsi_buff_len) { u8 cpu_sel = MR_RAID_CTX_CPUSEL_0; struct RAID_CONTEXT_G35 *rctx_g35; rctx_g35 = &praid_context->raid_context_g35; if (fp_possible) { if (is_read) { if ((raid->cpuAffinity.pdRead.cpu0) && (raid->cpuAffinity.pdRead.cpu1)) cpu_sel = MR_RAID_CTX_CPUSEL_FCFS; else if (raid->cpuAffinity.pdRead.cpu1) cpu_sel = MR_RAID_CTX_CPUSEL_1; } else { if ((raid->cpuAffinity.pdWrite.cpu0) && (raid->cpuAffinity.pdWrite.cpu1)) cpu_sel = MR_RAID_CTX_CPUSEL_FCFS; else if (raid->cpuAffinity.pdWrite.cpu1) cpu_sel = MR_RAID_CTX_CPUSEL_1; /* Fast path cache by pass capable R0/R1 VD */ if ((raid->level <= 1) && (raid->capability.fp_cache_bypass_capable)) { rctx_g35->routing_flags |= (1 << MR_RAID_CTX_ROUTINGFLAGS_SLD_SHIFT); rctx_g35->raid_flags = (MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS << MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT); } } } else { if (is_read) { if ((raid->cpuAffinity.ldRead.cpu0) && (raid->cpuAffinity.ldRead.cpu1)) cpu_sel = MR_RAID_CTX_CPUSEL_FCFS; else if (raid->cpuAffinity.ldRead.cpu1) cpu_sel = MR_RAID_CTX_CPUSEL_1; } else { if ((raid->cpuAffinity.ldWrite.cpu0) && (raid->cpuAffinity.ldWrite.cpu1)) cpu_sel = MR_RAID_CTX_CPUSEL_FCFS; else if (raid->cpuAffinity.ldWrite.cpu1) cpu_sel = MR_RAID_CTX_CPUSEL_1; if (is_stream_detected(rctx_g35) && ((raid->level == 5) || (raid->level == 6)) && (raid->writeMode == MR_RL_WRITE_THROUGH_MODE) && (cpu_sel == MR_RAID_CTX_CPUSEL_FCFS)) cpu_sel = MR_RAID_CTX_CPUSEL_0; } } rctx_g35->routing_flags |= (cpu_sel << MR_RAID_CTX_ROUTINGFLAGS_CPUSEL_SHIFT); /* Always give priority to MR_RAID_FLAGS_IO_SUB_TYPE_LDIO_BW_LIMIT * vs MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS. * IO Subtype is not bitmap. */ if ((fusion->pcie_bw_limitation) && (raid->level == 1) && (!is_read) && (scsi_buff_len > MR_LARGE_IO_MIN_SIZE)) { praid_context->raid_context_g35.raid_flags = (MR_RAID_FLAGS_IO_SUB_TYPE_LDIO_BW_LIMIT << MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT); } } /** * megasas_build_ldio_fusion - Prepares IOs to devices * @instance: Adapter soft state * @scp: SCSI command * @cmd: Command to be prepared * * Prepares the io_request and chain elements (sg_frame) for IO * The IO can be for PD (Fast Path) or LD */ static void megasas_build_ldio_fusion(struct megasas_instance *instance, struct scsi_cmnd *scp, struct megasas_cmd_fusion *cmd) { bool fp_possible; u16 ld; u32 start_lba_lo, start_lba_hi, device_id, datalength = 0; u32 scsi_buff_len; struct MPI2_RAID_SCSI_IO_REQUEST *io_request; struct IO_REQUEST_INFO io_info; struct fusion_context *fusion; struct MR_DRV_RAID_MAP_ALL *local_map_ptr; u8 *raidLUN; unsigned long spinlock_flags; struct MR_LD_RAID *raid = NULL; struct MR_PRIV_DEVICE *mrdev_priv; struct RAID_CONTEXT *rctx; struct RAID_CONTEXT_G35 *rctx_g35; device_id = MEGASAS_DEV_INDEX(scp); fusion = instance->ctrl_context; io_request = cmd->io_request; rctx = &io_request->RaidContext.raid_context; rctx_g35 = &io_request->RaidContext.raid_context_g35; rctx->virtual_disk_tgt_id = cpu_to_le16(device_id); rctx->status = 0; rctx->ex_status = 0; start_lba_lo = 0; start_lba_hi = 0; fp_possible = false; /* * 6-byte READ(0x08) or WRITE(0x0A) cdb */ if (scp->cmd_len == 6) { datalength = (u32) scp->cmnd[4]; start_lba_lo = ((u32) scp->cmnd[1] << 16) | ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3]; start_lba_lo &= 0x1FFFFF; } /* * 10-byte READ(0x28) or WRITE(0x2A) cdb */ else if (scp->cmd_len == 10) { datalength = (u32) scp->cmnd[8] | ((u32) scp->cmnd[7] << 8); start_lba_lo = ((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]; } /* * 12-byte READ(0xA8) or WRITE(0xAA) cdb */ else if (scp->cmd_len == 12) { datalength = ((u32) scp->cmnd[6] << 24) | ((u32) scp->cmnd[7] << 16) | ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]; start_lba_lo = ((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]; } /* * 16-byte READ(0x88) or WRITE(0x8A) cdb */ else if (scp->cmd_len == 16) { datalength = ((u32) scp->cmnd[10] << 24) | ((u32) scp->cmnd[11] << 16) | ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13]; start_lba_lo = ((u32) scp->cmnd[6] << 24) | ((u32) scp->cmnd[7] << 16) | ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]; start_lba_hi = ((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]; } memset(&io_info, 0, sizeof(struct IO_REQUEST_INFO)); io_info.ldStartBlock = ((u64)start_lba_hi << 32) | start_lba_lo; io_info.numBlocks = datalength; io_info.ldTgtId = device_id; io_info.r1_alt_dev_handle = MR_DEVHANDLE_INVALID; scsi_buff_len = scsi_bufflen(scp); io_request->DataLength = cpu_to_le32(scsi_buff_len); io_info.data_arms = 1; if (scp->sc_data_direction == DMA_FROM_DEVICE) io_info.isRead = 1; local_map_ptr = fusion->ld_drv_map[(instance->map_id & 1)]; ld = MR_TargetIdToLdGet(device_id, local_map_ptr); if (ld < instance->fw_supported_vd_count) raid = MR_LdRaidGet(ld, local_map_ptr); if (!raid || (!fusion->fast_path_io)) { rctx->reg_lock_flags = 0; fp_possible = false; } else { if (MR_BuildRaidContext(instance, &io_info, rctx, local_map_ptr, &raidLUN)) fp_possible = (io_info.fpOkForIo > 0) ? true : false; } megasas_get_msix_index(instance, scp, cmd, io_info.data_arms); if (instance->adapter_type >= VENTURA_SERIES) { /* FP for Optimal raid level 1. * All large RAID-1 writes (> 32 KiB, both WT and WB modes) * are built by the driver as LD I/Os. * All small RAID-1 WT writes (<= 32 KiB) are built as FP I/Os * (there is never a reason to process these as buffered writes) * All small RAID-1 WB writes (<= 32 KiB) are built as FP I/Os * with the SLD bit asserted. */ if (io_info.r1_alt_dev_handle != MR_DEVHANDLE_INVALID) { mrdev_priv = scp->device->hostdata; if (atomic_inc_return(&instance->fw_outstanding) > (instance->host->can_queue)) { fp_possible = false; atomic_dec(&instance->fw_outstanding); } else if (fusion->pcie_bw_limitation && ((scsi_buff_len > MR_LARGE_IO_MIN_SIZE) || (atomic_dec_if_positive(&mrdev_priv->r1_ldio_hint) > 0))) { fp_possible = false; atomic_dec(&instance->fw_outstanding); if (scsi_buff_len > MR_LARGE_IO_MIN_SIZE) atomic_set(&mrdev_priv->r1_ldio_hint, instance->r1_ldio_hint_default); } } if (!fp_possible || (io_info.isRead && io_info.ra_capable)) { spin_lock_irqsave(&instance->stream_lock, spinlock_flags); megasas_stream_detect(instance, cmd, &io_info); spin_unlock_irqrestore(&instance->stream_lock, spinlock_flags); /* In ventura if stream detected for a read and it is * read ahead capable make this IO as LDIO */ if (is_stream_detected(rctx_g35)) fp_possible = false; } /* If raid is NULL, set CPU affinity to default CPU0 */ if (raid) megasas_set_raidflag_cpu_affinity(fusion, &io_request->RaidContext, raid, fp_possible, io_info.isRead, scsi_buff_len); else rctx_g35->routing_flags |= (MR_RAID_CTX_CPUSEL_0 << MR_RAID_CTX_ROUTINGFLAGS_CPUSEL_SHIFT); } if (fp_possible) { megasas_set_pd_lba(io_request, scp->cmd_len, &io_info, scp, local_map_ptr, start_lba_lo); io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST; cmd->request_desc->SCSIIO.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_FP_IO << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); if (instance->adapter_type == INVADER_SERIES) { rctx->type = MPI2_TYPE_CUDA; rctx->nseg = 0x1; io_request->IoFlags |= cpu_to_le16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH); rctx->reg_lock_flags |= (MR_RL_FLAGS_GRANT_DESTINATION_CUDA | MR_RL_FLAGS_SEQ_NUM_ENABLE); } else if (instance->adapter_type >= VENTURA_SERIES) { rctx_g35->nseg_type |= (1 << RAID_CONTEXT_NSEG_SHIFT); rctx_g35->nseg_type |= (MPI2_TYPE_CUDA << RAID_CONTEXT_TYPE_SHIFT); rctx_g35->routing_flags |= (1 << MR_RAID_CTX_ROUTINGFLAGS_SQN_SHIFT); io_request->IoFlags |= cpu_to_le16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH); } if (fusion->load_balance_info && (fusion->load_balance_info[device_id].loadBalanceFlag) && (io_info.isRead)) { io_info.devHandle = get_updated_dev_handle(instance, &fusion->load_balance_info[device_id], &io_info, local_map_ptr); scp->SCp.Status |= MEGASAS_LOAD_BALANCE_FLAG; cmd->pd_r1_lb = io_info.pd_after_lb; if (instance->adapter_type >= VENTURA_SERIES) rctx_g35->span_arm = io_info.span_arm; else rctx->span_arm = io_info.span_arm; } else scp->SCp.Status &= ~MEGASAS_LOAD_BALANCE_FLAG; if (instance->adapter_type >= VENTURA_SERIES) cmd->r1_alt_dev_handle = io_info.r1_alt_dev_handle; else cmd->r1_alt_dev_handle = MR_DEVHANDLE_INVALID; if ((raidLUN[0] == 1) && (local_map_ptr->raidMap.devHndlInfo[io_info.pd_after_lb].validHandles > 1)) { instance->dev_handle = !(instance->dev_handle); io_info.devHandle = local_map_ptr->raidMap.devHndlInfo[io_info.pd_after_lb].devHandle[instance->dev_handle]; } cmd->request_desc->SCSIIO.DevHandle = io_info.devHandle; io_request->DevHandle = io_info.devHandle; cmd->pd_interface = io_info.pd_interface; /* populate the LUN field */ memcpy(io_request->LUN, raidLUN, 8); } else { rctx->timeout_value = cpu_to_le16(local_map_ptr->raidMap.fpPdIoTimeoutSec); cmd->request_desc->SCSIIO.RequestFlags = (MEGASAS_REQ_DESCRIPT_FLAGS_LD_IO << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); if (instance->adapter_type == INVADER_SERIES) { if (io_info.do_fp_rlbypass || (rctx->reg_lock_flags == REGION_TYPE_UNUSED)) cmd->request_desc->SCSIIO.RequestFlags = (MEGASAS_REQ_DESCRIPT_FLAGS_NO_LOCK << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); rctx->type = MPI2_TYPE_CUDA; rctx->reg_lock_flags |= (MR_RL_FLAGS_GRANT_DESTINATION_CPU0 | MR_RL_FLAGS_SEQ_NUM_ENABLE); rctx->nseg = 0x1; } else if (instance->adapter_type >= VENTURA_SERIES) { rctx_g35->routing_flags |= (1 << MR_RAID_CTX_ROUTINGFLAGS_SQN_SHIFT); rctx_g35->nseg_type |= (1 << RAID_CONTEXT_NSEG_SHIFT); rctx_g35->nseg_type |= (MPI2_TYPE_CUDA << RAID_CONTEXT_TYPE_SHIFT); } io_request->Function = MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST; io_request->DevHandle = cpu_to_le16(device_id); } /* Not FP */ } /** * megasas_build_ld_nonrw_fusion - prepares non rw ios for virtual disk * @instance: Adapter soft state * @scmd: SCSI command * @cmd: Command to be prepared * * Prepares the io_request frame for non-rw io cmds for vd. */ static void megasas_build_ld_nonrw_fusion(struct megasas_instance *instance, struct scsi_cmnd *scmd, struct megasas_cmd_fusion *cmd) { u32 device_id; struct MPI2_RAID_SCSI_IO_REQUEST *io_request; u16 ld; struct MR_DRV_RAID_MAP_ALL *local_map_ptr; struct fusion_context *fusion = instance->ctrl_context; u8 span, physArm; __le16 devHandle; u32 arRef, pd; struct MR_LD_RAID *raid; struct RAID_CONTEXT *pRAID_Context; u8 fp_possible = 1; io_request = cmd->io_request; device_id = MEGASAS_DEV_INDEX(scmd); local_map_ptr = fusion->ld_drv_map[(instance->map_id & 1)]; io_request->DataLength = cpu_to_le32(scsi_bufflen(scmd)); /* get RAID_Context pointer */ pRAID_Context = &io_request->RaidContext.raid_context; /* Check with FW team */ pRAID_Context->virtual_disk_tgt_id = cpu_to_le16(device_id); pRAID_Context->reg_lock_row_lba = 0; pRAID_Context->reg_lock_length = 0; if (fusion->fast_path_io && ( device_id < instance->fw_supported_vd_count)) { ld = MR_TargetIdToLdGet(device_id, local_map_ptr); if (ld >= instance->fw_supported_vd_count - 1) fp_possible = 0; else { raid = MR_LdRaidGet(ld, local_map_ptr); if (!(raid->capability.fpNonRWCapable)) fp_possible = 0; } } else fp_possible = 0; if (!fp_possible) { io_request->Function = MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST; io_request->DevHandle = cpu_to_le16(device_id); io_request->LUN[1] = scmd->device->lun; pRAID_Context->timeout_value = cpu_to_le16(scsi_cmd_to_rq(scmd)->timeout / HZ); cmd->request_desc->SCSIIO.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); } else { /* set RAID context values */ pRAID_Context->config_seq_num = raid->seqNum; if (instance->adapter_type < VENTURA_SERIES) pRAID_Context->reg_lock_flags = REGION_TYPE_SHARED_READ; pRAID_Context->timeout_value = cpu_to_le16(raid->fpIoTimeoutForLd); /* get the DevHandle for the PD (since this is fpNonRWCapable, this is a single disk RAID0) */ span = physArm = 0; arRef = MR_LdSpanArrayGet(ld, span, local_map_ptr); pd = MR_ArPdGet(arRef, physArm, local_map_ptr); devHandle = MR_PdDevHandleGet(pd, local_map_ptr); /* build request descriptor */ cmd->request_desc->SCSIIO.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_FP_IO << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); cmd->request_desc->SCSIIO.DevHandle = devHandle; /* populate the LUN field */ memcpy(io_request->LUN, raid->LUN, 8); /* build the raidScsiIO structure */ io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST; io_request->DevHandle = devHandle; } } /** * megasas_build_syspd_fusion - prepares rw/non-rw ios for syspd * @instance: Adapter soft state * @scmd: SCSI command * @cmd: Command to be prepared * @fp_possible: parameter to detect fast path or firmware path io. * * Prepares the io_request frame for rw/non-rw io cmds for syspds */ static void megasas_build_syspd_fusion(struct megasas_instance *instance, struct scsi_cmnd *scmd, struct megasas_cmd_fusion *cmd, bool fp_possible) { u32 device_id; struct MPI2_RAID_SCSI_IO_REQUEST *io_request; u16 pd_index = 0; u16 os_timeout_value; u16 timeout_limit; struct MR_DRV_RAID_MAP_ALL *local_map_ptr; struct RAID_CONTEXT *pRAID_Context; struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync; struct MR_PRIV_DEVICE *mr_device_priv_data; struct fusion_context *fusion = instance->ctrl_context; pd_sync = (void *)fusion->pd_seq_sync[(instance->pd_seq_map_id - 1) & 1]; device_id = MEGASAS_DEV_INDEX(scmd); pd_index = MEGASAS_PD_INDEX(scmd); os_timeout_value = scsi_cmd_to_rq(scmd)->timeout / HZ; mr_device_priv_data = scmd->device->hostdata; cmd->pd_interface = mr_device_priv_data->interface_type; io_request = cmd->io_request; /* get RAID_Context pointer */ pRAID_Context = &io_request->RaidContext.raid_context; pRAID_Context->reg_lock_flags = 0; pRAID_Context->reg_lock_row_lba = 0; pRAID_Context->reg_lock_length = 0; io_request->DataLength = cpu_to_le32(scsi_bufflen(scmd)); io_request->LUN[1] = scmd->device->lun; pRAID_Context->raid_flags = MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD << MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT; /* If FW supports PD sequence number */ if (instance->support_seqnum_jbod_fp) { if (instance->use_seqnum_jbod_fp && instance->pd_list[pd_index].driveType == TYPE_DISK) { /* More than 256 PD/JBOD support for Ventura */ if (instance->support_morethan256jbod) pRAID_Context->virtual_disk_tgt_id = pd_sync->seq[pd_index].pd_target_id; else pRAID_Context->virtual_disk_tgt_id = cpu_to_le16(device_id + (MAX_PHYSICAL_DEVICES - 1)); pRAID_Context->config_seq_num = pd_sync->seq[pd_index].seqNum; io_request->DevHandle = pd_sync->seq[pd_index].devHandle; if (instance->adapter_type >= VENTURA_SERIES) { io_request->RaidContext.raid_context_g35.routing_flags |= (1 << MR_RAID_CTX_ROUTINGFLAGS_SQN_SHIFT); io_request->RaidContext.raid_context_g35.nseg_type |= (1 << RAID_CONTEXT_NSEG_SHIFT); io_request->RaidContext.raid_context_g35.nseg_type |= (MPI2_TYPE_CUDA << RAID_CONTEXT_TYPE_SHIFT); } else { pRAID_Context->type = MPI2_TYPE_CUDA; pRAID_Context->nseg = 0x1; pRAID_Context->reg_lock_flags |= (MR_RL_FLAGS_SEQ_NUM_ENABLE | MR_RL_FLAGS_GRANT_DESTINATION_CUDA); } } else { pRAID_Context->virtual_disk_tgt_id = cpu_to_le16(device_id + (MAX_PHYSICAL_DEVICES - 1)); pRAID_Context->config_seq_num = 0; io_request->DevHandle = cpu_to_le16(0xFFFF); } } else { pRAID_Context->virtual_disk_tgt_id = cpu_to_le16(device_id); pRAID_Context->config_seq_num = 0; if (fusion->fast_path_io) { local_map_ptr = fusion->ld_drv_map[(instance->map_id & 1)]; io_request->DevHandle = local_map_ptr->raidMap.devHndlInfo[device_id].curDevHdl; } else { io_request->DevHandle = cpu_to_le16(0xFFFF); } } cmd->request_desc->SCSIIO.DevHandle = io_request->DevHandle; megasas_get_msix_index(instance, scmd, cmd, 1); if (!fp_possible) { /* system pd firmware path */ io_request->Function = MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST; cmd->request_desc->SCSIIO.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); pRAID_Context->timeout_value = cpu_to_le16(os_timeout_value); pRAID_Context->virtual_disk_tgt_id = cpu_to_le16(device_id); } else { if (os_timeout_value) os_timeout_value++; /* system pd Fast Path */ io_request->Function = MPI2_FUNCTION_SCSI_IO_REQUEST; timeout_limit = (scmd->device->type == TYPE_DISK) ? 255 : 0xFFFF; pRAID_Context->timeout_value = cpu_to_le16((os_timeout_value > timeout_limit) ? timeout_limit : os_timeout_value); if (instance->adapter_type >= INVADER_SERIES) io_request->IoFlags |= cpu_to_le16(MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH); cmd->request_desc->SCSIIO.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_FP_IO << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); } } /** * megasas_build_io_fusion - Prepares IOs to devices * @instance: Adapter soft state * @scp: SCSI command * @cmd: Command to be prepared * * Invokes helper functions to prepare request frames * and sets flags appropriate for IO/Non-IO cmd */ static int megasas_build_io_fusion(struct megasas_instance *instance, struct scsi_cmnd *scp, struct megasas_cmd_fusion *cmd) { int sge_count; u8 cmd_type; u16 pd_index = 0; u8 drive_type = 0; struct MPI2_RAID_SCSI_IO_REQUEST *io_request = cmd->io_request; struct MR_PRIV_DEVICE *mr_device_priv_data; mr_device_priv_data = scp->device->hostdata; /* Zero out some fields so they don't get reused */ memset(io_request->LUN, 0x0, 8); io_request->CDB.EEDP32.PrimaryReferenceTag = 0; io_request->CDB.EEDP32.PrimaryApplicationTagMask = 0; io_request->EEDPFlags = 0; io_request->Control = 0; io_request->EEDPBlockSize = 0; io_request->ChainOffset = 0; io_request->RaidContext.raid_context.raid_flags = 0; io_request->RaidContext.raid_context.type = 0; io_request->RaidContext.raid_context.nseg = 0; memcpy(io_request->CDB.CDB32, scp->cmnd, scp->cmd_len); /* * Just the CDB length,rest of the Flags are zero * This will be modified for FP in build_ldio_fusion */ io_request->IoFlags = cpu_to_le16(scp->cmd_len); switch (cmd_type = megasas_cmd_type(scp)) { case READ_WRITE_LDIO: megasas_build_ldio_fusion(instance, scp, cmd); break; case NON_READ_WRITE_LDIO: megasas_build_ld_nonrw_fusion(instance, scp, cmd); break; case READ_WRITE_SYSPDIO: megasas_build_syspd_fusion(instance, scp, cmd, true); break; case NON_READ_WRITE_SYSPDIO: pd_index = MEGASAS_PD_INDEX(scp); drive_type = instance->pd_list[pd_index].driveType; if ((instance->secure_jbod_support || mr_device_priv_data->is_tm_capable) || (instance->adapter_type >= VENTURA_SERIES && drive_type == TYPE_ENCLOSURE)) megasas_build_syspd_fusion(instance, scp, cmd, false); else megasas_build_syspd_fusion(instance, scp, cmd, true); break; default: break; } /* * Construct SGL */ sge_count = megasas_make_sgl(instance, scp, cmd); if (sge_count > instance->max_num_sge || (sge_count < 0)) { dev_err(&instance->pdev->dev, "%s %d sge_count (%d) is out of range. Range is: 0-%d\n", __func__, __LINE__, sge_count, instance->max_num_sge); return 1; } if (instance->adapter_type >= VENTURA_SERIES) { set_num_sge(&io_request->RaidContext.raid_context_g35, sge_count); cpu_to_le16s(&io_request->RaidContext.raid_context_g35.routing_flags); cpu_to_le16s(&io_request->RaidContext.raid_context_g35.nseg_type); } else { /* numSGE store lower 8 bit of sge_count. * numSGEExt store higher 8 bit of sge_count */ io_request->RaidContext.raid_context.num_sge = sge_count; io_request->RaidContext.raid_context.num_sge_ext = (u8)(sge_count >> 8); } io_request->SGLFlags = cpu_to_le16(MPI2_SGE_FLAGS_64_BIT_ADDRESSING); if (scp->sc_data_direction == DMA_TO_DEVICE) io_request->Control |= cpu_to_le32(MPI2_SCSIIO_CONTROL_WRITE); else if (scp->sc_data_direction == DMA_FROM_DEVICE) io_request->Control |= cpu_to_le32(MPI2_SCSIIO_CONTROL_READ); io_request->SGLOffset0 = offsetof(struct MPI2_RAID_SCSI_IO_REQUEST, SGL) / 4; io_request->SenseBufferLowAddress = cpu_to_le32(lower_32_bits(cmd->sense_phys_addr)); io_request->SenseBufferLength = SCSI_SENSE_BUFFERSIZE; cmd->scmd = scp; scp->SCp.ptr = (char *)cmd; return 0; } static union MEGASAS_REQUEST_DESCRIPTOR_UNION * megasas_get_request_descriptor(struct megasas_instance *instance, u16 index) { u8 *p; struct fusion_context *fusion; fusion = instance->ctrl_context; p = fusion->req_frames_desc + sizeof(union MEGASAS_REQUEST_DESCRIPTOR_UNION) * index; return (union MEGASAS_REQUEST_DESCRIPTOR_UNION *)p; } /* megasas_prepate_secondRaid1_IO * It prepares the raid 1 second IO */ static void megasas_prepare_secondRaid1_IO(struct megasas_instance *instance, struct megasas_cmd_fusion *cmd, struct megasas_cmd_fusion *r1_cmd) { union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc, *req_desc2 = NULL; struct fusion_context *fusion; fusion = instance->ctrl_context; req_desc = cmd->request_desc; /* copy the io request frame as well as 8 SGEs data for r1 command*/ memcpy(r1_cmd->io_request, cmd->io_request, (sizeof(struct MPI2_RAID_SCSI_IO_REQUEST))); memcpy(&r1_cmd->io_request->SGL, &cmd->io_request->SGL, (fusion->max_sge_in_main_msg * sizeof(union MPI2_SGE_IO_UNION))); /*sense buffer is different for r1 command*/ r1_cmd->io_request->SenseBufferLowAddress = cpu_to_le32(lower_32_bits(r1_cmd->sense_phys_addr)); r1_cmd->scmd = cmd->scmd; req_desc2 = megasas_get_request_descriptor(instance, (r1_cmd->index - 1)); req_desc2->Words = 0; r1_cmd->request_desc = req_desc2; req_desc2->SCSIIO.SMID = cpu_to_le16(r1_cmd->index); req_desc2->SCSIIO.RequestFlags = req_desc->SCSIIO.RequestFlags; r1_cmd->request_desc->SCSIIO.DevHandle = cmd->r1_alt_dev_handle; r1_cmd->io_request->DevHandle = cmd->r1_alt_dev_handle; r1_cmd->r1_alt_dev_handle = cmd->io_request->DevHandle; cmd->io_request->RaidContext.raid_context_g35.flow_specific.peer_smid = cpu_to_le16(r1_cmd->index); r1_cmd->io_request->RaidContext.raid_context_g35.flow_specific.peer_smid = cpu_to_le16(cmd->index); /*MSIxIndex of both commands request descriptors should be same*/ r1_cmd->request_desc->SCSIIO.MSIxIndex = cmd->request_desc->SCSIIO.MSIxIndex; /*span arm is different for r1 cmd*/ r1_cmd->io_request->RaidContext.raid_context_g35.span_arm = cmd->io_request->RaidContext.raid_context_g35.span_arm + 1; } /** * megasas_build_and_issue_cmd_fusion -Main routine for building and * issuing non IOCTL cmd * @instance: Adapter soft state * @scmd: pointer to scsi cmd from OS */ static u32 megasas_build_and_issue_cmd_fusion(struct megasas_instance *instance, struct scsi_cmnd *scmd) { struct megasas_cmd_fusion *cmd, *r1_cmd = NULL; union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc; u32 index; if ((megasas_cmd_type(scmd) == READ_WRITE_LDIO) && instance->ldio_threshold && (atomic_inc_return(&instance->ldio_outstanding) > instance->ldio_threshold)) { atomic_dec(&instance->ldio_outstanding); return SCSI_MLQUEUE_DEVICE_BUSY; } if (atomic_inc_return(&instance->fw_outstanding) > instance->host->can_queue) { atomic_dec(&instance->fw_outstanding); return SCSI_MLQUEUE_HOST_BUSY; } cmd = megasas_get_cmd_fusion(instance, scsi_cmd_to_rq(scmd)->tag); if (!cmd) { atomic_dec(&instance->fw_outstanding); return SCSI_MLQUEUE_HOST_BUSY; } index = cmd->index; req_desc = megasas_get_request_descriptor(instance, index-1); req_desc->Words = 0; cmd->request_desc = req_desc; if (megasas_build_io_fusion(instance, scmd, cmd)) { megasas_return_cmd_fusion(instance, cmd); dev_err(&instance->pdev->dev, "Error building command\n"); cmd->request_desc = NULL; atomic_dec(&instance->fw_outstanding); return SCSI_MLQUEUE_HOST_BUSY; } req_desc = cmd->request_desc; req_desc->SCSIIO.SMID = cpu_to_le16(index); if (cmd->io_request->ChainOffset != 0 && cmd->io_request->ChainOffset != 0xF) dev_err(&instance->pdev->dev, "The chain offset value is not " "correct : %x\n", cmd->io_request->ChainOffset); /* * if it is raid 1/10 fp write capable. * try to get second command from pool and construct it. * From FW, it has confirmed that lba values of two PDs * corresponds to single R1/10 LD are always same * */ /* driver side count always should be less than max_fw_cmds * to get new command */ if (cmd->r1_alt_dev_handle != MR_DEVHANDLE_INVALID) { r1_cmd = megasas_get_cmd_fusion(instance, scsi_cmd_to_rq(scmd)->tag + instance->max_fw_cmds); megasas_prepare_secondRaid1_IO(instance, cmd, r1_cmd); } /* * Issue the command to the FW */ megasas_sdev_busy_inc(instance, scmd); megasas_fire_cmd_fusion(instance, req_desc); if (r1_cmd) megasas_fire_cmd_fusion(instance, r1_cmd->request_desc); return 0; } /** * megasas_complete_r1_command - * completes R1 FP write commands which has valid peer smid * @instance: Adapter soft state * @cmd: MPT command frame * */ static inline void megasas_complete_r1_command(struct megasas_instance *instance, struct megasas_cmd_fusion *cmd) { u8 *sense, status, ex_status; u32 data_length; u16 peer_smid; struct fusion_context *fusion; struct megasas_cmd_fusion *r1_cmd = NULL; struct scsi_cmnd *scmd_local = NULL; struct RAID_CONTEXT_G35 *rctx_g35; rctx_g35 = &cmd->io_request->RaidContext.raid_context_g35; fusion = instance->ctrl_context; peer_smid = le16_to_cpu(rctx_g35->flow_specific.peer_smid); r1_cmd = fusion->cmd_list[peer_smid - 1]; scmd_local = cmd->scmd; status = rctx_g35->status; ex_status = rctx_g35->ex_status; data_length = cmd->io_request->DataLength; sense = cmd->sense; cmd->cmd_completed = true; /* Check if peer command is completed or not*/ if (r1_cmd->cmd_completed) { rctx_g35 = &r1_cmd->io_request->RaidContext.raid_context_g35; if (rctx_g35->status != MFI_STAT_OK) { status = rctx_g35->status; ex_status = rctx_g35->ex_status; data_length = r1_cmd->io_request->DataLength; sense = r1_cmd->sense; } megasas_return_cmd_fusion(instance, r1_cmd); map_cmd_status(fusion, scmd_local, status, ex_status, le32_to_cpu(data_length), sense); if (instance->ldio_threshold && megasas_cmd_type(scmd_local) == READ_WRITE_LDIO) atomic_dec(&instance->ldio_outstanding); scmd_local->SCp.ptr = NULL; megasas_return_cmd_fusion(instance, cmd); scsi_dma_unmap(scmd_local); megasas_sdev_busy_dec(instance, scmd_local); scmd_local->scsi_done(scmd_local); } } /** * complete_cmd_fusion - Completes command * @instance: Adapter soft state * @MSIxIndex: MSI number * @irq_context: IRQ context * * Completes all commands that is in reply descriptor queue */ static int complete_cmd_fusion(struct megasas_instance *instance, u32 MSIxIndex, struct megasas_irq_context *irq_context) { union MPI2_REPLY_DESCRIPTORS_UNION *desc; struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *reply_desc; struct MPI2_RAID_SCSI_IO_REQUEST *scsi_io_req; struct fusion_context *fusion; struct megasas_cmd *cmd_mfi; struct megasas_cmd_fusion *cmd_fusion; u16 smid, num_completed; u8 reply_descript_type, *sense, status, extStatus; u32 device_id, data_length; union desc_value d_val; struct LD_LOAD_BALANCE_INFO *lbinfo; int threshold_reply_count = 0; struct scsi_cmnd *scmd_local = NULL; struct MR_TASK_MANAGE_REQUEST *mr_tm_req; struct MPI2_SCSI_TASK_MANAGE_REQUEST *mpi_tm_req; fusion = instance->ctrl_context; if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) return IRQ_HANDLED; if (irq_context && !atomic_add_unless(&irq_context->in_used, 1, 1)) return 0; desc = fusion->reply_frames_desc[MSIxIndex] + fusion->last_reply_idx[MSIxIndex]; reply_desc = (struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *)desc; d_val.word = desc->Words; reply_descript_type = reply_desc->ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; if (reply_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) { if (irq_context) atomic_dec(&irq_context->in_used); return IRQ_NONE; } num_completed = 0; while (d_val.u.low != cpu_to_le32(UINT_MAX) && d_val.u.high != cpu_to_le32(UINT_MAX)) { smid = le16_to_cpu(reply_desc->SMID); cmd_fusion = fusion->cmd_list[smid - 1]; scsi_io_req = (struct MPI2_RAID_SCSI_IO_REQUEST *) cmd_fusion->io_request; scmd_local = cmd_fusion->scmd; status = scsi_io_req->RaidContext.raid_context.status; extStatus = scsi_io_req->RaidContext.raid_context.ex_status; sense = cmd_fusion->sense; data_length = scsi_io_req->DataLength; switch (scsi_io_req->Function) { case MPI2_FUNCTION_SCSI_TASK_MGMT: mr_tm_req = (struct MR_TASK_MANAGE_REQUEST *) cmd_fusion->io_request; mpi_tm_req = (struct MPI2_SCSI_TASK_MANAGE_REQUEST *) &mr_tm_req->TmRequest; dev_dbg(&instance->pdev->dev, "TM completion:" "type: 0x%x TaskMID: 0x%x\n", mpi_tm_req->TaskType, mpi_tm_req->TaskMID); complete(&cmd_fusion->done); break; case MPI2_FUNCTION_SCSI_IO_REQUEST: /*Fast Path IO.*/ /* Update load balancing info */ if (fusion->load_balance_info && (cmd_fusion->scmd->SCp.Status & MEGASAS_LOAD_BALANCE_FLAG)) { device_id = MEGASAS_DEV_INDEX(scmd_local); lbinfo = &fusion->load_balance_info[device_id]; atomic_dec(&lbinfo->scsi_pending_cmds[cmd_fusion->pd_r1_lb]); cmd_fusion->scmd->SCp.Status &= ~MEGASAS_LOAD_BALANCE_FLAG; } fallthrough; /* and complete IO */ case MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST: /* LD-IO Path */ atomic_dec(&instance->fw_outstanding); if (cmd_fusion->r1_alt_dev_handle == MR_DEVHANDLE_INVALID) { map_cmd_status(fusion, scmd_local, status, extStatus, le32_to_cpu(data_length), sense); if (instance->ldio_threshold && (megasas_cmd_type(scmd_local) == READ_WRITE_LDIO)) atomic_dec(&instance->ldio_outstanding); scmd_local->SCp.ptr = NULL; megasas_return_cmd_fusion(instance, cmd_fusion); scsi_dma_unmap(scmd_local); megasas_sdev_busy_dec(instance, scmd_local); scmd_local->scsi_done(scmd_local); } else /* Optimal VD - R1 FP command completion. */ megasas_complete_r1_command(instance, cmd_fusion); break; case MEGASAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST: /*MFI command */ cmd_mfi = instance->cmd_list[cmd_fusion->sync_cmd_idx]; /* Poll mode. Dummy free. * In case of Interrupt mode, caller has reverse check. */ if (cmd_mfi->flags & DRV_DCMD_POLLED_MODE) { cmd_mfi->flags &= ~DRV_DCMD_POLLED_MODE; megasas_return_cmd(instance, cmd_mfi); } else megasas_complete_cmd(instance, cmd_mfi, DID_OK); break; } fusion->last_reply_idx[MSIxIndex]++; if (fusion->last_reply_idx[MSIxIndex] >= fusion->reply_q_depth) fusion->last_reply_idx[MSIxIndex] = 0; desc->Words = cpu_to_le64(ULLONG_MAX); num_completed++; threshold_reply_count++; /* Get the next reply descriptor */ if (!fusion->last_reply_idx[MSIxIndex]) desc = fusion->reply_frames_desc[MSIxIndex]; else desc++; reply_desc = (struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR *)desc; d_val.word = desc->Words; reply_descript_type = reply_desc->ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; if (reply_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) break; /* * Write to reply post host index register after completing threshold * number of reply counts and still there are more replies in reply queue * pending to be completed */ if (threshold_reply_count >= instance->threshold_reply_count) { if (instance->msix_combined) writel(((MSIxIndex & 0x7) << 24) | fusion->last_reply_idx[MSIxIndex], instance->reply_post_host_index_addr[MSIxIndex/8]); else writel((MSIxIndex << 24) | fusion->last_reply_idx[MSIxIndex], instance->reply_post_host_index_addr[0]); threshold_reply_count = 0; if (irq_context) { if (!irq_context->irq_poll_scheduled) { irq_context->irq_poll_scheduled = true; irq_context->irq_line_enable = true; irq_poll_sched(&irq_context->irqpoll); } atomic_dec(&irq_context->in_used); return num_completed; } } } if (num_completed) { wmb(); if (instance->msix_combined) writel(((MSIxIndex & 0x7) << 24) | fusion->last_reply_idx[MSIxIndex], instance->reply_post_host_index_addr[MSIxIndex/8]); else writel((MSIxIndex << 24) | fusion->last_reply_idx[MSIxIndex], instance->reply_post_host_index_addr[0]); megasas_check_and_restore_queue_depth(instance); } if (irq_context) atomic_dec(&irq_context->in_used); return num_completed; } int megasas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num) { struct megasas_instance *instance; int num_entries = 0; struct fusion_context *fusion; instance = (struct megasas_instance *)shost->hostdata; fusion = instance->ctrl_context; queue_num = queue_num + instance->low_latency_index_start; if (!atomic_add_unless(&fusion->busy_mq_poll[queue_num], 1, 1)) return 0; num_entries = complete_cmd_fusion(instance, queue_num, NULL); atomic_dec(&fusion->busy_mq_poll[queue_num]); return num_entries; } /** * megasas_enable_irq_poll() - enable irqpoll * @instance: Adapter soft state */ static void megasas_enable_irq_poll(struct megasas_instance *instance) { u32 count, i; struct megasas_irq_context *irq_ctx; count = instance->msix_vectors > 0 ? instance->msix_vectors : 1; for (i = 0; i < count; i++) { irq_ctx = &instance->irq_context[i]; irq_poll_enable(&irq_ctx->irqpoll); } } /** * megasas_sync_irqs - Synchronizes all IRQs owned by adapter * @instance_addr: Adapter soft state address */ static void megasas_sync_irqs(unsigned long instance_addr) { u32 count, i; struct megasas_instance *instance = (struct megasas_instance *)instance_addr; struct megasas_irq_context *irq_ctx; count = instance->msix_vectors > 0 ? instance->msix_vectors : 1; for (i = 0; i < count; i++) { synchronize_irq(pci_irq_vector(instance->pdev, i)); irq_ctx = &instance->irq_context[i]; irq_poll_disable(&irq_ctx->irqpoll); if (irq_ctx->irq_poll_scheduled) { irq_ctx->irq_poll_scheduled = false; enable_irq(irq_ctx->os_irq); complete_cmd_fusion(instance, irq_ctx->MSIxIndex, irq_ctx); } } } /** * megasas_irqpoll() - process a queue for completed reply descriptors * @irqpoll: IRQ poll structure associated with queue to poll. * @budget: Threshold of reply descriptors to process per poll. * * Return: The number of entries processed. */ int megasas_irqpoll(struct irq_poll *irqpoll, int budget) { struct megasas_irq_context *irq_ctx; struct megasas_instance *instance; int num_entries; irq_ctx = container_of(irqpoll, struct megasas_irq_context, irqpoll); instance = irq_ctx->instance; if (irq_ctx->irq_line_enable) { disable_irq_nosync(irq_ctx->os_irq); irq_ctx->irq_line_enable = false; } num_entries = complete_cmd_fusion(instance, irq_ctx->MSIxIndex, irq_ctx); if (num_entries < budget) { irq_poll_complete(irqpoll); irq_ctx->irq_poll_scheduled = false; enable_irq(irq_ctx->os_irq); complete_cmd_fusion(instance, irq_ctx->MSIxIndex, irq_ctx); } return num_entries; } /** * megasas_complete_cmd_dpc_fusion - Completes command * @instance_addr: Adapter soft state address * * Tasklet to complete cmds */ static void megasas_complete_cmd_dpc_fusion(unsigned long instance_addr) { struct megasas_instance *instance = (struct megasas_instance *)instance_addr; struct megasas_irq_context *irq_ctx = NULL; u32 count, MSIxIndex; count = instance->msix_vectors > 0 ? instance->msix_vectors : 1; /* If we have already declared adapter dead, donot complete cmds */ if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) return; for (MSIxIndex = 0 ; MSIxIndex < count; MSIxIndex++) { irq_ctx = &instance->irq_context[MSIxIndex]; complete_cmd_fusion(instance, MSIxIndex, irq_ctx); } } /** * megasas_isr_fusion - isr entry point * @irq: IRQ number * @devp: IRQ context */ static irqreturn_t megasas_isr_fusion(int irq, void *devp) { struct megasas_irq_context *irq_context = devp; struct megasas_instance *instance = irq_context->instance; u32 mfiStatus; if (instance->mask_interrupts) return IRQ_NONE; if (irq_context->irq_poll_scheduled) return IRQ_HANDLED; if (!instance->msix_vectors) { mfiStatus = instance->instancet->clear_intr(instance); if (!mfiStatus) return IRQ_NONE; } /* If we are resetting, bail */ if (test_bit(MEGASAS_FUSION_IN_RESET, &instance->reset_flags)) { instance->instancet->clear_intr(instance); return IRQ_HANDLED; } return complete_cmd_fusion(instance, irq_context->MSIxIndex, irq_context) ? IRQ_HANDLED : IRQ_NONE; } /** * build_mpt_mfi_pass_thru - builds a cmd fo MFI Pass thru * @instance: Adapter soft state * @mfi_cmd: megasas_cmd pointer * */ static void build_mpt_mfi_pass_thru(struct megasas_instance *instance, struct megasas_cmd *mfi_cmd) { struct MPI25_IEEE_SGE_CHAIN64 *mpi25_ieee_chain; struct MPI2_RAID_SCSI_IO_REQUEST *io_req; struct megasas_cmd_fusion *cmd; struct fusion_context *fusion; struct megasas_header *frame_hdr = &mfi_cmd->frame->hdr; fusion = instance->ctrl_context; cmd = megasas_get_cmd_fusion(instance, instance->max_scsi_cmds + mfi_cmd->index); /* Save the smid. To be used for returning the cmd */ mfi_cmd->context.smid = cmd->index; /* * For cmds where the flag is set, store the flag and check * on completion. For cmds with this flag, don't call * megasas_complete_cmd */ if (frame_hdr->flags & cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE)) mfi_cmd->flags |= DRV_DCMD_POLLED_MODE; io_req = cmd->io_request; if (instance->adapter_type >= INVADER_SERIES) { struct MPI25_IEEE_SGE_CHAIN64 *sgl_ptr_end = (struct MPI25_IEEE_SGE_CHAIN64 *)&io_req->SGL; sgl_ptr_end += fusion->max_sge_in_main_msg - 1; sgl_ptr_end->Flags = 0; } mpi25_ieee_chain = (struct MPI25_IEEE_SGE_CHAIN64 *)&io_req->SGL.IeeeChain; io_req->Function = MEGASAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST; io_req->SGLOffset0 = offsetof(struct MPI2_RAID_SCSI_IO_REQUEST, SGL) / 4; io_req->ChainOffset = fusion->chain_offset_mfi_pthru; mpi25_ieee_chain->Address = cpu_to_le64(mfi_cmd->frame_phys_addr); mpi25_ieee_chain->Flags = IEEE_SGE_FLAGS_CHAIN_ELEMENT | MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR; mpi25_ieee_chain->Length = cpu_to_le32(instance->mfi_frame_size); } /** * build_mpt_cmd - Calls helper function to build a cmd MFI Pass thru cmd * @instance: Adapter soft state * @cmd: mfi cmd to build * */ static union MEGASAS_REQUEST_DESCRIPTOR_UNION * build_mpt_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc = NULL; u16 index; build_mpt_mfi_pass_thru(instance, cmd); index = cmd->context.smid; req_desc = megasas_get_request_descriptor(instance, index - 1); req_desc->Words = 0; req_desc->SCSIIO.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); req_desc->SCSIIO.SMID = cpu_to_le16(index); return req_desc; } /** * megasas_issue_dcmd_fusion - Issues a MFI Pass thru cmd * @instance: Adapter soft state * @cmd: mfi cmd pointer * */ static void megasas_issue_dcmd_fusion(struct megasas_instance *instance, struct megasas_cmd *cmd) { union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc; req_desc = build_mpt_cmd(instance, cmd); megasas_fire_cmd_fusion(instance, req_desc); return; } /** * megasas_release_fusion - Reverses the FW initialization * @instance: Adapter soft state */ void megasas_release_fusion(struct megasas_instance *instance) { megasas_free_ioc_init_cmd(instance); megasas_free_cmds(instance); megasas_free_cmds_fusion(instance); iounmap(instance->reg_set); pci_release_selected_regions(instance->pdev, 1<bar); } /** * megasas_read_fw_status_reg_fusion - returns the current FW status value * @instance: Adapter soft state */ static u32 megasas_read_fw_status_reg_fusion(struct megasas_instance *instance) { return megasas_readl(instance, &instance->reg_set->outbound_scratch_pad_0); } /** * megasas_alloc_host_crash_buffer - Host buffers for Crash dump collection from Firmware * @instance: Controller's soft instance * @return: Number of allocated host crash buffers */ static void megasas_alloc_host_crash_buffer(struct megasas_instance *instance) { unsigned int i; for (i = 0; i < MAX_CRASH_DUMP_SIZE; i++) { instance->crash_buf[i] = vzalloc(CRASH_DMA_BUF_SIZE); if (!instance->crash_buf[i]) { dev_info(&instance->pdev->dev, "Firmware crash dump " "memory allocation failed at index %d\n", i); break; } } instance->drv_buf_alloc = i; } /** * megasas_free_host_crash_buffer - Host buffers for Crash dump collection from Firmware * @instance: Controller's soft instance */ void megasas_free_host_crash_buffer(struct megasas_instance *instance) { unsigned int i; for (i = 0; i < instance->drv_buf_alloc; i++) { vfree(instance->crash_buf[i]); } instance->drv_buf_index = 0; instance->drv_buf_alloc = 0; instance->fw_crash_state = UNAVAILABLE; instance->fw_crash_buffer_size = 0; } /** * megasas_adp_reset_fusion - For controller reset * @instance: Controller's soft instance * @regs: MFI register set */ static int megasas_adp_reset_fusion(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { u32 host_diag, abs_state, retry; /* Now try to reset the chip */ writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &instance->reg_set->fusion_seq_offset); writel(MPI2_WRSEQ_1ST_KEY_VALUE, &instance->reg_set->fusion_seq_offset); writel(MPI2_WRSEQ_2ND_KEY_VALUE, &instance->reg_set->fusion_seq_offset); writel(MPI2_WRSEQ_3RD_KEY_VALUE, &instance->reg_set->fusion_seq_offset); writel(MPI2_WRSEQ_4TH_KEY_VALUE, &instance->reg_set->fusion_seq_offset); writel(MPI2_WRSEQ_5TH_KEY_VALUE, &instance->reg_set->fusion_seq_offset); writel(MPI2_WRSEQ_6TH_KEY_VALUE, &instance->reg_set->fusion_seq_offset); /* Check that the diag write enable (DRWE) bit is on */ host_diag = megasas_readl(instance, &instance->reg_set->fusion_host_diag); retry = 0; while (!(host_diag & HOST_DIAG_WRITE_ENABLE)) { msleep(100); host_diag = megasas_readl(instance, &instance->reg_set->fusion_host_diag); if (retry++ == 100) { dev_warn(&instance->pdev->dev, "Host diag unlock failed from %s %d\n", __func__, __LINE__); break; } } if (!(host_diag & HOST_DIAG_WRITE_ENABLE)) return -1; /* Send chip reset command */ writel(host_diag | HOST_DIAG_RESET_ADAPTER, &instance->reg_set->fusion_host_diag); msleep(3000); /* Make sure reset adapter bit is cleared */ host_diag = megasas_readl(instance, &instance->reg_set->fusion_host_diag); retry = 0; while (host_diag & HOST_DIAG_RESET_ADAPTER) { msleep(100); host_diag = megasas_readl(instance, &instance->reg_set->fusion_host_diag); if (retry++ == 1000) { dev_warn(&instance->pdev->dev, "Diag reset adapter never cleared %s %d\n", __func__, __LINE__); break; } } if (host_diag & HOST_DIAG_RESET_ADAPTER) return -1; abs_state = instance->instancet->read_fw_status_reg(instance) & MFI_STATE_MASK; retry = 0; while ((abs_state <= MFI_STATE_FW_INIT) && (retry++ < 1000)) { msleep(100); abs_state = instance->instancet-> read_fw_status_reg(instance) & MFI_STATE_MASK; } if (abs_state <= MFI_STATE_FW_INIT) { dev_warn(&instance->pdev->dev, "fw state < MFI_STATE_FW_INIT, state = 0x%x %s %d\n", abs_state, __func__, __LINE__); return -1; } return 0; } /** * megasas_check_reset_fusion - For controller reset check * @instance: Controller's soft instance * @regs: MFI register set */ static int megasas_check_reset_fusion(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { return 0; } /** * megasas_trigger_snap_dump - Trigger snap dump in FW * @instance: Soft instance of adapter */ static inline void megasas_trigger_snap_dump(struct megasas_instance *instance) { int j; u32 fw_state, abs_state; if (!instance->disableOnlineCtrlReset) { dev_info(&instance->pdev->dev, "Trigger snap dump\n"); writel(MFI_ADP_TRIGGER_SNAP_DUMP, &instance->reg_set->doorbell); readl(&instance->reg_set->doorbell); } for (j = 0; j < instance->snapdump_wait_time; j++) { abs_state = instance->instancet->read_fw_status_reg(instance); fw_state = abs_state & MFI_STATE_MASK; if (fw_state == MFI_STATE_FAULT) { dev_printk(KERN_ERR, &instance->pdev->dev, "FW in FAULT state Fault code:0x%x subcode:0x%x func:%s\n", abs_state & MFI_STATE_FAULT_CODE, abs_state & MFI_STATE_FAULT_SUBCODE, __func__); return; } msleep(1000); } } /* This function waits for outstanding commands on fusion to complete */ static int megasas_wait_for_outstanding_fusion(struct megasas_instance *instance, int reason, int *convert) { int i, outstanding, retval = 0, hb_seconds_missed = 0; u32 fw_state, abs_state; u32 waittime_for_io_completion; waittime_for_io_completion = min_t(u32, resetwaittime, (resetwaittime - instance->snapdump_wait_time)); if (reason == MFI_IO_TIMEOUT_OCR) { dev_info(&instance->pdev->dev, "MFI command is timed out\n"); megasas_complete_cmd_dpc_fusion((unsigned long)instance); if (instance->snapdump_wait_time) megasas_trigger_snap_dump(instance); retval = 1; goto out; } for (i = 0; i < waittime_for_io_completion; i++) { /* Check if firmware is in fault state */ abs_state = instance->instancet->read_fw_status_reg(instance); fw_state = abs_state & MFI_STATE_MASK; if (fw_state == MFI_STATE_FAULT) { dev_printk(KERN_ERR, &instance->pdev->dev, "FW in FAULT state Fault code:0x%x subcode:0x%x func:%s\n", abs_state & MFI_STATE_FAULT_CODE, abs_state & MFI_STATE_FAULT_SUBCODE, __func__); megasas_complete_cmd_dpc_fusion((unsigned long)instance); if (instance->requestorId && reason) { dev_warn(&instance->pdev->dev, "SR-IOV Found FW in FAULT" " state while polling during" " I/O timeout handling for %d\n", instance->host->host_no); *convert = 1; } retval = 1; goto out; } /* If SR-IOV VF mode & heartbeat timeout, don't wait */ if (instance->requestorId && !reason) { retval = 1; goto out; } /* If SR-IOV VF mode & I/O timeout, check for HB timeout */ if (instance->requestorId && (reason == SCSIIO_TIMEOUT_OCR)) { if (instance->hb_host_mem->HB.fwCounter != instance->hb_host_mem->HB.driverCounter) { instance->hb_host_mem->HB.driverCounter = instance->hb_host_mem->HB.fwCounter; hb_seconds_missed = 0; } else { hb_seconds_missed++; if (hb_seconds_missed == (MEGASAS_SRIOV_HEARTBEAT_INTERVAL_VF/HZ)) { dev_warn(&instance->pdev->dev, "SR-IOV:" " Heartbeat never completed " " while polling during I/O " " timeout handling for " "scsi%d.\n", instance->host->host_no); *convert = 1; retval = 1; goto out; } } } megasas_complete_cmd_dpc_fusion((unsigned long)instance); outstanding = atomic_read(&instance->fw_outstanding); if (!outstanding) goto out; if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { dev_notice(&instance->pdev->dev, "[%2d]waiting for %d " "commands to complete for scsi%d\n", i, outstanding, instance->host->host_no); } msleep(1000); } if (instance->snapdump_wait_time) { megasas_trigger_snap_dump(instance); retval = 1; goto out; } if (atomic_read(&instance->fw_outstanding)) { dev_err(&instance->pdev->dev, "pending commands remain after waiting, " "will reset adapter scsi%d.\n", instance->host->host_no); *convert = 1; retval = 1; } out: return retval; } void megasas_reset_reply_desc(struct megasas_instance *instance) { int i, j, count; struct fusion_context *fusion; union MPI2_REPLY_DESCRIPTORS_UNION *reply_desc; fusion = instance->ctrl_context; count = instance->msix_vectors > 0 ? instance->msix_vectors : 1; count += instance->iopoll_q_count; for (i = 0 ; i < count ; i++) { fusion->last_reply_idx[i] = 0; reply_desc = fusion->reply_frames_desc[i]; for (j = 0 ; j < fusion->reply_q_depth; j++, reply_desc++) reply_desc->Words = cpu_to_le64(ULLONG_MAX); } } /* * megasas_refire_mgmt_cmd : Re-fire management commands * @instance: Controller's soft instance */ static void megasas_refire_mgmt_cmd(struct megasas_instance *instance, bool return_ioctl) { int j; struct megasas_cmd_fusion *cmd_fusion; struct fusion_context *fusion; struct megasas_cmd *cmd_mfi; union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc; struct MPI2_RAID_SCSI_IO_REQUEST *scsi_io_req; u16 smid; bool refire_cmd = false; u8 result; u32 opcode = 0; fusion = instance->ctrl_context; /* Re-fire management commands. * Do not traverse complet MPT frame pool. Start from max_scsi_cmds. */ for (j = instance->max_scsi_cmds ; j < instance->max_fw_cmds; j++) { cmd_fusion = fusion->cmd_list[j]; cmd_mfi = instance->cmd_list[cmd_fusion->sync_cmd_idx]; smid = le16_to_cpu(cmd_mfi->context.smid); result = REFIRE_CMD; if (!smid) continue; req_desc = megasas_get_request_descriptor(instance, smid - 1); switch (cmd_mfi->frame->hdr.cmd) { case MFI_CMD_DCMD: opcode = le32_to_cpu(cmd_mfi->frame->dcmd.opcode); /* Do not refire shutdown command */ if (opcode == MR_DCMD_CTRL_SHUTDOWN) { cmd_mfi->frame->dcmd.cmd_status = MFI_STAT_OK; result = COMPLETE_CMD; break; } refire_cmd = ((opcode != MR_DCMD_LD_MAP_GET_INFO)) && (opcode != MR_DCMD_SYSTEM_PD_MAP_GET_INFO) && !(cmd_mfi->flags & DRV_DCMD_SKIP_REFIRE); if (!refire_cmd) result = RETURN_CMD; break; case MFI_CMD_NVME: if (!instance->support_nvme_passthru) { cmd_mfi->frame->hdr.cmd_status = MFI_STAT_INVALID_CMD; result = COMPLETE_CMD; } break; case MFI_CMD_TOOLBOX: if (!instance->support_pci_lane_margining) { cmd_mfi->frame->hdr.cmd_status = MFI_STAT_INVALID_CMD; result = COMPLETE_CMD; } break; default: break; } if (return_ioctl && cmd_mfi->sync_cmd && cmd_mfi->frame->hdr.cmd != MFI_CMD_ABORT) { dev_err(&instance->pdev->dev, "return -EBUSY from %s %d cmd 0x%x opcode 0x%x\n", __func__, __LINE__, cmd_mfi->frame->hdr.cmd, le32_to_cpu(cmd_mfi->frame->dcmd.opcode)); cmd_mfi->cmd_status_drv = DCMD_BUSY; result = COMPLETE_CMD; } scsi_io_req = (struct MPI2_RAID_SCSI_IO_REQUEST *) cmd_fusion->io_request; if (scsi_io_req->Function == MPI2_FUNCTION_SCSI_TASK_MGMT) result = RETURN_CMD; switch (result) { case REFIRE_CMD: megasas_fire_cmd_fusion(instance, req_desc); break; case RETURN_CMD: megasas_return_cmd(instance, cmd_mfi); break; case COMPLETE_CMD: megasas_complete_cmd(instance, cmd_mfi, DID_OK); break; } } } /* * megasas_return_polled_cmds: Return polled mode commands back to the pool * before initiating an OCR. * @instance: Controller's soft instance */ static void megasas_return_polled_cmds(struct megasas_instance *instance) { int i; struct megasas_cmd_fusion *cmd_fusion; struct fusion_context *fusion; struct megasas_cmd *cmd_mfi; fusion = instance->ctrl_context; for (i = instance->max_scsi_cmds; i < instance->max_fw_cmds; i++) { cmd_fusion = fusion->cmd_list[i]; cmd_mfi = instance->cmd_list[cmd_fusion->sync_cmd_idx]; if (cmd_mfi->flags & DRV_DCMD_POLLED_MODE) { if (megasas_dbg_lvl & OCR_DEBUG) dev_info(&instance->pdev->dev, "%s %d return cmd 0x%x opcode 0x%x\n", __func__, __LINE__, cmd_mfi->frame->hdr.cmd, le32_to_cpu(cmd_mfi->frame->dcmd.opcode)); cmd_mfi->flags &= ~DRV_DCMD_POLLED_MODE; megasas_return_cmd(instance, cmd_mfi); } } } /* * megasas_track_scsiio : Track SCSI IOs outstanding to a SCSI device * @instance: per adapter struct * @channel: the channel assigned by the OS * @id: the id assigned by the OS * * Returns SUCCESS if no IOs pending to SCSI device, else return FAILED */ static int megasas_track_scsiio(struct megasas_instance *instance, int id, int channel) { int i, found = 0; struct megasas_cmd_fusion *cmd_fusion; struct fusion_context *fusion; fusion = instance->ctrl_context; for (i = 0 ; i < instance->max_scsi_cmds; i++) { cmd_fusion = fusion->cmd_list[i]; if (cmd_fusion->scmd && (cmd_fusion->scmd->device->id == id && cmd_fusion->scmd->device->channel == channel)) { dev_info(&instance->pdev->dev, "SCSI commands pending to target" "channel %d id %d \tSMID: 0x%x\n", channel, id, cmd_fusion->index); scsi_print_command(cmd_fusion->scmd); found = 1; break; } } return found ? FAILED : SUCCESS; } /** * megasas_tm_response_code - translation of device response code * @instance: Controller's soft instance * @mpi_reply: MPI reply returned by firmware * * Return nothing. */ static void megasas_tm_response_code(struct megasas_instance *instance, struct MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply) { char *desc; switch (mpi_reply->ResponseCode) { case MPI2_SCSITASKMGMT_RSP_TM_COMPLETE: desc = "task management request completed"; break; case MPI2_SCSITASKMGMT_RSP_INVALID_FRAME: desc = "invalid frame"; break; case MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED: desc = "task management request not supported"; break; case MPI2_SCSITASKMGMT_RSP_TM_FAILED: desc = "task management request failed"; break; case MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED: desc = "task management request succeeded"; break; case MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN: desc = "invalid lun"; break; case 0xA: desc = "overlapped tag attempted"; break; case MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC: desc = "task queued, however not sent to target"; break; default: desc = "unknown"; break; } dev_dbg(&instance->pdev->dev, "response_code(%01x): %s\n", mpi_reply->ResponseCode, desc); dev_dbg(&instance->pdev->dev, "TerminationCount/DevHandle/Function/TaskType/IOCStat/IOCLoginfo" " 0x%x/0x%x/0x%x/0x%x/0x%x/0x%x\n", mpi_reply->TerminationCount, mpi_reply->DevHandle, mpi_reply->Function, mpi_reply->TaskType, mpi_reply->IOCStatus, mpi_reply->IOCLogInfo); } /** * megasas_issue_tm - main routine for sending tm requests * @instance: per adapter struct * @device_handle: device handle * @channel: the channel assigned by the OS * @id: the id assigned by the OS * @smid_task: smid assigned to the task * @type: MPI2_SCSITASKMGMT_TASKTYPE__XXX (defined in megaraid_sas_fusion.c) * @mr_device_priv_data: private data * Context: user * * MegaRaid use MPT interface for Task Magement request. * A generic API for sending task management requests to firmware. * * Return SUCCESS or FAILED. */ static int megasas_issue_tm(struct megasas_instance *instance, u16 device_handle, uint channel, uint id, u16 smid_task, u8 type, struct MR_PRIV_DEVICE *mr_device_priv_data) { struct MR_TASK_MANAGE_REQUEST *mr_request; struct MPI2_SCSI_TASK_MANAGE_REQUEST *mpi_request; unsigned long timeleft; struct megasas_cmd_fusion *cmd_fusion; struct megasas_cmd *cmd_mfi; union MEGASAS_REQUEST_DESCRIPTOR_UNION *req_desc; struct fusion_context *fusion = NULL; struct megasas_cmd_fusion *scsi_lookup; int rc; int timeout = MEGASAS_DEFAULT_TM_TIMEOUT; struct MPI2_SCSI_TASK_MANAGE_REPLY *mpi_reply; fusion = instance->ctrl_context; cmd_mfi = megasas_get_cmd(instance); if (!cmd_mfi) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } cmd_fusion = megasas_get_cmd_fusion(instance, instance->max_scsi_cmds + cmd_mfi->index); /* Save the smid. To be used for returning the cmd */ cmd_mfi->context.smid = cmd_fusion->index; req_desc = megasas_get_request_descriptor(instance, (cmd_fusion->index - 1)); cmd_fusion->request_desc = req_desc; req_desc->Words = 0; mr_request = (struct MR_TASK_MANAGE_REQUEST *) cmd_fusion->io_request; memset(mr_request, 0, sizeof(struct MR_TASK_MANAGE_REQUEST)); mpi_request = (struct MPI2_SCSI_TASK_MANAGE_REQUEST *) &mr_request->TmRequest; mpi_request->Function = MPI2_FUNCTION_SCSI_TASK_MGMT; mpi_request->DevHandle = cpu_to_le16(device_handle); mpi_request->TaskType = type; mpi_request->TaskMID = cpu_to_le16(smid_task); mpi_request->LUN[1] = 0; req_desc = cmd_fusion->request_desc; req_desc->HighPriority.SMID = cpu_to_le16(cmd_fusion->index); req_desc->HighPriority.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY << MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT); req_desc->HighPriority.MSIxIndex = 0; req_desc->HighPriority.LMID = 0; req_desc->HighPriority.Reserved1 = 0; if (channel < MEGASAS_MAX_PD_CHANNELS) mr_request->tmReqFlags.isTMForPD = 1; else mr_request->tmReqFlags.isTMForLD = 1; init_completion(&cmd_fusion->done); megasas_fire_cmd_fusion(instance, req_desc); switch (type) { case MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK: timeout = mr_device_priv_data->task_abort_tmo; break; case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: timeout = mr_device_priv_data->target_reset_tmo; break; } timeleft = wait_for_completion_timeout(&cmd_fusion->done, timeout * HZ); if (!timeleft) { dev_err(&instance->pdev->dev, "task mgmt type 0x%x timed out\n", type); mutex_unlock(&instance->reset_mutex); rc = megasas_reset_fusion(instance->host, MFI_IO_TIMEOUT_OCR); mutex_lock(&instance->reset_mutex); return rc; } mpi_reply = (struct MPI2_SCSI_TASK_MANAGE_REPLY *) &mr_request->TMReply; megasas_tm_response_code(instance, mpi_reply); megasas_return_cmd(instance, cmd_mfi); rc = SUCCESS; switch (type) { case MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK: scsi_lookup = fusion->cmd_list[smid_task - 1]; if (scsi_lookup->scmd == NULL) break; else { instance->instancet->disable_intr(instance); megasas_sync_irqs((unsigned long)instance); instance->instancet->enable_intr(instance); megasas_enable_irq_poll(instance); if (scsi_lookup->scmd == NULL) break; } rc = FAILED; break; case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: if ((channel == 0xFFFFFFFF) && (id == 0xFFFFFFFF)) break; instance->instancet->disable_intr(instance); megasas_sync_irqs((unsigned long)instance); rc = megasas_track_scsiio(instance, id, channel); instance->instancet->enable_intr(instance); megasas_enable_irq_poll(instance); break; case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: case MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK: break; default: rc = FAILED; break; } return rc; } /* * megasas_fusion_smid_lookup : Look for fusion command correpspodning to SCSI * @instance: per adapter struct * * Return Non Zero index, if SMID found in outstanding commands */ static u16 megasas_fusion_smid_lookup(struct scsi_cmnd *scmd) { int i, ret = 0; struct megasas_instance *instance; struct megasas_cmd_fusion *cmd_fusion; struct fusion_context *fusion; instance = (struct megasas_instance *)scmd->device->host->hostdata; fusion = instance->ctrl_context; for (i = 0; i < instance->max_scsi_cmds; i++) { cmd_fusion = fusion->cmd_list[i]; if (cmd_fusion->scmd && (cmd_fusion->scmd == scmd)) { scmd_printk(KERN_NOTICE, scmd, "Abort request is for" " SMID: %d\n", cmd_fusion->index); ret = cmd_fusion->index; break; } } return ret; } /* * megasas_get_tm_devhandle - Get devhandle for TM request * @sdev- OS provided scsi device * * Returns- devhandle/targetID of SCSI device */ static u16 megasas_get_tm_devhandle(struct scsi_device *sdev) { u16 pd_index = 0; u32 device_id; struct megasas_instance *instance; struct fusion_context *fusion; struct MR_PD_CFG_SEQ_NUM_SYNC *pd_sync; u16 devhandle = (u16)ULONG_MAX; instance = (struct megasas_instance *)sdev->host->hostdata; fusion = instance->ctrl_context; if (!MEGASAS_IS_LOGICAL(sdev)) { if (instance->use_seqnum_jbod_fp) { pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; pd_sync = (void *)fusion->pd_seq_sync [(instance->pd_seq_map_id - 1) & 1]; devhandle = pd_sync->seq[pd_index].devHandle; } else sdev_printk(KERN_ERR, sdev, "Firmware expose tmCapable" " without JBOD MAP support from %s %d\n", __func__, __LINE__); } else { device_id = ((sdev->channel % 2) * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; devhandle = device_id; } return devhandle; } /* * megasas_task_abort_fusion : SCSI task abort function for fusion adapters * @scmd : pointer to scsi command object * * Return SUCCESS, if command aborted else FAILED */ int megasas_task_abort_fusion(struct scsi_cmnd *scmd) { struct megasas_instance *instance; u16 smid, devhandle; int ret; struct MR_PRIV_DEVICE *mr_device_priv_data; mr_device_priv_data = scmd->device->hostdata; instance = (struct megasas_instance *)scmd->device->host->hostdata; if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) { dev_err(&instance->pdev->dev, "Controller is not OPERATIONAL," "SCSI host:%d\n", instance->host->host_no); ret = FAILED; return ret; } if (!mr_device_priv_data) { sdev_printk(KERN_INFO, scmd->device, "device been deleted! " "scmd(%p)\n", scmd); scmd->result = DID_NO_CONNECT << 16; ret = SUCCESS; goto out; } if (!mr_device_priv_data->is_tm_capable) { ret = FAILED; goto out; } mutex_lock(&instance->reset_mutex); smid = megasas_fusion_smid_lookup(scmd); if (!smid) { ret = SUCCESS; scmd_printk(KERN_NOTICE, scmd, "Command for which abort is" " issued is not found in outstanding commands\n"); mutex_unlock(&instance->reset_mutex); goto out; } devhandle = megasas_get_tm_devhandle(scmd->device); if (devhandle == (u16)ULONG_MAX) { ret = FAILED; sdev_printk(KERN_INFO, scmd->device, "task abort issued for invalid devhandle\n"); mutex_unlock(&instance->reset_mutex); goto out; } sdev_printk(KERN_INFO, scmd->device, "attempting task abort! scmd(0x%p) tm_dev_handle 0x%x\n", scmd, devhandle); mr_device_priv_data->tm_busy = true; ret = megasas_issue_tm(instance, devhandle, scmd->device->channel, scmd->device->id, smid, MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK, mr_device_priv_data); mr_device_priv_data->tm_busy = false; mutex_unlock(&instance->reset_mutex); scmd_printk(KERN_INFO, scmd, "task abort %s!! scmd(0x%p)\n", ((ret == SUCCESS) ? "SUCCESS" : "FAILED"), scmd); out: scsi_print_command(scmd); if (megasas_dbg_lvl & TM_DEBUG) megasas_dump_fusion_io(scmd); return ret; } /* * megasas_reset_target_fusion : target reset function for fusion adapters * scmd: SCSI command pointer * * Returns SUCCESS if all commands associated with target aborted else FAILED */ int megasas_reset_target_fusion(struct scsi_cmnd *scmd) { struct megasas_instance *instance; int ret = FAILED; u16 devhandle; struct MR_PRIV_DEVICE *mr_device_priv_data; mr_device_priv_data = scmd->device->hostdata; instance = (struct megasas_instance *)scmd->device->host->hostdata; if (atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) { dev_err(&instance->pdev->dev, "Controller is not OPERATIONAL," "SCSI host:%d\n", instance->host->host_no); ret = FAILED; return ret; } if (!mr_device_priv_data) { sdev_printk(KERN_INFO, scmd->device, "device been deleted! scmd: (0x%p)\n", scmd); scmd->result = DID_NO_CONNECT << 16; ret = SUCCESS; goto out; } if (!mr_device_priv_data->is_tm_capable) { ret = FAILED; goto out; } mutex_lock(&instance->reset_mutex); devhandle = megasas_get_tm_devhandle(scmd->device); if (devhandle == (u16)ULONG_MAX) { ret = FAILED; sdev_printk(KERN_INFO, scmd->device, "target reset issued for invalid devhandle\n"); mutex_unlock(&instance->reset_mutex); goto out; } sdev_printk(KERN_INFO, scmd->device, "attempting target reset! scmd(0x%p) tm_dev_handle: 0x%x\n", scmd, devhandle); mr_device_priv_data->tm_busy = true; ret = megasas_issue_tm(instance, devhandle, scmd->device->channel, scmd->device->id, 0, MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, mr_device_priv_data); mr_device_priv_data->tm_busy = false; mutex_unlock(&instance->reset_mutex); scmd_printk(KERN_NOTICE, scmd, "target reset %s!!\n", (ret == SUCCESS) ? "SUCCESS" : "FAILED"); out: return ret; } /*SRIOV get other instance in cluster if any*/ static struct megasas_instance *megasas_get_peer_instance(struct megasas_instance *instance) { int i; for (i = 0; i < MAX_MGMT_ADAPTERS; i++) { if (megasas_mgmt_info.instance[i] && (megasas_mgmt_info.instance[i] != instance) && megasas_mgmt_info.instance[i]->requestorId && megasas_mgmt_info.instance[i]->peerIsPresent && (memcmp((megasas_mgmt_info.instance[i]->clusterId), instance->clusterId, MEGASAS_CLUSTER_ID_SIZE) == 0)) return megasas_mgmt_info.instance[i]; } return NULL; } /* Check for a second path that is currently UP */ int megasas_check_mpio_paths(struct megasas_instance *instance, struct scsi_cmnd *scmd) { struct megasas_instance *peer_instance = NULL; int retval = (DID_REQUEUE << 16); if (instance->peerIsPresent) { peer_instance = megasas_get_peer_instance(instance); if ((peer_instance) && (atomic_read(&peer_instance->adprecovery) == MEGASAS_HBA_OPERATIONAL)) retval = (DID_NO_CONNECT << 16); } return retval; } /* Core fusion reset function */ int megasas_reset_fusion(struct Scsi_Host *shost, int reason) { int retval = SUCCESS, i, j, convert = 0; struct megasas_instance *instance; struct megasas_cmd_fusion *cmd_fusion, *r1_cmd; struct fusion_context *fusion; u32 abs_state, status_reg, reset_adapter, fpio_count = 0; u32 io_timeout_in_crash_mode = 0; struct scsi_cmnd *scmd_local = NULL; struct scsi_device *sdev; int ret_target_prop = DCMD_FAILED; bool is_target_prop = false; bool do_adp_reset = true; int max_reset_tries = MEGASAS_FUSION_MAX_RESET_TRIES; instance = (struct megasas_instance *)shost->hostdata; fusion = instance->ctrl_context; mutex_lock(&instance->reset_mutex); if (atomic_read(&instance->adprecovery) == MEGASAS_HW_CRITICAL_ERROR) { dev_warn(&instance->pdev->dev, "Hardware critical error, " "returning FAILED for scsi%d.\n", instance->host->host_no); mutex_unlock(&instance->reset_mutex); return FAILED; } status_reg = instance->instancet->read_fw_status_reg(instance); abs_state = status_reg & MFI_STATE_MASK; /* IO timeout detected, forcibly put FW in FAULT state */ if (abs_state != MFI_STATE_FAULT && instance->crash_dump_buf && instance->crash_dump_app_support && reason) { dev_info(&instance->pdev->dev, "IO/DCMD timeout is detected, " "forcibly FAULT Firmware\n"); atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_INFAULT); status_reg = megasas_readl(instance, &instance->reg_set->doorbell); writel(status_reg | MFI_STATE_FORCE_OCR, &instance->reg_set->doorbell); readl(&instance->reg_set->doorbell); mutex_unlock(&instance->reset_mutex); do { ssleep(3); io_timeout_in_crash_mode++; dev_dbg(&instance->pdev->dev, "waiting for [%d] " "seconds for crash dump collection and OCR " "to be done\n", (io_timeout_in_crash_mode * 3)); } while ((atomic_read(&instance->adprecovery) != MEGASAS_HBA_OPERATIONAL) && (io_timeout_in_crash_mode < 80)); if (atomic_read(&instance->adprecovery) == MEGASAS_HBA_OPERATIONAL) { dev_info(&instance->pdev->dev, "OCR done for IO " "timeout case\n"); retval = SUCCESS; } else { dev_info(&instance->pdev->dev, "Controller is not " "operational after 240 seconds wait for IO " "timeout case in FW crash dump mode\n do " "OCR/kill adapter\n"); retval = megasas_reset_fusion(shost, 0); } return retval; } if (instance->requestorId && !instance->skip_heartbeat_timer_del) del_timer_sync(&instance->sriov_heartbeat_timer); set_bit(MEGASAS_FUSION_IN_RESET, &instance->reset_flags); set_bit(MEGASAS_FUSION_OCR_NOT_POSSIBLE, &instance->reset_flags); atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_POLLING); instance->instancet->disable_intr(instance); megasas_sync_irqs((unsigned long)instance); /* First try waiting for commands to complete */ if (megasas_wait_for_outstanding_fusion(instance, reason, &convert)) { atomic_set(&instance->adprecovery, MEGASAS_ADPRESET_SM_INFAULT); dev_warn(&instance->pdev->dev, "resetting fusion " "adapter scsi%d.\n", instance->host->host_no); if (convert) reason = 0; if (megasas_dbg_lvl & OCR_DEBUG) dev_info(&instance->pdev->dev, "\nPending SCSI commands:\n"); /* Now return commands back to the OS */ for (i = 0 ; i < instance->max_scsi_cmds; i++) { cmd_fusion = fusion->cmd_list[i]; /*check for extra commands issued by driver*/ if (instance->adapter_type >= VENTURA_SERIES) { r1_cmd = fusion->cmd_list[i + instance->max_fw_cmds]; megasas_return_cmd_fusion(instance, r1_cmd); } scmd_local = cmd_fusion->scmd; if (cmd_fusion->scmd) { if (megasas_dbg_lvl & OCR_DEBUG) { sdev_printk(KERN_INFO, cmd_fusion->scmd->device, "SMID: 0x%x\n", cmd_fusion->index); megasas_dump_fusion_io(cmd_fusion->scmd); } if (cmd_fusion->io_request->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) fpio_count++; scmd_local->result = megasas_check_mpio_paths(instance, scmd_local); if (instance->ldio_threshold && megasas_cmd_type(scmd_local) == READ_WRITE_LDIO) atomic_dec(&instance->ldio_outstanding); megasas_return_cmd_fusion(instance, cmd_fusion); scsi_dma_unmap(scmd_local); scmd_local->scsi_done(scmd_local); } } dev_info(&instance->pdev->dev, "Outstanding fastpath IOs: %d\n", fpio_count); atomic_set(&instance->fw_outstanding, 0); status_reg = instance->instancet->read_fw_status_reg(instance); abs_state = status_reg & MFI_STATE_MASK; reset_adapter = status_reg & MFI_RESET_ADAPTER; if (instance->disableOnlineCtrlReset || (abs_state == MFI_STATE_FAULT && !reset_adapter)) { /* Reset not supported, kill adapter */ dev_warn(&instance->pdev->dev, "Reset not supported" ", killing adapter scsi%d.\n", instance->host->host_no); goto kill_hba; } /* Let SR-IOV VF & PF sync up if there was a HB failure */ if (instance->requestorId && !reason) { msleep(MEGASAS_OCR_SETTLE_TIME_VF); do_adp_reset = false; max_reset_tries = MEGASAS_SRIOV_MAX_RESET_TRIES_VF; } /* Now try to reset the chip */ for (i = 0; i < max_reset_tries; i++) { /* * Do adp reset and wait for * controller to transition to ready */ if (megasas_adp_reset_wait_for_ready(instance, do_adp_reset, 1) == FAILED) continue; /* Wait for FW to become ready */ if (megasas_transition_to_ready(instance, 1)) { dev_warn(&instance->pdev->dev, "Failed to transition controller to ready for " "scsi%d.\n", instance->host->host_no); continue; } megasas_reset_reply_desc(instance); megasas_fusion_update_can_queue(instance, OCR_CONTEXT); if (megasas_ioc_init_fusion(instance)) { continue; } if (megasas_get_ctrl_info(instance)) { dev_info(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); goto kill_hba; } megasas_refire_mgmt_cmd(instance, (i == (MEGASAS_FUSION_MAX_RESET_TRIES - 1) ? 1 : 0)); /* Reset load balance info */ if (fusion->load_balance_info) memset(fusion->load_balance_info, 0, (sizeof(struct LD_LOAD_BALANCE_INFO) * MAX_LOGICAL_DRIVES_EXT)); if (!megasas_get_map_info(instance)) { megasas_sync_map_info(instance); } else { /* * Return pending polled mode cmds before * retrying OCR */ megasas_return_polled_cmds(instance); continue; } megasas_setup_jbod_map(instance); /* reset stream detection array */ if (instance->adapter_type >= VENTURA_SERIES) { for (j = 0; j < MAX_LOGICAL_DRIVES_EXT; ++j) { memset(fusion->stream_detect_by_ld[j], 0, sizeof(struct LD_STREAM_DETECT)); fusion->stream_detect_by_ld[j]->mru_bit_map = MR_STREAM_BITMAP; } } clear_bit(MEGASAS_FUSION_IN_RESET, &instance->reset_flags); instance->instancet->enable_intr(instance); megasas_enable_irq_poll(instance); shost_for_each_device(sdev, shost) { if ((instance->tgt_prop) && (instance->nvme_page_size)) ret_target_prop = megasas_get_target_prop(instance, sdev); is_target_prop = (ret_target_prop == DCMD_SUCCESS) ? true : false; megasas_set_dynamic_target_properties(sdev, is_target_prop); } status_reg = instance->instancet->read_fw_status_reg (instance); abs_state = status_reg & MFI_STATE_MASK; if (abs_state != MFI_STATE_OPERATIONAL) { dev_info(&instance->pdev->dev, "Adapter is not OPERATIONAL, state 0x%x for scsi:%d\n", abs_state, instance->host->host_no); goto out; } atomic_set(&instance->adprecovery, MEGASAS_HBA_OPERATIONAL); dev_info(&instance->pdev->dev, "Adapter is OPERATIONAL for scsi:%d\n", instance->host->host_no); /* Restart SR-IOV heartbeat */ if (instance->requestorId) { if (!megasas_sriov_start_heartbeat(instance, 0)) megasas_start_timer(instance); else instance->skip_heartbeat_timer_del = 1; } if (instance->crash_dump_drv_support && instance->crash_dump_app_support) megasas_set_crash_dump_params(instance, MR_CRASH_BUF_TURN_ON); else megasas_set_crash_dump_params(instance, MR_CRASH_BUF_TURN_OFF); if (instance->snapdump_wait_time) { megasas_get_snapdump_properties(instance); dev_info(&instance->pdev->dev, "Snap dump wait time\t: %d\n", instance->snapdump_wait_time); } retval = SUCCESS; /* Adapter reset completed successfully */ dev_warn(&instance->pdev->dev, "Reset successful for scsi%d.\n", instance->host->host_no); goto out; } /* Reset failed, kill the adapter */ dev_warn(&instance->pdev->dev, "Reset failed, killing " "adapter scsi%d.\n", instance->host->host_no); goto kill_hba; } else { /* For VF: Restart HB timer if we didn't OCR */ if (instance->requestorId) { megasas_start_timer(instance); } clear_bit(MEGASAS_FUSION_IN_RESET, &instance->reset_flags); instance->instancet->enable_intr(instance); megasas_enable_irq_poll(instance); atomic_set(&instance->adprecovery, MEGASAS_HBA_OPERATIONAL); goto out; } kill_hba: megaraid_sas_kill_hba(instance); megasas_enable_irq_poll(instance); instance->skip_heartbeat_timer_del = 1; retval = FAILED; out: clear_bit(MEGASAS_FUSION_OCR_NOT_POSSIBLE, &instance->reset_flags); mutex_unlock(&instance->reset_mutex); return retval; } /* Fusion Crash dump collection */ static void megasas_fusion_crash_dump(struct megasas_instance *instance) { u32 status_reg; u8 partial_copy = 0; int wait = 0; status_reg = instance->instancet->read_fw_status_reg(instance); /* * Allocate host crash buffers to copy data from 1 MB DMA crash buffer * to host crash buffers */ if (instance->drv_buf_index == 0) { /* Buffer is already allocated for old Crash dump. * Do OCR and do not wait for crash dump collection */ if (instance->drv_buf_alloc) { dev_info(&instance->pdev->dev, "earlier crash dump is " "not yet copied by application, ignoring this " "crash dump and initiating OCR\n"); status_reg |= MFI_STATE_CRASH_DUMP_DONE; writel(status_reg, &instance->reg_set->outbound_scratch_pad_0); readl(&instance->reg_set->outbound_scratch_pad_0); return; } megasas_alloc_host_crash_buffer(instance); dev_info(&instance->pdev->dev, "Number of host crash buffers " "allocated: %d\n", instance->drv_buf_alloc); } while (!(status_reg & MFI_STATE_CRASH_DUMP_DONE) && (wait < MEGASAS_WATCHDOG_WAIT_COUNT)) { if (!(status_reg & MFI_STATE_DMADONE)) { /* * Next crash dump buffer is not yet DMA'd by FW * Check after 10ms. Wait for 1 second for FW to * post the next buffer. If not bail out. */ wait++; msleep(MEGASAS_WAIT_FOR_NEXT_DMA_MSECS); status_reg = instance->instancet->read_fw_status_reg( instance); continue; } wait = 0; if (instance->drv_buf_index >= instance->drv_buf_alloc) { dev_info(&instance->pdev->dev, "Driver is done copying the buffer: %d\n", instance->drv_buf_alloc); status_reg |= MFI_STATE_CRASH_DUMP_DONE; partial_copy = 1; break; } else { memcpy(instance->crash_buf[instance->drv_buf_index], instance->crash_dump_buf, CRASH_DMA_BUF_SIZE); instance->drv_buf_index++; status_reg &= ~MFI_STATE_DMADONE; } writel(status_reg, &instance->reg_set->outbound_scratch_pad_0); readl(&instance->reg_set->outbound_scratch_pad_0); msleep(MEGASAS_WAIT_FOR_NEXT_DMA_MSECS); status_reg = instance->instancet->read_fw_status_reg(instance); } if (status_reg & MFI_STATE_CRASH_DUMP_DONE) { dev_info(&instance->pdev->dev, "Crash Dump is available,number " "of copied buffers: %d\n", instance->drv_buf_index); instance->fw_crash_buffer_size = instance->drv_buf_index; instance->fw_crash_state = AVAILABLE; instance->drv_buf_index = 0; writel(status_reg, &instance->reg_set->outbound_scratch_pad_0); readl(&instance->reg_set->outbound_scratch_pad_0); if (!partial_copy) megasas_reset_fusion(instance->host, 0); } } /* Fusion OCR work queue */ void megasas_fusion_ocr_wq(struct work_struct *work) { struct megasas_instance *instance = container_of(work, struct megasas_instance, work_init); megasas_reset_fusion(instance->host, 0); } /* Allocate fusion context */ int megasas_alloc_fusion_context(struct megasas_instance *instance) { struct fusion_context *fusion; instance->ctrl_context = kzalloc(sizeof(struct fusion_context), GFP_KERNEL); if (!instance->ctrl_context) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } fusion = instance->ctrl_context; fusion->log_to_span_pages = get_order(MAX_LOGICAL_DRIVES_EXT * sizeof(LD_SPAN_INFO)); fusion->log_to_span = (PLD_SPAN_INFO)__get_free_pages(GFP_KERNEL | __GFP_ZERO, fusion->log_to_span_pages); if (!fusion->log_to_span) { fusion->log_to_span = vzalloc(array_size(MAX_LOGICAL_DRIVES_EXT, sizeof(LD_SPAN_INFO))); if (!fusion->log_to_span) { dev_err(&instance->pdev->dev, "Failed from %s %d\n", __func__, __LINE__); return -ENOMEM; } } fusion->load_balance_info_pages = get_order(MAX_LOGICAL_DRIVES_EXT * sizeof(struct LD_LOAD_BALANCE_INFO)); fusion->load_balance_info = (struct LD_LOAD_BALANCE_INFO *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, fusion->load_balance_info_pages); if (!fusion->load_balance_info) { fusion->load_balance_info = vzalloc(array_size(MAX_LOGICAL_DRIVES_EXT, sizeof(struct LD_LOAD_BALANCE_INFO))); if (!fusion->load_balance_info) dev_err(&instance->pdev->dev, "Failed to allocate load_balance_info, " "continuing without Load Balance support\n"); } return 0; } void megasas_free_fusion_context(struct megasas_instance *instance) { struct fusion_context *fusion = instance->ctrl_context; if (fusion) { if (fusion->load_balance_info) { if (is_vmalloc_addr(fusion->load_balance_info)) vfree(fusion->load_balance_info); else free_pages((ulong)fusion->load_balance_info, fusion->load_balance_info_pages); } if (fusion->log_to_span) { if (is_vmalloc_addr(fusion->log_to_span)) vfree(fusion->log_to_span); else free_pages((ulong)fusion->log_to_span, fusion->log_to_span_pages); } kfree(fusion); } } struct megasas_instance_template megasas_instance_template_fusion = { .enable_intr = megasas_enable_intr_fusion, .disable_intr = megasas_disable_intr_fusion, .clear_intr = megasas_clear_intr_fusion, .read_fw_status_reg = megasas_read_fw_status_reg_fusion, .adp_reset = megasas_adp_reset_fusion, .check_reset = megasas_check_reset_fusion, .service_isr = megasas_isr_fusion, .tasklet = megasas_complete_cmd_dpc_fusion, .init_adapter = megasas_init_adapter_fusion, .build_and_issue_cmd = megasas_build_and_issue_cmd_fusion, .issue_dcmd = megasas_issue_dcmd_fusion, };