/* * PMC-Sierra SPC 8001 SAS/SATA based host adapters driver * * Copyright (c) 2008-2009 USI Co., Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * */ #include #include "pm8001_sas.h" #include "pm8001_hwi.h" #include "pm8001_chips.h" #include "pm8001_ctl.h" /** * read_main_config_table - read the configure table and save it. * @pm8001_ha: our hba card information */ static void read_main_config_table(struct pm8001_hba_info *pm8001_ha) { void __iomem *address = pm8001_ha->main_cfg_tbl_addr; pm8001_ha->main_cfg_tbl.pm8001_tbl.signature = pm8001_mr32(address, 0x00); pm8001_ha->main_cfg_tbl.pm8001_tbl.interface_rev = pm8001_mr32(address, 0x04); pm8001_ha->main_cfg_tbl.pm8001_tbl.firmware_rev = pm8001_mr32(address, 0x08); pm8001_ha->main_cfg_tbl.pm8001_tbl.max_out_io = pm8001_mr32(address, 0x0C); pm8001_ha->main_cfg_tbl.pm8001_tbl.max_sgl = pm8001_mr32(address, 0x10); pm8001_ha->main_cfg_tbl.pm8001_tbl.ctrl_cap_flag = pm8001_mr32(address, 0x14); pm8001_ha->main_cfg_tbl.pm8001_tbl.gst_offset = pm8001_mr32(address, 0x18); pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_queue_offset = pm8001_mr32(address, MAIN_IBQ_OFFSET); pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_queue_offset = pm8001_mr32(address, MAIN_OBQ_OFFSET); pm8001_ha->main_cfg_tbl.pm8001_tbl.hda_mode_flag = pm8001_mr32(address, MAIN_HDA_FLAGS_OFFSET); /* read analog Setting offset from the configuration table */ pm8001_ha->main_cfg_tbl.pm8001_tbl.anolog_setup_table_offset = pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET); /* read Error Dump Offset and Length */ pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset0 = pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET); pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length0 = pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH); pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_offset1 = pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET); pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_dump_length1 = pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH); } /** * read_general_status_table - read the general status table and save it. * @pm8001_ha: our hba card information */ static void read_general_status_table(struct pm8001_hba_info *pm8001_ha) { void __iomem *address = pm8001_ha->general_stat_tbl_addr; pm8001_ha->gs_tbl.pm8001_tbl.gst_len_mpistate = pm8001_mr32(address, 0x00); pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state0 = pm8001_mr32(address, 0x04); pm8001_ha->gs_tbl.pm8001_tbl.iq_freeze_state1 = pm8001_mr32(address, 0x08); pm8001_ha->gs_tbl.pm8001_tbl.msgu_tcnt = pm8001_mr32(address, 0x0C); pm8001_ha->gs_tbl.pm8001_tbl.iop_tcnt = pm8001_mr32(address, 0x10); pm8001_ha->gs_tbl.pm8001_tbl.rsvd = pm8001_mr32(address, 0x14); pm8001_ha->gs_tbl.pm8001_tbl.phy_state[0] = pm8001_mr32(address, 0x18); pm8001_ha->gs_tbl.pm8001_tbl.phy_state[1] = pm8001_mr32(address, 0x1C); pm8001_ha->gs_tbl.pm8001_tbl.phy_state[2] = pm8001_mr32(address, 0x20); pm8001_ha->gs_tbl.pm8001_tbl.phy_state[3] = pm8001_mr32(address, 0x24); pm8001_ha->gs_tbl.pm8001_tbl.phy_state[4] = pm8001_mr32(address, 0x28); pm8001_ha->gs_tbl.pm8001_tbl.phy_state[5] = pm8001_mr32(address, 0x2C); pm8001_ha->gs_tbl.pm8001_tbl.phy_state[6] = pm8001_mr32(address, 0x30); pm8001_ha->gs_tbl.pm8001_tbl.phy_state[7] = pm8001_mr32(address, 0x34); pm8001_ha->gs_tbl.pm8001_tbl.gpio_input_val = pm8001_mr32(address, 0x38); pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[0] = pm8001_mr32(address, 0x3C); pm8001_ha->gs_tbl.pm8001_tbl.rsvd1[1] = pm8001_mr32(address, 0x40); pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[0] = pm8001_mr32(address, 0x44); pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[1] = pm8001_mr32(address, 0x48); pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[2] = pm8001_mr32(address, 0x4C); pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[3] = pm8001_mr32(address, 0x50); pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[4] = pm8001_mr32(address, 0x54); pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[5] = pm8001_mr32(address, 0x58); pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[6] = pm8001_mr32(address, 0x5C); pm8001_ha->gs_tbl.pm8001_tbl.recover_err_info[7] = pm8001_mr32(address, 0x60); } /** * read_inbnd_queue_table - read the inbound queue table and save it. * @pm8001_ha: our hba card information */ static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha) { int i; void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; for (i = 0; i < PM8001_MAX_INB_NUM; i++) { u32 offset = i * 0x20; pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); pm8001_ha->inbnd_q_tbl[i].pi_offset = pm8001_mr32(address, (offset + 0x18)); } } /** * read_outbnd_queue_table - read the outbound queue table and save it. * @pm8001_ha: our hba card information */ static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha) { int i; void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; for (i = 0; i < PM8001_MAX_OUTB_NUM; i++) { u32 offset = i * 0x24; pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = get_pci_bar_index(pm8001_mr32(address, (offset + 0x14))); pm8001_ha->outbnd_q_tbl[i].ci_offset = pm8001_mr32(address, (offset + 0x18)); } } /** * init_default_table_values - init the default table. * @pm8001_ha: our hba card information */ static void init_default_table_values(struct pm8001_hba_info *pm8001_ha) { int i; u32 offsetib, offsetob; void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr; void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr; u32 ib_offset = pm8001_ha->ib_offset; u32 ob_offset = pm8001_ha->ob_offset; u32 ci_offset = pm8001_ha->ci_offset; u32 pi_offset = pm8001_ha->pi_offset; pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid0_3 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ITNexus_event_pid4_7 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid0_3 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_ssp_event_pid4_7 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid0_3 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_tgt_smp_event_pid4_7 = 0; pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr = pm8001_ha->memoryMap.region[AAP1].phys_addr_hi; pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr = pm8001_ha->memoryMap.region[AAP1].phys_addr_lo; pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size = PM8001_EVENT_LOG_SIZE; pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option = 0x01; pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr = pm8001_ha->memoryMap.region[IOP].phys_addr_hi; pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr = pm8001_ha->memoryMap.region[IOP].phys_addr_lo; pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size = PM8001_EVENT_LOG_SIZE; pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option = 0x01; pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt = 0x01; for (i = 0; i < pm8001_ha->max_q_num; i++) { pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt = PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30); pm8001_ha->inbnd_q_tbl[i].upper_base_addr = pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_hi; pm8001_ha->inbnd_q_tbl[i].lower_base_addr = pm8001_ha->memoryMap.region[ib_offset + i].phys_addr_lo; pm8001_ha->inbnd_q_tbl[i].base_virt = (u8 *)pm8001_ha->memoryMap.region[ib_offset + i].virt_ptr; pm8001_ha->inbnd_q_tbl[i].total_length = pm8001_ha->memoryMap.region[ib_offset + i].total_len; pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr = pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_hi; pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr = pm8001_ha->memoryMap.region[ci_offset + i].phys_addr_lo; pm8001_ha->inbnd_q_tbl[i].ci_virt = pm8001_ha->memoryMap.region[ci_offset + i].virt_ptr; pm8001_write_32(pm8001_ha->inbnd_q_tbl[i].ci_virt, 0, 0); offsetib = i * 0x20; pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = get_pci_bar_index(pm8001_mr32(addressib, (offsetib + 0x14))); pm8001_ha->inbnd_q_tbl[i].pi_offset = pm8001_mr32(addressib, (offsetib + 0x18)); pm8001_ha->inbnd_q_tbl[i].producer_idx = 0; pm8001_ha->inbnd_q_tbl[i].consumer_index = 0; } for (i = 0; i < pm8001_ha->max_q_num; i++) { pm8001_ha->outbnd_q_tbl[i].element_size_cnt = PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30); pm8001_ha->outbnd_q_tbl[i].upper_base_addr = pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_hi; pm8001_ha->outbnd_q_tbl[i].lower_base_addr = pm8001_ha->memoryMap.region[ob_offset + i].phys_addr_lo; pm8001_ha->outbnd_q_tbl[i].base_virt = (u8 *)pm8001_ha->memoryMap.region[ob_offset + i].virt_ptr; pm8001_ha->outbnd_q_tbl[i].total_length = pm8001_ha->memoryMap.region[ob_offset + i].total_len; pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr = pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_hi; pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr = pm8001_ha->memoryMap.region[pi_offset + i].phys_addr_lo; pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay = 0 | (10 << 16) | (i << 24); pm8001_ha->outbnd_q_tbl[i].pi_virt = pm8001_ha->memoryMap.region[pi_offset + i].virt_ptr; pm8001_write_32(pm8001_ha->outbnd_q_tbl[i].pi_virt, 0, 0); offsetob = i * 0x24; pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = get_pci_bar_index(pm8001_mr32(addressob, offsetob + 0x14)); pm8001_ha->outbnd_q_tbl[i].ci_offset = pm8001_mr32(addressob, (offsetob + 0x18)); pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0; pm8001_ha->outbnd_q_tbl[i].producer_index = 0; } } /** * update_main_config_table - update the main default table to the HBA. * @pm8001_ha: our hba card information */ static void update_main_config_table(struct pm8001_hba_info *pm8001_ha) { void __iomem *address = pm8001_ha->main_cfg_tbl_addr; pm8001_mw32(address, 0x24, pm8001_ha->main_cfg_tbl.pm8001_tbl.inbound_q_nppd_hppd); pm8001_mw32(address, 0x28, pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid0_3); pm8001_mw32(address, 0x2C, pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_hw_event_pid4_7); pm8001_mw32(address, 0x30, pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid0_3); pm8001_mw32(address, 0x34, pm8001_ha->main_cfg_tbl.pm8001_tbl.outbound_ncq_event_pid4_7); pm8001_mw32(address, 0x38, pm8001_ha->main_cfg_tbl.pm8001_tbl. outbound_tgt_ITNexus_event_pid0_3); pm8001_mw32(address, 0x3C, pm8001_ha->main_cfg_tbl.pm8001_tbl. outbound_tgt_ITNexus_event_pid4_7); pm8001_mw32(address, 0x40, pm8001_ha->main_cfg_tbl.pm8001_tbl. outbound_tgt_ssp_event_pid0_3); pm8001_mw32(address, 0x44, pm8001_ha->main_cfg_tbl.pm8001_tbl. outbound_tgt_ssp_event_pid4_7); pm8001_mw32(address, 0x48, pm8001_ha->main_cfg_tbl.pm8001_tbl. outbound_tgt_smp_event_pid0_3); pm8001_mw32(address, 0x4C, pm8001_ha->main_cfg_tbl.pm8001_tbl. outbound_tgt_smp_event_pid4_7); pm8001_mw32(address, 0x50, pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_event_log_addr); pm8001_mw32(address, 0x54, pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_event_log_addr); pm8001_mw32(address, 0x58, pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_size); pm8001_mw32(address, 0x5C, pm8001_ha->main_cfg_tbl.pm8001_tbl.event_log_option); pm8001_mw32(address, 0x60, pm8001_ha->main_cfg_tbl.pm8001_tbl.upper_iop_event_log_addr); pm8001_mw32(address, 0x64, pm8001_ha->main_cfg_tbl.pm8001_tbl.lower_iop_event_log_addr); pm8001_mw32(address, 0x68, pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_size); pm8001_mw32(address, 0x6C, pm8001_ha->main_cfg_tbl.pm8001_tbl.iop_event_log_option); pm8001_mw32(address, 0x70, pm8001_ha->main_cfg_tbl.pm8001_tbl.fatal_err_interrupt); } /** * update_inbnd_queue_table - update the inbound queue table to the HBA. * @pm8001_ha: our hba card information * @number: entry in the queue */ static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number) { void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; u16 offset = number * 0x20; pm8001_mw32(address, offset + 0x00, pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt); pm8001_mw32(address, offset + 0x04, pm8001_ha->inbnd_q_tbl[number].upper_base_addr); pm8001_mw32(address, offset + 0x08, pm8001_ha->inbnd_q_tbl[number].lower_base_addr); pm8001_mw32(address, offset + 0x0C, pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr); pm8001_mw32(address, offset + 0x10, pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr); } /** * update_outbnd_queue_table - update the outbound queue table to the HBA. * @pm8001_ha: our hba card information * @number: entry in the queue */ static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, int number) { void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; u16 offset = number * 0x24; pm8001_mw32(address, offset + 0x00, pm8001_ha->outbnd_q_tbl[number].element_size_cnt); pm8001_mw32(address, offset + 0x04, pm8001_ha->outbnd_q_tbl[number].upper_base_addr); pm8001_mw32(address, offset + 0x08, pm8001_ha->outbnd_q_tbl[number].lower_base_addr); pm8001_mw32(address, offset + 0x0C, pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr); pm8001_mw32(address, offset + 0x10, pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr); pm8001_mw32(address, offset + 0x1C, pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay); } /** * pm8001_bar4_shift - function is called to shift BAR base address * @pm8001_ha : our hba card information * @shiftValue : shifting value in memory bar. */ int pm8001_bar4_shift(struct pm8001_hba_info *pm8001_ha, u32 shiftValue) { u32 regVal; unsigned long start; /* program the inbound AXI translation Lower Address */ pm8001_cw32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW, shiftValue); /* confirm the setting is written */ start = jiffies + HZ; /* 1 sec */ do { regVal = pm8001_cr32(pm8001_ha, 1, SPC_IBW_AXI_TRANSLATION_LOW); } while ((regVal != shiftValue) && time_before(jiffies, start)); if (regVal != shiftValue) { pm8001_dbg(pm8001_ha, INIT, "TIMEOUT:SPC_IBW_AXI_TRANSLATION_LOW = 0x%x\n", regVal); return -1; } return 0; } /** * mpi_set_phys_g3_with_ssc * @pm8001_ha: our hba card information * @SSCbit: set SSCbit to 0 to disable all phys ssc; 1 to enable all phys ssc. */ static void mpi_set_phys_g3_with_ssc(struct pm8001_hba_info *pm8001_ha, u32 SSCbit) { u32 offset, i; unsigned long flags; #define SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR 0x00030000 #define SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR 0x00040000 #define SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET 0x1074 #define SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET 0x1074 #define PHY_G3_WITHOUT_SSC_BIT_SHIFT 12 #define PHY_G3_WITH_SSC_BIT_SHIFT 13 #define SNW3_PHY_CAPABILITIES_PARITY 31 /* * Using shifted destination address 0x3_0000:0x1074 + 0x4000*N (N=0:3) * Using shifted destination address 0x4_0000:0x1074 + 0x4000*(N-4) (N=4:7) */ spin_lock_irqsave(&pm8001_ha->lock, flags); if (-1 == pm8001_bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_0_3_SHIFT_ADDR)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); return; } for (i = 0; i < 4; i++) { offset = SAS2_SETTINGS_LOCAL_PHY_0_3_OFFSET + 0x4000 * i; pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); } /* shift membase 3 for SAS2_SETTINGS_LOCAL_PHY 4 - 7 */ if (-1 == pm8001_bar4_shift(pm8001_ha, SAS2_SETTINGS_LOCAL_PHY_4_7_SHIFT_ADDR)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); return; } for (i = 4; i < 8; i++) { offset = SAS2_SETTINGS_LOCAL_PHY_4_7_OFFSET + 0x4000 * (i-4); pm8001_cw32(pm8001_ha, 2, offset, 0x80001501); } /************************************************************* Change the SSC upspreading value to 0x0 so that upspreading is disabled. Device MABC SMOD0 Controls Address: (via MEMBASE-III): Using shifted destination address 0x0_0000: with Offset 0xD8 31:28 R/W Reserved Do not change 27:24 R/W SAS_SMOD_SPRDUP 0000 23:20 R/W SAS_SMOD_SPRDDN 0000 19:0 R/W Reserved Do not change Upon power-up this register will read as 0x8990c016, and I would like you to change the SAS_SMOD_SPRDUP bits to 0b0000 so that the written value will be 0x8090c016. This will ensure only down-spreading SSC is enabled on the SPC. *************************************************************/ pm8001_cr32(pm8001_ha, 2, 0xd8); pm8001_cw32(pm8001_ha, 2, 0xd8, 0x8000C016); /*set the shifted destination address to 0x0 to avoid error operation */ pm8001_bar4_shift(pm8001_ha, 0x0); spin_unlock_irqrestore(&pm8001_ha->lock, flags); return; } /** * mpi_set_open_retry_interval_reg * @pm8001_ha: our hba card information * @interval: interval time for each OPEN_REJECT (RETRY). The units are in 1us. */ static void mpi_set_open_retry_interval_reg(struct pm8001_hba_info *pm8001_ha, u32 interval) { u32 offset; u32 value; u32 i; unsigned long flags; #define OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR 0x00030000 #define OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR 0x00040000 #define OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET 0x30B4 #define OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET 0x30B4 #define OPEN_RETRY_INTERVAL_REG_MASK 0x0000FFFF value = interval & OPEN_RETRY_INTERVAL_REG_MASK; spin_lock_irqsave(&pm8001_ha->lock, flags); /* shift bar and set the OPEN_REJECT(RETRY) interval time of PHY 0 -3.*/ if (-1 == pm8001_bar4_shift(pm8001_ha, OPEN_RETRY_INTERVAL_PHY_0_3_SHIFT_ADDR)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); return; } for (i = 0; i < 4; i++) { offset = OPEN_RETRY_INTERVAL_PHY_0_3_OFFSET + 0x4000 * i; pm8001_cw32(pm8001_ha, 2, offset, value); } if (-1 == pm8001_bar4_shift(pm8001_ha, OPEN_RETRY_INTERVAL_PHY_4_7_SHIFT_ADDR)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); return; } for (i = 4; i < 8; i++) { offset = OPEN_RETRY_INTERVAL_PHY_4_7_OFFSET + 0x4000 * (i-4); pm8001_cw32(pm8001_ha, 2, offset, value); } /*set the shifted destination address to 0x0 to avoid error operation */ pm8001_bar4_shift(pm8001_ha, 0x0); spin_unlock_irqrestore(&pm8001_ha->lock, flags); return; } /** * mpi_init_check - check firmware initialization status. * @pm8001_ha: our hba card information */ static int mpi_init_check(struct pm8001_hba_info *pm8001_ha) { u32 max_wait_count; u32 value; u32 gst_len_mpistate; /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the table is updated */ pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_UPDATE); /* wait until Inbound DoorBell Clear Register toggled */ max_wait_count = 1 * 1000 * 1000;/* 1 sec */ do { udelay(1); value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); value &= SPC_MSGU_CFG_TABLE_UPDATE; } while ((value != 0) && (--max_wait_count)); if (!max_wait_count) return -1; /* check the MPI-State for initialization */ gst_len_mpistate = pm8001_mr32(pm8001_ha->general_stat_tbl_addr, GST_GSTLEN_MPIS_OFFSET); if (GST_MPI_STATE_INIT != (gst_len_mpistate & GST_MPI_STATE_MASK)) return -1; /* check MPI Initialization error */ gst_len_mpistate = gst_len_mpistate >> 16; if (0x0000 != gst_len_mpistate) return -1; return 0; } /** * check_fw_ready - The LLDD check if the FW is ready, if not, return error. * @pm8001_ha: our hba card information */ static int check_fw_ready(struct pm8001_hba_info *pm8001_ha) { u32 value, value1; u32 max_wait_count; /* check error state */ value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); /* check AAP error */ if (SCRATCH_PAD1_ERR == (value & SCRATCH_PAD_STATE_MASK)) { /* error state */ value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); return -1; } /* check IOP error */ if (SCRATCH_PAD2_ERR == (value1 & SCRATCH_PAD_STATE_MASK)) { /* error state */ value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); return -1; } /* bit 4-31 of scratch pad1 should be zeros if it is not in error state*/ if (value & SCRATCH_PAD1_STATE_MASK) { /* error case */ pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); return -1; } /* bit 2, 4-31 of scratch pad2 should be zeros if it is not in error state */ if (value1 & SCRATCH_PAD2_STATE_MASK) { /* error case */ return -1; } max_wait_count = 1 * 1000 * 1000;/* 1 sec timeout */ /* wait until scratch pad 1 and 2 registers in ready state */ do { udelay(1); value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & SCRATCH_PAD1_RDY; value1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) & SCRATCH_PAD2_RDY; if ((--max_wait_count) == 0) return -1; } while ((value != SCRATCH_PAD1_RDY) || (value1 != SCRATCH_PAD2_RDY)); return 0; } static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha) { void __iomem *base_addr; u32 value; u32 offset; u32 pcibar; u32 pcilogic; value = pm8001_cr32(pm8001_ha, 0, 0x44); offset = value & 0x03FFFFFF; pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 Offset: %x\n", offset); pcilogic = (value & 0xFC000000) >> 26; pcibar = get_pci_bar_index(pcilogic); pm8001_dbg(pm8001_ha, INIT, "Scratchpad 0 PCI BAR: %d\n", pcibar); pm8001_ha->main_cfg_tbl_addr = base_addr = pm8001_ha->io_mem[pcibar].memvirtaddr + offset; pm8001_ha->general_stat_tbl_addr = base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x18); pm8001_ha->inbnd_q_tbl_addr = base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C); pm8001_ha->outbnd_q_tbl_addr = base_addr + pm8001_cr32(pm8001_ha, pcibar, offset + 0x20); } /** * pm8001_chip_init - the main init function that initialize whole PM8001 chip. * @pm8001_ha: our hba card information */ static int pm8001_chip_init(struct pm8001_hba_info *pm8001_ha) { u32 i = 0; u16 deviceid; pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); /* 8081 controllers need BAR shift to access MPI space * as this is shared with BIOS data */ if (deviceid == 0x8081 || deviceid == 0x0042) { if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", GSM_SM_BASE); return -1; } } /* check the firmware status */ if (-1 == check_fw_ready(pm8001_ha)) { pm8001_dbg(pm8001_ha, FAIL, "Firmware is not ready!\n"); return -EBUSY; } /* Initialize pci space address eg: mpi offset */ init_pci_device_addresses(pm8001_ha); init_default_table_values(pm8001_ha); read_main_config_table(pm8001_ha); read_general_status_table(pm8001_ha); read_inbnd_queue_table(pm8001_ha); read_outbnd_queue_table(pm8001_ha); /* update main config table ,inbound table and outbound table */ update_main_config_table(pm8001_ha); for (i = 0; i < pm8001_ha->max_q_num; i++) update_inbnd_queue_table(pm8001_ha, i); for (i = 0; i < pm8001_ha->max_q_num; i++) update_outbnd_queue_table(pm8001_ha, i); /* 8081 controller donot require these operations */ if (deviceid != 0x8081 && deviceid != 0x0042) { mpi_set_phys_g3_with_ssc(pm8001_ha, 0); /* 7->130ms, 34->500ms, 119->1.5s */ mpi_set_open_retry_interval_reg(pm8001_ha, 119); } /* notify firmware update finished and check initialization status */ if (0 == mpi_init_check(pm8001_ha)) { pm8001_dbg(pm8001_ha, INIT, "MPI initialize successful!\n"); } else return -EBUSY; /*This register is a 16-bit timer with a resolution of 1us. This is the timer used for interrupt delay/coalescing in the PCIe Application Layer. Zero is not a valid value. A value of 1 in the register will cause the interrupts to be normal. A value greater than 1 will cause coalescing delays.*/ pm8001_cw32(pm8001_ha, 1, 0x0033c0, 0x1); pm8001_cw32(pm8001_ha, 1, 0x0033c4, 0x0); return 0; } static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha) { u32 max_wait_count; u32 value; u32 gst_len_mpistate; u16 deviceid; pci_read_config_word(pm8001_ha->pdev, PCI_DEVICE_ID, &deviceid); if (deviceid == 0x8081 || deviceid == 0x0042) { if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_SM_BASE)) { pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", GSM_SM_BASE); return -1; } } init_pci_device_addresses(pm8001_ha); /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the table is stop */ pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPC_MSGU_CFG_TABLE_RESET); /* wait until Inbound DoorBell Clear Register toggled */ max_wait_count = 1 * 1000 * 1000;/* 1 sec */ do { udelay(1); value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); value &= SPC_MSGU_CFG_TABLE_RESET; } while ((value != 0) && (--max_wait_count)); if (!max_wait_count) { pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:IBDB value/=0x%x\n", value); return -1; } /* check the MPI-State for termination in progress */ /* wait until Inbound DoorBell Clear Register toggled */ max_wait_count = 1 * 1000 * 1000; /* 1 sec */ do { udelay(1); gst_len_mpistate = pm8001_mr32(pm8001_ha->general_stat_tbl_addr, GST_GSTLEN_MPIS_OFFSET); if (GST_MPI_STATE_UNINIT == (gst_len_mpistate & GST_MPI_STATE_MASK)) break; } while (--max_wait_count); if (!max_wait_count) { pm8001_dbg(pm8001_ha, FAIL, " TIME OUT MPI State = 0x%x\n", gst_len_mpistate & GST_MPI_STATE_MASK); return -1; } return 0; } /** * soft_reset_ready_check - Function to check FW is ready for soft reset. * @pm8001_ha: our hba card information */ static u32 soft_reset_ready_check(struct pm8001_hba_info *pm8001_ha) { u32 regVal, regVal1, regVal2; if (mpi_uninit_check(pm8001_ha) != 0) { pm8001_dbg(pm8001_ha, FAIL, "MPI state is not ready\n"); return -1; } /* read the scratch pad 2 register bit 2 */ regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) & SCRATCH_PAD2_FWRDY_RST; if (regVal == SCRATCH_PAD2_FWRDY_RST) { pm8001_dbg(pm8001_ha, INIT, "Firmware is ready for reset.\n"); } else { unsigned long flags; /* Trigger NMI twice via RB6 */ spin_lock_irqsave(&pm8001_ha->lock, flags); if (-1 == pm8001_bar4_shift(pm8001_ha, RB6_ACCESS_REG)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", RB6_ACCESS_REG); return -1; } pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST); pm8001_cw32(pm8001_ha, 2, SPC_RB6_OFFSET, RB6_MAGIC_NUMBER_RST); /* wait for 100 ms */ mdelay(100); regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2) & SCRATCH_PAD2_FWRDY_RST; if (regVal != SCRATCH_PAD2_FWRDY_RST) { regVal1 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); regVal2 = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT:MSGU_SCRATCH_PAD1=0x%x, MSGU_SCRATCH_PAD2=0x%x\n", regVal1, regVal2); pm8001_dbg(pm8001_ha, FAIL, "SCRATCH_PAD0 value = 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)); pm8001_dbg(pm8001_ha, FAIL, "SCRATCH_PAD3 value = 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)); spin_unlock_irqrestore(&pm8001_ha->lock, flags); return -1; } spin_unlock_irqrestore(&pm8001_ha->lock, flags); } return 0; } /** * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all * the FW register status to the originated status. * @pm8001_ha: our hba card information */ static int pm8001_chip_soft_rst(struct pm8001_hba_info *pm8001_ha) { u32 regVal, toggleVal; u32 max_wait_count; u32 regVal1, regVal2, regVal3; u32 signature = 0x252acbcd; /* for host scratch pad0 */ unsigned long flags; /* step1: Check FW is ready for soft reset */ if (soft_reset_ready_check(pm8001_ha) != 0) { pm8001_dbg(pm8001_ha, FAIL, "FW is not ready\n"); return -1; } /* step 2: clear NMI status register on AAP1 and IOP, write the same value to clear */ /* map 0x60000 to BAR4(0x20), BAR2(win) */ spin_lock_irqsave(&pm8001_ha->lock, flags); if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_AAP1_ADDR_BASE)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", MBIC_AAP1_ADDR_BASE); return -1; } regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP); pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (IOP)= 0x%x\n", regVal); pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_IOP, 0x0); /* map 0x70000 to BAR4(0x20), BAR2(win) */ if (-1 == pm8001_bar4_shift(pm8001_ha, MBIC_IOP_ADDR_BASE)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", MBIC_IOP_ADDR_BASE); return -1; } regVal = pm8001_cr32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1); pm8001_dbg(pm8001_ha, INIT, "MBIC - NMI Enable VPE0 (AAP1)= 0x%x\n", regVal); pm8001_cw32(pm8001_ha, 2, MBIC_NMI_ENABLE_VPE0_AAP1, 0x0); regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE); pm8001_dbg(pm8001_ha, INIT, "PCIE -Event Interrupt Enable = 0x%x\n", regVal); pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT_ENABLE, 0x0); regVal = pm8001_cr32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT); pm8001_dbg(pm8001_ha, INIT, "PCIE - Event Interrupt = 0x%x\n", regVal); pm8001_cw32(pm8001_ha, 1, PCIE_EVENT_INTERRUPT, regVal); regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE); pm8001_dbg(pm8001_ha, INIT, "PCIE -Error Interrupt Enable = 0x%x\n", regVal); pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT_ENABLE, 0x0); regVal = pm8001_cr32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT); pm8001_dbg(pm8001_ha, INIT, "PCIE - Error Interrupt = 0x%x\n", regVal); pm8001_cw32(pm8001_ha, 1, PCIE_ERROR_INTERRUPT, regVal); /* read the scratch pad 1 register bit 2 */ regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & SCRATCH_PAD1_RST; toggleVal = regVal ^ SCRATCH_PAD1_RST; /* set signature in host scratch pad0 register to tell SPC that the host performs the soft reset */ pm8001_cw32(pm8001_ha, 0, MSGU_HOST_SCRATCH_PAD_0, signature); /* read required registers for confirmming */ /* map 0x0700000 to BAR4(0x20), BAR2(win) */ if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", GSM_ADDR_BASE); return -1; } pm8001_dbg(pm8001_ha, INIT, "GSM 0x0(0x00007b88)-GSM Configuration and Reset = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); /* step 3: host read GSM Configuration and Reset register */ regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); /* Put those bits to low */ /* GSM XCBI offset = 0x70 0000 0x00 Bit 13 COM_SLV_SW_RSTB 1 0x00 Bit 12 QSSP_SW_RSTB 1 0x00 Bit 11 RAAE_SW_RSTB 1 0x00 Bit 9 RB_1_SW_RSTB 1 0x00 Bit 8 SM_SW_RSTB 1 */ regVal &= ~(0x00003b00); /* host write GSM Configuration and Reset register */ pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); pm8001_dbg(pm8001_ha, INIT, "GSM 0x0 (0x00007b88 ==> 0x00004088) - GSM Configuration and Reset is set to = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); /* step 4: */ /* disable GSM - Read Address Parity Check */ regVal1 = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); pm8001_dbg(pm8001_ha, INIT, "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n", regVal1); pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, 0x0); pm8001_dbg(pm8001_ha, INIT, "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)); /* disable GSM - Write Address Parity Check */ regVal2 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); pm8001_dbg(pm8001_ha, INIT, "GSM 0x700040 - Write Address Parity Check Enable = 0x%x\n", regVal2); pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, 0x0); pm8001_dbg(pm8001_ha, INIT, "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)); /* disable GSM - Write Data Parity Check */ regVal3 = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); pm8001_dbg(pm8001_ha, INIT, "GSM 0x300048 - Write Data Parity Check Enable = 0x%x\n", regVal3); pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, 0x0); pm8001_dbg(pm8001_ha, INIT, "GSM 0x300048 - Write Data Parity Check Enable is set to = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)); /* step 5: delay 10 usec */ udelay(10); /* step 5-b: set GPIO-0 output control to tristate anyway */ if (-1 == pm8001_bar4_shift(pm8001_ha, GPIO_ADDR_BASE)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_dbg(pm8001_ha, INIT, "Shift Bar4 to 0x%x failed\n", GPIO_ADDR_BASE); return -1; } regVal = pm8001_cr32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET); pm8001_dbg(pm8001_ha, INIT, "GPIO Output Control Register: = 0x%x\n", regVal); /* set GPIO-0 output control to tri-state */ regVal &= 0xFFFFFFFC; pm8001_cw32(pm8001_ha, 2, GPIO_GPIO_0_0UTPUT_CTL_OFFSET, regVal); /* Step 6: Reset the IOP and AAP1 */ /* map 0x00000 to BAR4(0x20), BAR2(win) */ if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n", SPC_TOP_LEVEL_ADDR_BASE); return -1; } regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting IOP/AAP1:= 0x%x\n", regVal); regVal &= ~(SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); /* step 7: Reset the BDMA/OSSP */ regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); pm8001_dbg(pm8001_ha, INIT, "Top Register before resetting BDMA/OSSP: = 0x%x\n", regVal); regVal &= ~(SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); /* step 8: delay 10 usec */ udelay(10); /* step 9: bring the BDMA and OSSP out of reset */ regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); pm8001_dbg(pm8001_ha, INIT, "Top Register before bringing up BDMA/OSSP:= 0x%x\n", regVal); regVal |= (SPC_REG_RESET_BDMA_CORE | SPC_REG_RESET_OSSP); pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); /* step 10: delay 10 usec */ udelay(10); /* step 11: reads and sets the GSM Configuration and Reset Register */ /* map 0x0700000 to BAR4(0x20), BAR2(win) */ if (-1 == pm8001_bar4_shift(pm8001_ha, GSM_ADDR_BASE)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_dbg(pm8001_ha, FAIL, "SPC Shift Bar4 to 0x%x failed\n", GSM_ADDR_BASE); return -1; } pm8001_dbg(pm8001_ha, INIT, "GSM 0x0 (0x00007b88)-GSM Configuration and Reset = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); regVal = pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET); /* Put those bits to high */ /* GSM XCBI offset = 0x70 0000 0x00 Bit 13 COM_SLV_SW_RSTB 1 0x00 Bit 12 QSSP_SW_RSTB 1 0x00 Bit 11 RAAE_SW_RSTB 1 0x00 Bit 9 RB_1_SW_RSTB 1 0x00 Bit 8 SM_SW_RSTB 1 */ regVal |= (GSM_CONFIG_RESET_VALUE); pm8001_cw32(pm8001_ha, 2, GSM_CONFIG_RESET, regVal); pm8001_dbg(pm8001_ha, INIT, "GSM (0x00004088 ==> 0x00007b88) - GSM Configuration and Reset is set to = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_CONFIG_RESET)); /* step 12: Restore GSM - Read Address Parity Check */ regVal = pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK); /* just for debugging */ pm8001_dbg(pm8001_ha, INIT, "GSM 0x700038 - Read Address Parity Check Enable = 0x%x\n", regVal); pm8001_cw32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK, regVal1); pm8001_dbg(pm8001_ha, INIT, "GSM 0x700038 - Read Address Parity Check Enable is set to = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_READ_ADDR_PARITY_CHECK)); /* Restore GSM - Write Address Parity Check */ regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK); pm8001_cw32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK, regVal2); pm8001_dbg(pm8001_ha, INIT, "GSM 0x700040 - Write Address Parity Check Enable is set to = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_WRITE_ADDR_PARITY_CHECK)); /* Restore GSM - Write Data Parity Check */ regVal = pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK); pm8001_cw32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK, regVal3); pm8001_dbg(pm8001_ha, INIT, "GSM 0x700048 - Write Data Parity Check Enable is set to = 0x%x\n", pm8001_cr32(pm8001_ha, 2, GSM_WRITE_DATA_PARITY_CHECK)); /* step 13: bring the IOP and AAP1 out of reset */ /* map 0x00000 to BAR4(0x20), BAR2(win) */ if (-1 == pm8001_bar4_shift(pm8001_ha, SPC_TOP_LEVEL_ADDR_BASE)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_dbg(pm8001_ha, FAIL, "Shift Bar4 to 0x%x failed\n", SPC_TOP_LEVEL_ADDR_BASE); return -1; } regVal = pm8001_cr32(pm8001_ha, 2, SPC_REG_RESET); regVal |= (SPC_REG_RESET_PCS_IOP_SS | SPC_REG_RESET_PCS_AAP1_SS); pm8001_cw32(pm8001_ha, 2, SPC_REG_RESET, regVal); /* step 14: delay 10 usec - Normal Mode */ udelay(10); /* check Soft Reset Normal mode or Soft Reset HDA mode */ if (signature == SPC_SOFT_RESET_SIGNATURE) { /* step 15 (Normal Mode): wait until scratch pad1 register bit 2 toggled */ max_wait_count = 2 * 1000 * 1000;/* 2 sec */ do { udelay(1); regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & SCRATCH_PAD1_RST; } while ((regVal != toggleVal) && (--max_wait_count)); if (!max_wait_count) { regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); pm8001_dbg(pm8001_ha, FAIL, "TIMEOUT : ToggleVal 0x%x,MSGU_SCRATCH_PAD1 = 0x%x\n", toggleVal, regVal); pm8001_dbg(pm8001_ha, FAIL, "SCRATCH_PAD0 value = 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)); pm8001_dbg(pm8001_ha, FAIL, "SCRATCH_PAD2 value = 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2)); pm8001_dbg(pm8001_ha, FAIL, "SCRATCH_PAD3 value = 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)); spin_unlock_irqrestore(&pm8001_ha->lock, flags); return -1; } /* step 16 (Normal) - Clear ODMR and ODCR */ pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); /* step 17 (Normal Mode): wait for the FW and IOP to get ready - 1 sec timeout */ /* Wait for the SPC Configuration Table to be ready */ if (check_fw_ready(pm8001_ha) == -1) { regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); /* return error if MPI Configuration Table not ready */ pm8001_dbg(pm8001_ha, INIT, "FW not ready SCRATCH_PAD1 = 0x%x\n", regVal); regVal = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_2); /* return error if MPI Configuration Table not ready */ pm8001_dbg(pm8001_ha, INIT, "FW not ready SCRATCH_PAD2 = 0x%x\n", regVal); pm8001_dbg(pm8001_ha, INIT, "SCRATCH_PAD0 value = 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0)); pm8001_dbg(pm8001_ha, INIT, "SCRATCH_PAD3 value = 0x%x\n", pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3)); spin_unlock_irqrestore(&pm8001_ha->lock, flags); return -1; } } pm8001_bar4_shift(pm8001_ha, 0); spin_unlock_irqrestore(&pm8001_ha->lock, flags); pm8001_dbg(pm8001_ha, INIT, "SPC soft reset Complete\n"); return 0; } static void pm8001_hw_chip_rst(struct pm8001_hba_info *pm8001_ha) { u32 i; u32 regVal; pm8001_dbg(pm8001_ha, INIT, "chip reset start\n"); /* do SPC chip reset. */ regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); regVal &= ~(SPC_REG_RESET_DEVICE); pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); /* delay 10 usec */ udelay(10); /* bring chip reset out of reset */ regVal = pm8001_cr32(pm8001_ha, 1, SPC_REG_RESET); regVal |= SPC_REG_RESET_DEVICE; pm8001_cw32(pm8001_ha, 1, SPC_REG_RESET, regVal); /* delay 10 usec */ udelay(10); /* wait for 20 msec until the firmware gets reloaded */ i = 20; do { mdelay(1); } while ((--i) != 0); pm8001_dbg(pm8001_ha, INIT, "chip reset finished\n"); } /** * pm8001_chip_iounmap - which mapped when initialized. * @pm8001_ha: our hba card information */ void pm8001_chip_iounmap(struct pm8001_hba_info *pm8001_ha) { s8 bar, logical = 0; for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) { /* ** logical BARs for SPC: ** bar 0 and 1 - logical BAR0 ** bar 2 and 3 - logical BAR1 ** bar4 - logical BAR2 ** bar5 - logical BAR3 ** Skip the appropriate assignments: */ if ((bar == 1) || (bar == 3)) continue; if (pm8001_ha->io_mem[logical].memvirtaddr) { iounmap(pm8001_ha->io_mem[logical].memvirtaddr); logical++; } } } #ifndef PM8001_USE_MSIX /** * pm8001_chip_intx_interrupt_enable - enable PM8001 chip interrupt * @pm8001_ha: our hba card information */ static void pm8001_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha) { pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); } /** * pm8001_chip_intx_interrupt_disable - disable PM8001 chip interrupt * @pm8001_ha: our hba card information */ static void pm8001_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha) { pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_MASK_ALL); } #else /** * pm8001_chip_msix_interrupt_enable - enable PM8001 chip interrupt * @pm8001_ha: our hba card information * @int_vec_idx: interrupt number to enable */ static void pm8001_chip_msix_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u32 int_vec_idx) { u32 msi_index; u32 value; msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; msi_index += MSIX_TABLE_BASE; pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_ENABLE); value = (1 << int_vec_idx); pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, value); } /** * pm8001_chip_msix_interrupt_disable - disable PM8001 chip interrupt * @pm8001_ha: our hba card information * @int_vec_idx: interrupt number to disable */ static void pm8001_chip_msix_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u32 int_vec_idx) { u32 msi_index; msi_index = int_vec_idx * MSIX_TABLE_ELEMENT_SIZE; msi_index += MSIX_TABLE_BASE; pm8001_cw32(pm8001_ha, 0, msi_index, MSIX_INTERRUPT_DISABLE); } #endif /** * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt * @pm8001_ha: our hba card information * @vec: unused */ static void pm8001_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec) { #ifdef PM8001_USE_MSIX pm8001_chip_msix_interrupt_enable(pm8001_ha, 0); #else pm8001_chip_intx_interrupt_enable(pm8001_ha); #endif } /** * pm8001_chip_interrupt_disable - disable PM8001 chip interrupt * @pm8001_ha: our hba card information * @vec: unused */ static void pm8001_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec) { #ifdef PM8001_USE_MSIX pm8001_chip_msix_interrupt_disable(pm8001_ha, 0); #else pm8001_chip_intx_interrupt_disable(pm8001_ha); #endif } /** * pm8001_mpi_msg_free_get - get the free message buffer for transfer * inbound queue. * @circularQ: the inbound queue we want to transfer to HBA. * @messageSize: the message size of this transfer, normally it is 64 bytes * @messagePtr: the pointer to message. */ int pm8001_mpi_msg_free_get(struct inbound_queue_table *circularQ, u16 messageSize, void **messagePtr) { u32 offset, consumer_index; struct mpi_msg_hdr *msgHeader; u8 bcCount = 1; /* only support single buffer */ /* Checks is the requested message size can be allocated in this queue*/ if (messageSize > IOMB_SIZE_SPCV) { *messagePtr = NULL; return -1; } /* Stores the new consumer index */ consumer_index = pm8001_read_32(circularQ->ci_virt); circularQ->consumer_index = cpu_to_le32(consumer_index); if (((circularQ->producer_idx + bcCount) % PM8001_MPI_QUEUE) == le32_to_cpu(circularQ->consumer_index)) { *messagePtr = NULL; return -1; } /* get memory IOMB buffer address */ offset = circularQ->producer_idx * messageSize; /* increment to next bcCount element */ circularQ->producer_idx = (circularQ->producer_idx + bcCount) % PM8001_MPI_QUEUE; /* Adds that distance to the base of the region virtual address plus the message header size*/ msgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + offset); *messagePtr = ((void *)msgHeader) + sizeof(struct mpi_msg_hdr); return 0; } /** * pm8001_mpi_build_cmd- build the message queue for transfer, update the PI to * FW to tell the fw to get this message from IOMB. * @pm8001_ha: our hba card information * @circularQ: the inbound queue we want to transfer to HBA. * @opCode: the operation code represents commands which LLDD and fw recognized. * @payload: the command payload of each operation command. * @nb: size in bytes of the command payload * @responseQueue: queue to interrupt on w/ command response (if any) */ int pm8001_mpi_build_cmd(struct pm8001_hba_info *pm8001_ha, struct inbound_queue_table *circularQ, u32 opCode, void *payload, size_t nb, u32 responseQueue) { u32 Header = 0, hpriority = 0, bc = 1, category = 0x02; void *pMessage; unsigned long flags; int q_index = circularQ - pm8001_ha->inbnd_q_tbl; int rv; if (WARN_ON(q_index >= pm8001_ha->max_q_num)) return -EINVAL; spin_lock_irqsave(&circularQ->iq_lock, flags); rv = pm8001_mpi_msg_free_get(circularQ, pm8001_ha->iomb_size, &pMessage); if (rv < 0) { pm8001_dbg(pm8001_ha, IO, "No free mpi buffer\n"); rv = -ENOMEM; goto done; } if (nb > (pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr))) nb = pm8001_ha->iomb_size - sizeof(struct mpi_msg_hdr); memcpy(pMessage, payload, nb); if (nb + sizeof(struct mpi_msg_hdr) < pm8001_ha->iomb_size) memset(pMessage + nb, 0, pm8001_ha->iomb_size - (nb + sizeof(struct mpi_msg_hdr))); /*Build the header*/ Header = ((1 << 31) | (hpriority << 30) | ((bc & 0x1f) << 24) | ((responseQueue & 0x3F) << 16) | ((category & 0xF) << 12) | (opCode & 0xFFF)); pm8001_write_32((pMessage - 4), 0, cpu_to_le32(Header)); /*Update the PI to the firmware*/ pm8001_cw32(pm8001_ha, circularQ->pi_pci_bar, circularQ->pi_offset, circularQ->producer_idx); pm8001_dbg(pm8001_ha, DEVIO, "INB Q %x OPCODE:%x , UPDATED PI=%d CI=%d\n", responseQueue, opCode, circularQ->producer_idx, circularQ->consumer_index); done: spin_unlock_irqrestore(&circularQ->iq_lock, flags); return rv; } u32 pm8001_mpi_msg_free_set(struct pm8001_hba_info *pm8001_ha, void *pMsg, struct outbound_queue_table *circularQ, u8 bc) { u32 producer_index; struct mpi_msg_hdr *msgHeader; struct mpi_msg_hdr *pOutBoundMsgHeader; msgHeader = (struct mpi_msg_hdr *)(pMsg - sizeof(struct mpi_msg_hdr)); pOutBoundMsgHeader = (struct mpi_msg_hdr *)(circularQ->base_virt + circularQ->consumer_idx * pm8001_ha->iomb_size); if (pOutBoundMsgHeader != msgHeader) { pm8001_dbg(pm8001_ha, FAIL, "consumer_idx = %d msgHeader = %p\n", circularQ->consumer_idx, msgHeader); /* Update the producer index from SPC */ producer_index = pm8001_read_32(circularQ->pi_virt); circularQ->producer_index = cpu_to_le32(producer_index); pm8001_dbg(pm8001_ha, FAIL, "consumer_idx = %d producer_index = %dmsgHeader = %p\n", circularQ->consumer_idx, circularQ->producer_index, msgHeader); return 0; } /* free the circular queue buffer elements associated with the message*/ circularQ->consumer_idx = (circularQ->consumer_idx + bc) % PM8001_MPI_QUEUE; /* update the CI of outbound queue */ pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset, circularQ->consumer_idx); /* Update the producer index from SPC*/ producer_index = pm8001_read_32(circularQ->pi_virt); circularQ->producer_index = cpu_to_le32(producer_index); pm8001_dbg(pm8001_ha, IO, " CI=%d PI=%d\n", circularQ->consumer_idx, circularQ->producer_index); return 0; } /** * pm8001_mpi_msg_consume- get the MPI message from outbound queue * message table. * @pm8001_ha: our hba card information * @circularQ: the outbound queue table. * @messagePtr1: the message contents of this outbound message. * @pBC: the message size. */ u32 pm8001_mpi_msg_consume(struct pm8001_hba_info *pm8001_ha, struct outbound_queue_table *circularQ, void **messagePtr1, u8 *pBC) { struct mpi_msg_hdr *msgHeader; __le32 msgHeader_tmp; u32 header_tmp; do { /* If there are not-yet-delivered messages ... */ if (le32_to_cpu(circularQ->producer_index) != circularQ->consumer_idx) { /*Get the pointer to the circular queue buffer element*/ msgHeader = (struct mpi_msg_hdr *) (circularQ->base_virt + circularQ->consumer_idx * pm8001_ha->iomb_size); /* read header */ header_tmp = pm8001_read_32(msgHeader); msgHeader_tmp = cpu_to_le32(header_tmp); pm8001_dbg(pm8001_ha, DEVIO, "outbound opcode msgheader:%x ci=%d pi=%d\n", msgHeader_tmp, circularQ->consumer_idx, circularQ->producer_index); if (0 != (le32_to_cpu(msgHeader_tmp) & 0x80000000)) { if (OPC_OUB_SKIP_ENTRY != (le32_to_cpu(msgHeader_tmp) & 0xfff)) { *messagePtr1 = ((u8 *)msgHeader) + sizeof(struct mpi_msg_hdr); *pBC = (u8)((le32_to_cpu(msgHeader_tmp) >> 24) & 0x1f); pm8001_dbg(pm8001_ha, IO, ": CI=%d PI=%d msgHeader=%x\n", circularQ->consumer_idx, circularQ->producer_index, msgHeader_tmp); return MPI_IO_STATUS_SUCCESS; } else { circularQ->consumer_idx = (circularQ->consumer_idx + ((le32_to_cpu(msgHeader_tmp) >> 24) & 0x1f)) % PM8001_MPI_QUEUE; msgHeader_tmp = 0; pm8001_write_32(msgHeader, 0, 0); /* update the CI of outbound queue */ pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset, circularQ->consumer_idx); } } else { circularQ->consumer_idx = (circularQ->consumer_idx + ((le32_to_cpu(msgHeader_tmp) >> 24) & 0x1f)) % PM8001_MPI_QUEUE; msgHeader_tmp = 0; pm8001_write_32(msgHeader, 0, 0); /* update the CI of outbound queue */ pm8001_cw32(pm8001_ha, circularQ->ci_pci_bar, circularQ->ci_offset, circularQ->consumer_idx); return MPI_IO_STATUS_FAIL; } } else { u32 producer_index; void *pi_virt = circularQ->pi_virt; /* spurious interrupt during setup if * kexec-ing and driver doing a doorbell access * with the pre-kexec oq interrupt setup */ if (!pi_virt) break; /* Update the producer index from SPC */ producer_index = pm8001_read_32(pi_virt); circularQ->producer_index = cpu_to_le32(producer_index); } } while (le32_to_cpu(circularQ->producer_index) != circularQ->consumer_idx); /* while we don't have any more not-yet-delivered message */ /* report empty */ return MPI_IO_STATUS_BUSY; } void pm8001_work_fn(struct work_struct *work) { struct pm8001_work *pw = container_of(work, struct pm8001_work, work); struct pm8001_device *pm8001_dev; struct domain_device *dev; /* * So far, all users of this stash an associated structure here. * If we get here, and this pointer is null, then the action * was cancelled. This nullification happens when the device * goes away. */ if (pw->handler != IO_FATAL_ERROR) { pm8001_dev = pw->data; /* Most stash device structure */ if ((pm8001_dev == NULL) || ((pw->handler != IO_XFER_ERROR_BREAK) && (pm8001_dev->dev_type == SAS_PHY_UNUSED))) { kfree(pw); return; } } switch (pw->handler) { case IO_XFER_ERROR_BREAK: { /* This one stashes the sas_task instead */ struct sas_task *t = (struct sas_task *)pm8001_dev; u32 tag; struct pm8001_ccb_info *ccb; struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; unsigned long flags, flags1; struct task_status_struct *ts; int i; if (pm8001_query_task(t) == TMF_RESP_FUNC_SUCC) break; /* Task still on lu */ spin_lock_irqsave(&pm8001_ha->lock, flags); spin_lock_irqsave(&t->task_state_lock, flags1); if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { spin_unlock_irqrestore(&t->task_state_lock, flags1); spin_unlock_irqrestore(&pm8001_ha->lock, flags); break; /* Task got completed by another */ } spin_unlock_irqrestore(&t->task_state_lock, flags1); /* Search for a possible ccb that matches the task */ for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { ccb = &pm8001_ha->ccb_info[i]; tag = ccb->ccb_tag; if ((tag != 0xFFFFFFFF) && (ccb->task == t)) break; } if (!ccb) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); break; /* Task got freed by another */ } ts = &t->task_status; ts->resp = SAS_TASK_COMPLETE; /* Force the midlayer to retry */ ts->stat = SAS_QUEUE_FULL; pm8001_dev = ccb->device; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); spin_lock_irqsave(&t->task_state_lock, flags1); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; t->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&t->task_state_lock, flags1); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", t, pw->handler, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); spin_unlock_irqrestore(&pm8001_ha->lock, flags); } else { spin_unlock_irqrestore(&t->task_state_lock, flags1); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); mb();/* in order to force CPU ordering */ spin_unlock_irqrestore(&pm8001_ha->lock, flags); t->task_done(t); } } break; case IO_XFER_OPEN_RETRY_TIMEOUT: { /* This one stashes the sas_task instead */ struct sas_task *t = (struct sas_task *)pm8001_dev; u32 tag; struct pm8001_ccb_info *ccb; struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; unsigned long flags, flags1; int i, ret = 0; pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); ret = pm8001_query_task(t); if (ret == TMF_RESP_FUNC_SUCC) pm8001_dbg(pm8001_ha, IO, "...Task on lu\n"); else if (ret == TMF_RESP_FUNC_COMPLETE) pm8001_dbg(pm8001_ha, IO, "...Task NOT on lu\n"); else pm8001_dbg(pm8001_ha, DEVIO, "...query task failed!!!\n"); spin_lock_irqsave(&pm8001_ha->lock, flags); spin_lock_irqsave(&t->task_state_lock, flags1); if (unlikely((t->task_state_flags & SAS_TASK_STATE_DONE))) { spin_unlock_irqrestore(&t->task_state_lock, flags1); spin_unlock_irqrestore(&pm8001_ha->lock, flags); if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ (void)pm8001_abort_task(t); break; /* Task got completed by another */ } spin_unlock_irqrestore(&t->task_state_lock, flags1); /* Search for a possible ccb that matches the task */ for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { ccb = &pm8001_ha->ccb_info[i]; tag = ccb->ccb_tag; if ((tag != 0xFFFFFFFF) && (ccb->task == t)) break; } if (!ccb) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); if (ret == TMF_RESP_FUNC_SUCC) /* task on lu */ (void)pm8001_abort_task(t); break; /* Task got freed by another */ } pm8001_dev = ccb->device; dev = pm8001_dev->sas_device; switch (ret) { case TMF_RESP_FUNC_SUCC: /* task on lu */ ccb->open_retry = 1; /* Snub completion */ spin_unlock_irqrestore(&pm8001_ha->lock, flags); ret = pm8001_abort_task(t); ccb->open_retry = 0; switch (ret) { case TMF_RESP_FUNC_SUCC: case TMF_RESP_FUNC_COMPLETE: break; default: /* device misbehavior */ ret = TMF_RESP_FUNC_FAILED; pm8001_dbg(pm8001_ha, IO, "...Reset phy\n"); pm8001_I_T_nexus_reset(dev); break; } break; case TMF_RESP_FUNC_COMPLETE: /* task not on lu */ spin_unlock_irqrestore(&pm8001_ha->lock, flags); /* Do we need to abort the task locally? */ break; default: /* device misbehavior */ spin_unlock_irqrestore(&pm8001_ha->lock, flags); ret = TMF_RESP_FUNC_FAILED; pm8001_dbg(pm8001_ha, IO, "...Reset phy\n"); pm8001_I_T_nexus_reset(dev); } if (ret == TMF_RESP_FUNC_FAILED) t = NULL; pm8001_open_reject_retry(pm8001_ha, t, pm8001_dev); pm8001_dbg(pm8001_ha, IO, "...Complete\n"); } break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: dev = pm8001_dev->sas_device; pm8001_I_T_nexus_event_handler(dev); break; case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: dev = pm8001_dev->sas_device; pm8001_I_T_nexus_reset(dev); break; case IO_DS_IN_ERROR: dev = pm8001_dev->sas_device; pm8001_I_T_nexus_reset(dev); break; case IO_DS_NON_OPERATIONAL: dev = pm8001_dev->sas_device; pm8001_I_T_nexus_reset(dev); break; case IO_FATAL_ERROR: { struct pm8001_hba_info *pm8001_ha = pw->pm8001_ha; struct pm8001_ccb_info *ccb; struct task_status_struct *ts; struct sas_task *task; int i; u32 tag, device_id; for (i = 0; ccb = NULL, i < PM8001_MAX_CCB; i++) { ccb = &pm8001_ha->ccb_info[i]; task = ccb->task; ts = &task->task_status; tag = ccb->ccb_tag; /* check if tag is NULL */ if (!tag) { pm8001_dbg(pm8001_ha, FAIL, "tag Null\n"); continue; } if (task != NULL) { dev = task->dev; if (!dev) { pm8001_dbg(pm8001_ha, FAIL, "dev is NULL\n"); continue; } /*complete sas task and update to top layer */ pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); ts->resp = SAS_TASK_COMPLETE; task->task_done(task); } else if (tag != 0xFFFFFFFF) { /* complete the internal commands/non-sas task */ pm8001_dev = ccb->device; if (pm8001_dev->dcompletion) { complete(pm8001_dev->dcompletion); pm8001_dev->dcompletion = NULL; } complete(pm8001_ha->nvmd_completion); pm8001_tag_free(pm8001_ha, tag); } } /* Deregister all the device ids */ for (i = 0; i < PM8001_MAX_DEVICES; i++) { pm8001_dev = &pm8001_ha->devices[i]; device_id = pm8001_dev->device_id; if (device_id) { PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); pm8001_free_dev(pm8001_dev); } } } break; } kfree(pw); } int pm8001_handle_event(struct pm8001_hba_info *pm8001_ha, void *data, int handler) { struct pm8001_work *pw; int ret = 0; pw = kmalloc(sizeof(struct pm8001_work), GFP_ATOMIC); if (pw) { pw->pm8001_ha = pm8001_ha; pw->data = data; pw->handler = handler; INIT_WORK(&pw->work, pm8001_work_fn); queue_work(pm8001_wq, &pw->work); } else ret = -ENOMEM; return ret; } static void pm8001_send_abort_all(struct pm8001_hba_info *pm8001_ha, struct pm8001_device *pm8001_ha_dev) { int res; u32 ccb_tag; struct pm8001_ccb_info *ccb; struct sas_task *task = NULL; struct task_abort_req task_abort; struct inbound_queue_table *circularQ; u32 opc = OPC_INB_SATA_ABORT; int ret; if (!pm8001_ha_dev) { pm8001_dbg(pm8001_ha, FAIL, "dev is null\n"); return; } task = sas_alloc_slow_task(GFP_ATOMIC); if (!task) { pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task\n"); return; } task->task_done = pm8001_task_done; res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); if (res) { sas_free_task(task); return; } ccb = &pm8001_ha->ccb_info[ccb_tag]; ccb->device = pm8001_ha_dev; ccb->ccb_tag = ccb_tag; ccb->task = task; ccb->n_elem = 0; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&task_abort, 0, sizeof(task_abort)); task_abort.abort_all = cpu_to_le32(1); task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id); task_abort.tag = cpu_to_le32(ccb_tag); ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort, sizeof(task_abort), 0); if (ret) { sas_free_task(task); pm8001_tag_free(pm8001_ha, ccb_tag); } } static void pm8001_send_read_log(struct pm8001_hba_info *pm8001_ha, struct pm8001_device *pm8001_ha_dev) { struct sata_start_req sata_cmd; int res; u32 ccb_tag; struct pm8001_ccb_info *ccb; struct sas_task *task = NULL; struct host_to_dev_fis fis; struct domain_device *dev; struct inbound_queue_table *circularQ; u32 opc = OPC_INB_SATA_HOST_OPSTART; task = sas_alloc_slow_task(GFP_ATOMIC); if (!task) { pm8001_dbg(pm8001_ha, FAIL, "cannot allocate task !!!\n"); return; } task->task_done = pm8001_task_done; res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); if (res) { sas_free_task(task); pm8001_dbg(pm8001_ha, FAIL, "cannot allocate tag !!!\n"); return; } /* allocate domain device by ourselves as libsas * is not going to provide any */ dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC); if (!dev) { sas_free_task(task); pm8001_tag_free(pm8001_ha, ccb_tag); pm8001_dbg(pm8001_ha, FAIL, "Domain device cannot be allocated\n"); return; } task->dev = dev; task->dev->lldd_dev = pm8001_ha_dev; ccb = &pm8001_ha->ccb_info[ccb_tag]; ccb->device = pm8001_ha_dev; ccb->ccb_tag = ccb_tag; ccb->task = task; ccb->n_elem = 0; pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG; pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG; memset(&sata_cmd, 0, sizeof(sata_cmd)); circularQ = &pm8001_ha->inbnd_q_tbl[0]; /* construct read log FIS */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.fis_type = 0x27; fis.flags = 0x80; fis.command = ATA_CMD_READ_LOG_EXT; fis.lbal = 0x10; fis.sector_count = 0x1; sata_cmd.tag = cpu_to_le32(ccb_tag); sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); sata_cmd.ncqtag_atap_dir_m = cpu_to_le32((0x1 << 7) | (0x5 << 9)); memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis)); res = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd, sizeof(sata_cmd), 0); if (res) { sas_free_task(task); pm8001_tag_free(pm8001_ha, ccb_tag); kfree(dev); } } /** * mpi_ssp_completion- process the event that FW response to the SSP request. * @pm8001_ha: our hba card information * @piomb: the message contents of this outbound message. * * When FW has completed a ssp request for example a IO request, after it has * filled the SG data with the data, it will trigger this event representing * that he has finished the job; please check the corresponding buffer. * So we will tell the caller who maybe waiting the result to tell upper layer * that the task has been finished. */ static void mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct sas_task *t; struct pm8001_ccb_info *ccb; unsigned long flags; u32 status; u32 param; u32 tag; struct ssp_completion_resp *psspPayload; struct task_status_struct *ts; struct ssp_response_iu *iu; struct pm8001_device *pm8001_dev; psspPayload = (struct ssp_completion_resp *)(piomb + 4); status = le32_to_cpu(psspPayload->status); tag = le32_to_cpu(psspPayload->tag); ccb = &pm8001_ha->ccb_info[tag]; if ((status == IO_ABORTED) && ccb->open_retry) { /* Being completed by another */ ccb->open_retry = 0; return; } pm8001_dev = ccb->device; param = le32_to_cpu(psspPayload->param); t = ccb->task; if (status && status != IO_UNDERFLOW) pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", status); if (unlikely(!t || !t->lldd_task || !t->dev)) return; ts = &t->task_status; /* Print sas address of IO failed device */ if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && (status != IO_UNDERFLOW)) pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n", SAS_ADDR(t->dev->sas_addr)); if (status) pm8001_dbg(pm8001_ha, IOERR, "status:0x%x, tag:0x%x, task:0x%p\n", status, tag, t); switch (status) { case IO_SUCCESS: pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS,param = %d\n", param); if (param == 0) { ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_GOOD; } else { ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_PROTO_RESPONSE; ts->residual = param; iu = &psspPayload->ssp_resp_iu; sas_ssp_task_response(pm8001_ha->dev, t, iu); } if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_ABORTED: pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_ABORTED_TASK; break; case IO_UNDERFLOW: /* SSP Completion with error */ pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW,param = %d\n", param); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_UNDERRUN; ts->residual = param; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_NO_DEVICE: pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_PHY_DOWN; break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; /* Force the midlayer to retry */ ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; if (!t->uldd_task) pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; case IO_XFER_ERROR_NAK_RECEIVED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_XFER_ERROR_ACK_NAK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; break; case IO_XFER_ERROR_DMA: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_XFER_ERROR_OFFSET_MISMATCH: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; break; case IO_PORT_IN_RESET: pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; break; case IO_DS_NON_OPERATIONAL: pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; if (!t->uldd_task) pm8001_handle_event(pm8001_ha, pm8001_dev, IO_DS_NON_OPERATIONAL); break; case IO_DS_IN_RECOVERY: pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; break; case IO_TM_TAG_NOT_FOUND: pm8001_dbg(pm8001_ha, IO, "IO_TM_TAG_NOT_FOUND\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; break; case IO_SSP_EXT_IU_ZERO_LEN_ERROR: pm8001_dbg(pm8001_ha, IO, "IO_SSP_EXT_IU_ZERO_LEN_ERROR\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; break; case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); /* not allowed case. Therefore, return failed status */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; break; } pm8001_dbg(pm8001_ha, IO, "scsi_status = %x\n", psspPayload->ssp_resp_iu.status); spin_lock_irqsave(&t->task_state_lock, flags); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; t->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", t, status, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); } else { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); mb();/* in order to force CPU ordering */ t->task_done(t); } } /*See the comments for mpi_ssp_completion */ static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct sas_task *t; unsigned long flags; struct task_status_struct *ts; struct pm8001_ccb_info *ccb; struct pm8001_device *pm8001_dev; struct ssp_event_resp *psspPayload = (struct ssp_event_resp *)(piomb + 4); u32 event = le32_to_cpu(psspPayload->event); u32 tag = le32_to_cpu(psspPayload->tag); u32 port_id = le32_to_cpu(psspPayload->port_id); u32 dev_id = le32_to_cpu(psspPayload->device_id); ccb = &pm8001_ha->ccb_info[tag]; t = ccb->task; pm8001_dev = ccb->device; if (event) pm8001_dbg(pm8001_ha, FAIL, "sas IO status 0x%x\n", event); if (unlikely(!t || !t->lldd_task || !t->dev)) return; ts = &t->task_status; pm8001_dbg(pm8001_ha, DEVIO, "port_id = %x,device_id = %x\n", port_id, dev_id); switch (event) { case IO_OVERFLOW: pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK); return; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; if (!t->uldd_task) pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; case IO_XFER_ERROR_NAK_RECEIVED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_XFER_ERROR_ACK_NAK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT); return; case IO_XFER_ERROR_UNEXPECTED_PHASE: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_XFER_RDY_OVERRUN: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_OFFSET_MISMATCH: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; case IO_XFER_CMD_FRAME_ISSUED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); return; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event); /* not allowed case. Therefore, return failed status */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; break; } spin_lock_irqsave(&t->task_state_lock, flags); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; t->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with event 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", t, event, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); } else { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); mb();/* in order to force CPU ordering */ t->task_done(t); } } /*See the comments for mpi_ssp_completion */ static void mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct sas_task *t; struct pm8001_ccb_info *ccb; u32 param; u32 status; u32 tag; int i, j; u8 sata_addr_low[4]; u32 temp_sata_addr_low; u8 sata_addr_hi[4]; u32 temp_sata_addr_hi; struct sata_completion_resp *psataPayload; struct task_status_struct *ts; struct ata_task_resp *resp ; u32 *sata_resp; struct pm8001_device *pm8001_dev; unsigned long flags; psataPayload = (struct sata_completion_resp *)(piomb + 4); status = le32_to_cpu(psataPayload->status); tag = le32_to_cpu(psataPayload->tag); if (!tag) { pm8001_dbg(pm8001_ha, FAIL, "tag null\n"); return; } ccb = &pm8001_ha->ccb_info[tag]; param = le32_to_cpu(psataPayload->param); if (ccb) { t = ccb->task; pm8001_dev = ccb->device; } else { pm8001_dbg(pm8001_ha, FAIL, "ccb null\n"); return; } if (t) { if (t->dev && (t->dev->lldd_dev)) pm8001_dev = t->dev->lldd_dev; } else { pm8001_dbg(pm8001_ha, FAIL, "task null\n"); return; } if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG)) && unlikely(!t || !t->lldd_task || !t->dev)) { pm8001_dbg(pm8001_ha, FAIL, "task or dev null\n"); return; } ts = &t->task_status; if (!ts) { pm8001_dbg(pm8001_ha, FAIL, "ts null\n"); return; } if (status) pm8001_dbg(pm8001_ha, IOERR, "status:0x%x, tag:0x%x, task::0x%p\n", status, tag, t); /* Print sas address of IO failed device */ if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && (status != IO_UNDERFLOW)) { if (!((t->dev->parent) && (dev_is_expander(t->dev->parent->dev_type)))) { for (i = 0, j = 4; j <= 7 && i <= 3; i++, j++) sata_addr_low[i] = pm8001_ha->sas_addr[j]; for (i = 0, j = 0; j <= 3 && i <= 3; i++, j++) sata_addr_hi[i] = pm8001_ha->sas_addr[j]; memcpy(&temp_sata_addr_low, sata_addr_low, sizeof(sata_addr_low)); memcpy(&temp_sata_addr_hi, sata_addr_hi, sizeof(sata_addr_hi)); temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff) |((temp_sata_addr_hi << 8) & 0xff0000) | ((temp_sata_addr_hi >> 8) & 0xff00) | ((temp_sata_addr_hi << 24) & 0xff000000)); temp_sata_addr_low = ((((temp_sata_addr_low >> 24) & 0xff) | ((temp_sata_addr_low << 8) & 0xff0000) | ((temp_sata_addr_low >> 8) & 0xff00) | ((temp_sata_addr_low << 24) & 0xff000000)) + pm8001_dev->attached_phy + 0x10); pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%08x%08x\n", temp_sata_addr_hi, temp_sata_addr_low); } else { pm8001_dbg(pm8001_ha, FAIL, "SAS Address of IO Failure Drive:%016llx\n", SAS_ADDR(t->dev->sas_addr)); } } switch (status) { case IO_SUCCESS: pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); if (param == 0) { ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_GOOD; /* check if response is for SEND READ LOG */ if (pm8001_dev && (pm8001_dev->id & NCQ_READ_LOG_FLAG)) { /* set new bit for abort_all */ pm8001_dev->id |= NCQ_ABORT_ALL_FLAG; /* clear bit for read log */ pm8001_dev->id = pm8001_dev->id & 0x7FFFFFFF; pm8001_send_abort_all(pm8001_ha, pm8001_dev); /* Free the tag */ pm8001_tag_free(pm8001_ha, tag); sas_free_task(t); return; } } else { u8 len; ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_PROTO_RESPONSE; ts->residual = param; pm8001_dbg(pm8001_ha, IO, "SAS_PROTO_RESPONSE len = %d\n", param); sata_resp = &psataPayload->sata_resp[0]; resp = (struct ata_task_resp *)ts->buf; if (t->ata_task.dma_xfer == 0 && t->data_dir == DMA_FROM_DEVICE) { len = sizeof(struct pio_setup_fis); pm8001_dbg(pm8001_ha, IO, "PIO read len = %d\n", len); } else if (t->ata_task.use_ncq && t->data_dir != DMA_NONE) { len = sizeof(struct set_dev_bits_fis); pm8001_dbg(pm8001_ha, IO, "FPDMA len = %d\n", len); } else { len = sizeof(struct dev_to_host_fis); pm8001_dbg(pm8001_ha, IO, "other len = %d\n", len); } if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) { resp->frame_len = len; memcpy(&resp->ending_fis[0], sata_resp, len); ts->buf_valid_size = sizeof(*resp); } else pm8001_dbg(pm8001_ha, IO, "response too large\n"); } if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_ABORTED: pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB Tag\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_ABORTED_TASK; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; /* following cases are to do cases */ case IO_UNDERFLOW: /* SATA Completion with error */ pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW param = %d\n", param); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_UNDERRUN; ts->residual = param; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_NO_DEVICE: pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_PHY_DOWN; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_INTERRUPTED; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); return; } break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); return; } break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); return; } break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_NAK_RECEIVED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_ACK_NAK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_ACK_NAK_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_DMA: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_DMA\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_ABORTED_TASK; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_SATA_LINK_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_SATA_LINK_TIMEOUT\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_DEV_NO_RESPONSE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_ERROR_REJECTED_NCQ_MODE: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_UNDERRUN; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_PORT_IN_RESET: pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_DS_NON_OPERATIONAL: pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_DS_NON_OPERATIONAL); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); return; } break; case IO_DS_IN_RECOVERY: pm8001_dbg(pm8001_ha, IO, " IO_DS_IN_RECOVERY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_DS_IN_ERROR: pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_ERROR\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_DS_IN_ERROR); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_QUEUE_FULL; pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); return; } break; case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); /* not allowed case. Therefore, return failed status */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; } spin_lock_irqsave(&t->task_state_lock, flags); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; t->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", t, status, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); } else { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_ccb_task_free_done(pm8001_ha, t, ccb, tag); } } /*See the comments for mpi_ssp_completion */ static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct sas_task *t; struct task_status_struct *ts; struct pm8001_ccb_info *ccb; struct pm8001_device *pm8001_dev; struct sata_event_resp *psataPayload = (struct sata_event_resp *)(piomb + 4); u32 event = le32_to_cpu(psataPayload->event); u32 tag = le32_to_cpu(psataPayload->tag); u32 port_id = le32_to_cpu(psataPayload->port_id); u32 dev_id = le32_to_cpu(psataPayload->device_id); ccb = &pm8001_ha->ccb_info[tag]; if (ccb) { t = ccb->task; pm8001_dev = ccb->device; } else { pm8001_dbg(pm8001_ha, FAIL, "No CCB !!!. returning\n"); } if (event) pm8001_dbg(pm8001_ha, FAIL, "SATA EVENT 0x%x\n", event); /* Check if this is NCQ error */ if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) { /* find device using device id */ pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id); /* send read log extension */ if (pm8001_dev) pm8001_send_read_log(pm8001_ha, pm8001_dev); return; } ccb = &pm8001_ha->ccb_info[tag]; t = ccb->task; pm8001_dev = ccb->device; if (event) pm8001_dbg(pm8001_ha, FAIL, "sata IO status 0x%x\n", event); if (unlikely(!t || !t->lldd_task || !t->dev)) return; ts = &t->task_status; pm8001_dbg(pm8001_ha, DEVIO, "port_id:0x%x, device_id:0x%x, tag:0x%x, event:0x%x\n", port_id, dev_id, tag, event); switch (event) { case IO_OVERFLOW: pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_INTERRUPTED; break; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_DEV_NO_RESPONSE; if (!t->uldd_task) { pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_QUEUE_FULL; return; } break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; case IO_XFER_ERROR_NAK_RECEIVED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_NAK_RECEIVED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; break; case IO_XFER_ERROR_PEER_ABORTED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PEER_ABORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_NAK_R_ERR; break; case IO_XFER_ERROR_REJECTED_NCQ_MODE: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_REJECTED_NCQ_MODE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_UNDERRUN; break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_UNEXPECTED_PHASE: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_UNEXPECTED_PHASE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_XFER_RDY_OVERRUN: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_OVERRUN\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_OFFSET_MISMATCH: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_OFFSET_MISMATCH\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; case IO_XFER_CMD_FRAME_ISSUED: pm8001_dbg(pm8001_ha, IO, "IO_XFER_CMD_FRAME_ISSUED\n"); break; case IO_XFER_PIO_SETUP_ERROR: pm8001_dbg(pm8001_ha, IO, "IO_XFER_PIO_SETUP_ERROR\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", event); /* not allowed case. Therefore, return failed status */ ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_TO; break; } } /*See the comments for mpi_ssp_completion */ static void mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct sas_task *t; struct pm8001_ccb_info *ccb; unsigned long flags; u32 status; u32 tag; struct smp_completion_resp *psmpPayload; struct task_status_struct *ts; struct pm8001_device *pm8001_dev; psmpPayload = (struct smp_completion_resp *)(piomb + 4); status = le32_to_cpu(psmpPayload->status); tag = le32_to_cpu(psmpPayload->tag); ccb = &pm8001_ha->ccb_info[tag]; t = ccb->task; ts = &t->task_status; pm8001_dev = ccb->device; if (status) { pm8001_dbg(pm8001_ha, FAIL, "smp IO status 0x%x\n", status); pm8001_dbg(pm8001_ha, IOERR, "status:0x%x, tag:0x%x, task:0x%p\n", status, tag, t); } if (unlikely(!t || !t->lldd_task || !t->dev)) return; switch (status) { case IO_SUCCESS: pm8001_dbg(pm8001_ha, IO, "IO_SUCCESS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_GOOD; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_ABORTED: pm8001_dbg(pm8001_ha, IO, "IO_ABORTED IOMB\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_ABORTED_TASK; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_OVERFLOW: pm8001_dbg(pm8001_ha, IO, "IO_UNDERFLOW\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); break; case IO_NO_DEVICE: pm8001_dbg(pm8001_ha, IO, "IO_NO_DEVICE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_PHY_DOWN; break; case IO_ERROR_HW_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_ERROR_HW_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_BUSY; break; case IO_XFER_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_BUSY; break; case IO_XFER_ERROR_PHY_NOT_READY: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_PHY_NOT_READY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_BUSY; break; case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; case IO_OPEN_CNX_ERROR_BREAK: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BREAK\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; break; case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; pm8001_handle_event(pm8001_ha, pm8001_dev, IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); break; case IO_OPEN_CNX_ERROR_BAD_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_BAD_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; break; case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; case IO_XFER_ERROR_RX_FRAME: pm8001_dbg(pm8001_ha, IO, "IO_XFER_ERROR_RX_FRAME\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; break; case IO_XFER_OPEN_RETRY_TIMEOUT: pm8001_dbg(pm8001_ha, IO, "IO_XFER_OPEN_RETRY_TIMEOUT\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_ERROR_INTERNAL_SMP_RESOURCE: pm8001_dbg(pm8001_ha, IO, "IO_ERROR_INTERNAL_SMP_RESOURCE\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_QUEUE_FULL; break; case IO_PORT_IN_RESET: pm8001_dbg(pm8001_ha, IO, "IO_PORT_IN_RESET\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_DS_NON_OPERATIONAL: pm8001_dbg(pm8001_ha, IO, "IO_DS_NON_OPERATIONAL\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; break; case IO_DS_IN_RECOVERY: pm8001_dbg(pm8001_ha, IO, "IO_DS_IN_RECOVERY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: pm8001_dbg(pm8001_ha, IO, "IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown status 0x%x\n", status); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_DEV_NO_RESPONSE; /* not allowed case. Therefore, return failed status */ break; } spin_lock_irqsave(&t->task_state_lock, flags); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; t->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p done with io_status 0x%x resp 0x%x stat 0x%x but aborted by upper layer!\n", t, status, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); } else { spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); mb();/* in order to force CPU ordering */ t->task_done(t); } } void pm8001_mpi_set_dev_state_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct set_dev_state_resp *pPayload = (struct set_dev_state_resp *)(piomb + 4); u32 tag = le32_to_cpu(pPayload->tag); struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; struct pm8001_device *pm8001_dev = ccb->device; u32 status = le32_to_cpu(pPayload->status); u32 device_id = le32_to_cpu(pPayload->device_id); u8 pds = le32_to_cpu(pPayload->pds_nds) & PDS_BITS; u8 nds = le32_to_cpu(pPayload->pds_nds) & NDS_BITS; pm8001_dbg(pm8001_ha, MSG, "Set device id = 0x%x state from 0x%x to 0x%x status = 0x%x!\n", device_id, pds, nds, status); complete(pm8001_dev->setds_completion); ccb->task = NULL; ccb->ccb_tag = 0xFFFFFFFF; pm8001_tag_free(pm8001_ha, tag); } void pm8001_mpi_set_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct get_nvm_data_resp *pPayload = (struct get_nvm_data_resp *)(piomb + 4); u32 tag = le32_to_cpu(pPayload->tag); struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; u32 dlen_status = le32_to_cpu(pPayload->dlen_status); complete(pm8001_ha->nvmd_completion); pm8001_dbg(pm8001_ha, MSG, "Set nvm data complete!\n"); if ((dlen_status & NVMD_STAT) != 0) { pm8001_dbg(pm8001_ha, FAIL, "Set nvm data error %x\n", dlen_status); } ccb->task = NULL; ccb->ccb_tag = 0xFFFFFFFF; pm8001_tag_free(pm8001_ha, tag); } void pm8001_mpi_get_nvmd_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct fw_control_ex *fw_control_context; struct get_nvm_data_resp *pPayload = (struct get_nvm_data_resp *)(piomb + 4); u32 tag = le32_to_cpu(pPayload->tag); struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; u32 dlen_status = le32_to_cpu(pPayload->dlen_status); u32 ir_tds_bn_dps_das_nvm = le32_to_cpu(pPayload->ir_tda_bn_dps_das_nvm); void *virt_addr = pm8001_ha->memoryMap.region[NVMD].virt_ptr; fw_control_context = ccb->fw_control_context; pm8001_dbg(pm8001_ha, MSG, "Get nvm data complete!\n"); if ((dlen_status & NVMD_STAT) != 0) { pm8001_dbg(pm8001_ha, FAIL, "Get nvm data error %x\n", dlen_status); complete(pm8001_ha->nvmd_completion); /* We should free tag during failure also, the tag is not being * freed by requesting path anywhere. */ ccb->task = NULL; ccb->ccb_tag = 0xFFFFFFFF; pm8001_tag_free(pm8001_ha, tag); return; } if (ir_tds_bn_dps_das_nvm & IPMode) { /* indirect mode - IR bit set */ pm8001_dbg(pm8001_ha, MSG, "Get NVMD success, IR=1\n"); if ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == TWI_DEVICE) { if (ir_tds_bn_dps_das_nvm == 0x80a80200) { memcpy(pm8001_ha->sas_addr, ((u8 *)virt_addr + 4), SAS_ADDR_SIZE); pm8001_dbg(pm8001_ha, MSG, "Get SAS address from VPD successfully!\n"); } } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == C_SEEPROM) || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == VPD_FLASH) || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == EXPAN_ROM)) { ; } else if (((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == AAP1_RDUMP) || ((ir_tds_bn_dps_das_nvm & NVMD_TYPE) == IOP_RDUMP)) { ; } else { /* Should not be happened*/ pm8001_dbg(pm8001_ha, MSG, "(IR=1)Wrong Device type 0x%x\n", ir_tds_bn_dps_das_nvm); } } else /* direct mode */{ pm8001_dbg(pm8001_ha, MSG, "Get NVMD success, IR=0, dataLen=%d\n", (dlen_status & NVMD_LEN) >> 24); } /* Though fw_control_context is freed below, usrAddr still needs * to be updated as this holds the response to the request function */ memcpy(fw_control_context->usrAddr, pm8001_ha->memoryMap.region[NVMD].virt_ptr, fw_control_context->len); kfree(ccb->fw_control_context); /* To avoid race condition, complete should be * called after the message is copied to * fw_control_context->usrAddr */ complete(pm8001_ha->nvmd_completion); pm8001_dbg(pm8001_ha, MSG, "Get nvmd data complete!\n"); ccb->task = NULL; ccb->ccb_tag = 0xFFFFFFFF; pm8001_tag_free(pm8001_ha, tag); } int pm8001_mpi_local_phy_ctl(struct pm8001_hba_info *pm8001_ha, void *piomb) { u32 tag; struct local_phy_ctl_resp *pPayload = (struct local_phy_ctl_resp *)(piomb + 4); u32 status = le32_to_cpu(pPayload->status); u32 phy_id = le32_to_cpu(pPayload->phyop_phyid) & ID_BITS; u32 phy_op = le32_to_cpu(pPayload->phyop_phyid) & OP_BITS; tag = le32_to_cpu(pPayload->tag); if (status != 0) { pm8001_dbg(pm8001_ha, MSG, "%x phy execute %x phy op failed!\n", phy_id, phy_op); } else { pm8001_dbg(pm8001_ha, MSG, "%x phy execute %x phy op success!\n", phy_id, phy_op); pm8001_ha->phy[phy_id].reset_success = true; } if (pm8001_ha->phy[phy_id].enable_completion) { complete(pm8001_ha->phy[phy_id].enable_completion); pm8001_ha->phy[phy_id].enable_completion = NULL; } pm8001_tag_free(pm8001_ha, tag); return 0; } /** * pm8001_bytes_dmaed - one of the interface function communication with libsas * @pm8001_ha: our hba card information * @i: which phy that received the event. * * when HBA driver received the identify done event or initiate FIS received * event(for SATA), it will invoke this function to notify the sas layer that * the sas toplogy has formed, please discover the the whole sas domain, * while receive a broadcast(change) primitive just tell the sas * layer to discover the changed domain rather than the whole domain. */ void pm8001_bytes_dmaed(struct pm8001_hba_info *pm8001_ha, int i) { struct pm8001_phy *phy = &pm8001_ha->phy[i]; struct asd_sas_phy *sas_phy = &phy->sas_phy; if (!phy->phy_attached) return; if (sas_phy->phy) { struct sas_phy *sphy = sas_phy->phy; sphy->negotiated_linkrate = sas_phy->linkrate; sphy->minimum_linkrate = phy->minimum_linkrate; sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; sphy->maximum_linkrate = phy->maximum_linkrate; sphy->maximum_linkrate_hw = phy->maximum_linkrate; } if (phy->phy_type & PORT_TYPE_SAS) { struct sas_identify_frame *id; id = (struct sas_identify_frame *)phy->frame_rcvd; id->dev_type = phy->identify.device_type; id->initiator_bits = SAS_PROTOCOL_ALL; id->target_bits = phy->identify.target_port_protocols; } else if (phy->phy_type & PORT_TYPE_SATA) { /*Nothing*/ } pm8001_dbg(pm8001_ha, MSG, "phy %d byte dmaded.\n", i); sas_phy->frame_rcvd_size = phy->frame_rcvd_size; sas_notify_port_event(sas_phy, PORTE_BYTES_DMAED, GFP_ATOMIC); } /* Get the link rate speed */ void pm8001_get_lrate_mode(struct pm8001_phy *phy, u8 link_rate) { struct sas_phy *sas_phy = phy->sas_phy.phy; switch (link_rate) { case PHY_SPEED_120: phy->sas_phy.linkrate = SAS_LINK_RATE_12_0_GBPS; phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_12_0_GBPS; break; case PHY_SPEED_60: phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS; phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS; break; case PHY_SPEED_30: phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS; phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS; break; case PHY_SPEED_15: phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS; phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS; break; } sas_phy->negotiated_linkrate = phy->sas_phy.linkrate; sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_6_0_GBPS; sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; sas_phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS; sas_phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS; } /** * pm8001_get_attached_sas_addr - extract/generate attached SAS address * @phy: pointer to asd_phy * @sas_addr: pointer to buffer where the SAS address is to be written * * This function extracts the SAS address from an IDENTIFY frame * received. If OOB is SATA, then a SAS address is generated from the * HA tables. * * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame * buffer. */ void pm8001_get_attached_sas_addr(struct pm8001_phy *phy, u8 *sas_addr) { if (phy->sas_phy.frame_rcvd[0] == 0x34 && phy->sas_phy.oob_mode == SATA_OOB_MODE) { struct pm8001_hba_info *pm8001_ha = phy->sas_phy.ha->lldd_ha; /* FIS device-to-host */ u64 addr = be64_to_cpu(*(__be64 *)pm8001_ha->sas_addr); addr += phy->sas_phy.id; *(__be64 *)sas_addr = cpu_to_be64(addr); } else { struct sas_identify_frame *idframe = (void *) phy->sas_phy.frame_rcvd; memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE); } } /** * pm8001_hw_event_ack_req- For PM8001,some events need to acknowage to FW. * @pm8001_ha: our hba card information * @Qnum: the outbound queue message number. * @SEA: source of event to ack * @port_id: port id. * @phyId: phy id. * @param0: parameter 0. * @param1: parameter 1. */ static void pm8001_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha, u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1) { struct hw_event_ack_req payload; u32 opc = OPC_INB_SAS_HW_EVENT_ACK; struct inbound_queue_table *circularQ; memset((u8 *)&payload, 0, sizeof(payload)); circularQ = &pm8001_ha->inbnd_q_tbl[Qnum]; payload.tag = cpu_to_le32(1); payload.sea_phyid_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) | ((phyId & 0x0F) << 4) | (port_id & 0x0F)); payload.param0 = cpu_to_le32(param0); payload.param1 = cpu_to_le32(param1); pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); } static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, u32 phyId, u32 phy_op); /** * hw_event_sas_phy_up -FW tells me a SAS phy up event. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static void hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4); u32 lr_evt_status_phyid_portid = le32_to_cpu(pPayload->lr_evt_status_phyid_portid); u8 link_rate = (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); u8 phy_id = (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); u8 portstate = (u8)(npip_portstate & 0x0000000F); struct pm8001_port *port = &pm8001_ha->port[port_id]; struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; unsigned long flags; u8 deviceType = pPayload->sas_identify.dev_type; port->port_state = portstate; phy->phy_state = PHY_STATE_LINK_UP_SPC; pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SAS_PHY_UP port id = %d, phy id = %d\n", port_id, phy_id); switch (deviceType) { case SAS_PHY_UNUSED: pm8001_dbg(pm8001_ha, MSG, "device type no device.\n"); break; case SAS_END_DEVICE: pm8001_dbg(pm8001_ha, MSG, "end device.\n"); pm8001_chip_phy_ctl_req(pm8001_ha, phy_id, PHY_NOTIFY_ENABLE_SPINUP); port->port_attached = 1; pm8001_get_lrate_mode(phy, link_rate); break; case SAS_EDGE_EXPANDER_DEVICE: pm8001_dbg(pm8001_ha, MSG, "expander device.\n"); port->port_attached = 1; pm8001_get_lrate_mode(phy, link_rate); break; case SAS_FANOUT_EXPANDER_DEVICE: pm8001_dbg(pm8001_ha, MSG, "fanout expander device.\n"); port->port_attached = 1; pm8001_get_lrate_mode(phy, link_rate); break; default: pm8001_dbg(pm8001_ha, DEVIO, "unknown device type(%x)\n", deviceType); break; } phy->phy_type |= PORT_TYPE_SAS; phy->identify.device_type = deviceType; phy->phy_attached = 1; if (phy->identify.device_type == SAS_END_DEVICE) phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; else if (phy->identify.device_type != SAS_PHY_UNUSED) phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; phy->sas_phy.oob_mode = SAS_OOB_MODE; sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); memcpy(phy->frame_rcvd, &pPayload->sas_identify, sizeof(struct sas_identify_frame)-4); phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4; pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); if (pm8001_ha->flags == PM8001F_RUN_TIME) mdelay(200);/*delay a moment to wait disk to spinup*/ pm8001_bytes_dmaed(pm8001_ha, phy_id); } /** * hw_event_sata_phy_up -FW tells me a SATA phy up event. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static void hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4); u32 lr_evt_status_phyid_portid = le32_to_cpu(pPayload->lr_evt_status_phyid_portid); u8 link_rate = (u8)((lr_evt_status_phyid_portid & 0xF0000000) >> 28); u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); u8 phy_id = (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); u8 portstate = (u8)(npip_portstate & 0x0000000F); struct pm8001_port *port = &pm8001_ha->port[port_id]; struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; unsigned long flags; pm8001_dbg(pm8001_ha, DEVIO, "HW_EVENT_SATA_PHY_UP port id = %d, phy id = %d\n", port_id, phy_id); port->port_state = portstate; phy->phy_state = PHY_STATE_LINK_UP_SPC; port->port_attached = 1; pm8001_get_lrate_mode(phy, link_rate); phy->phy_type |= PORT_TYPE_SATA; phy->phy_attached = 1; phy->sas_phy.oob_mode = SATA_OOB_MODE; sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE, GFP_ATOMIC); spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4), sizeof(struct dev_to_host_fis)); phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; phy->identify.device_type = SAS_SATA_DEV; pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); pm8001_bytes_dmaed(pm8001_ha, phy_id); } /** * hw_event_phy_down -we should notify the libsas the phy is down. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static void hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4); u32 lr_evt_status_phyid_portid = le32_to_cpu(pPayload->lr_evt_status_phyid_portid); u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); u8 phy_id = (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); u32 npip_portstate = le32_to_cpu(pPayload->npip_portstate); u8 portstate = (u8)(npip_portstate & 0x0000000F); struct pm8001_port *port = &pm8001_ha->port[port_id]; struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; port->port_state = portstate; phy->phy_type = 0; phy->identify.device_type = 0; phy->phy_attached = 0; memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE); switch (portstate) { case PORT_VALID: break; case PORT_INVALID: pm8001_dbg(pm8001_ha, MSG, " PortInvalid portID %d\n", port_id); pm8001_dbg(pm8001_ha, MSG, " Last phy Down and port invalid\n"); port->port_attached = 0; pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, port_id, phy_id, 0, 0); break; case PORT_IN_RESET: pm8001_dbg(pm8001_ha, MSG, " Port In Reset portID %d\n", port_id); break; case PORT_NOT_ESTABLISHED: pm8001_dbg(pm8001_ha, MSG, " phy Down and PORT_NOT_ESTABLISHED\n"); port->port_attached = 0; break; case PORT_LOSTCOMM: pm8001_dbg(pm8001_ha, MSG, " phy Down and PORT_LOSTCOMM\n"); pm8001_dbg(pm8001_ha, MSG, " Last phy Down and port invalid\n"); port->port_attached = 0; pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, port_id, phy_id, 0, 0); break; default: port->port_attached = 0; pm8001_dbg(pm8001_ha, DEVIO, " phy Down and(default) = %x\n", portstate); break; } } /** * pm8001_mpi_reg_resp -process register device ID response. * @pm8001_ha: our hba card information * @piomb: IO message buffer * * when sas layer find a device it will notify LLDD, then the driver register * the domain device to FW, this event is the return device ID which the FW * has assigned, from now, inter-communication with FW is no longer using the * SAS address, use device ID which FW assigned. */ int pm8001_mpi_reg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { u32 status; u32 device_id; u32 htag; struct pm8001_ccb_info *ccb; struct pm8001_device *pm8001_dev; struct dev_reg_resp *registerRespPayload = (struct dev_reg_resp *)(piomb + 4); htag = le32_to_cpu(registerRespPayload->tag); ccb = &pm8001_ha->ccb_info[htag]; pm8001_dev = ccb->device; status = le32_to_cpu(registerRespPayload->status); device_id = le32_to_cpu(registerRespPayload->device_id); pm8001_dbg(pm8001_ha, MSG, " register device is status = %d\n", status); switch (status) { case DEVREG_SUCCESS: pm8001_dbg(pm8001_ha, MSG, "DEVREG_SUCCESS\n"); pm8001_dev->device_id = device_id; break; case DEVREG_FAILURE_OUT_OF_RESOURCE: pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_OUT_OF_RESOURCE\n"); break; case DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED: pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_DEVICE_ALREADY_REGISTERED\n"); break; case DEVREG_FAILURE_INVALID_PHY_ID: pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_INVALID_PHY_ID\n"); break; case DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED: pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_PHY_ID_ALREADY_REGISTERED\n"); break; case DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE: pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_PORT_ID_OUT_OF_RANGE\n"); break; case DEVREG_FAILURE_PORT_NOT_VALID_STATE: pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_PORT_NOT_VALID_STATE\n"); break; case DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID: pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_DEVICE_TYPE_NOT_VALID\n"); break; default: pm8001_dbg(pm8001_ha, MSG, "DEVREG_FAILURE_DEVICE_TYPE_NOT_SUPPORTED\n"); break; } complete(pm8001_dev->dcompletion); ccb->task = NULL; ccb->ccb_tag = 0xFFFFFFFF; pm8001_tag_free(pm8001_ha, htag); return 0; } int pm8001_mpi_dereg_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { u32 status; u32 device_id; struct dev_reg_resp *registerRespPayload = (struct dev_reg_resp *)(piomb + 4); status = le32_to_cpu(registerRespPayload->status); device_id = le32_to_cpu(registerRespPayload->device_id); if (status != 0) pm8001_dbg(pm8001_ha, MSG, " deregister device failed ,status = %x, device_id = %x\n", status, device_id); return 0; } /** * pm8001_mpi_fw_flash_update_resp - Response from FW for flash update command. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ int pm8001_mpi_fw_flash_update_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { u32 status; struct fw_flash_Update_resp *ppayload = (struct fw_flash_Update_resp *)(piomb + 4); u32 tag = le32_to_cpu(ppayload->tag); struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[tag]; status = le32_to_cpu(ppayload->status); switch (status) { case FLASH_UPDATE_COMPLETE_PENDING_REBOOT: pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_COMPLETE_PENDING_REBOOT\n"); break; case FLASH_UPDATE_IN_PROGRESS: pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_IN_PROGRESS\n"); break; case FLASH_UPDATE_HDR_ERR: pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HDR_ERR\n"); break; case FLASH_UPDATE_OFFSET_ERR: pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_OFFSET_ERR\n"); break; case FLASH_UPDATE_CRC_ERR: pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_CRC_ERR\n"); break; case FLASH_UPDATE_LENGTH_ERR: pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_LENGTH_ERR\n"); break; case FLASH_UPDATE_HW_ERR: pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_HW_ERR\n"); break; case FLASH_UPDATE_DNLD_NOT_SUPPORTED: pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_DNLD_NOT_SUPPORTED\n"); break; case FLASH_UPDATE_DISABLED: pm8001_dbg(pm8001_ha, MSG, ": FLASH_UPDATE_DISABLED\n"); break; default: pm8001_dbg(pm8001_ha, DEVIO, "No matched status = %d\n", status); break; } kfree(ccb->fw_control_context); ccb->task = NULL; ccb->ccb_tag = 0xFFFFFFFF; pm8001_tag_free(pm8001_ha, tag); complete(pm8001_ha->nvmd_completion); return 0; } int pm8001_mpi_general_event(struct pm8001_hba_info *pm8001_ha, void *piomb) { u32 status; int i; struct general_event_resp *pPayload = (struct general_event_resp *)(piomb + 4); status = le32_to_cpu(pPayload->status); pm8001_dbg(pm8001_ha, MSG, " status = 0x%x\n", status); for (i = 0; i < GENERAL_EVENT_PAYLOAD; i++) pm8001_dbg(pm8001_ha, MSG, "inb_IOMB_payload[0x%x] 0x%x,\n", i, pPayload->inb_IOMB_payload[i]); return 0; } int pm8001_mpi_task_abort_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) { struct sas_task *t; struct pm8001_ccb_info *ccb; unsigned long flags; u32 status ; u32 tag, scp; struct task_status_struct *ts; struct pm8001_device *pm8001_dev; struct task_abort_resp *pPayload = (struct task_abort_resp *)(piomb + 4); status = le32_to_cpu(pPayload->status); tag = le32_to_cpu(pPayload->tag); if (!tag) { pm8001_dbg(pm8001_ha, FAIL, " TAG NULL. RETURNING !!!\n"); return -1; } scp = le32_to_cpu(pPayload->scp); ccb = &pm8001_ha->ccb_info[tag]; t = ccb->task; pm8001_dev = ccb->device; /* retrieve device */ if (!t) { pm8001_dbg(pm8001_ha, FAIL, " TASK NULL. RETURNING !!!\n"); return -1; } ts = &t->task_status; if (status != 0) pm8001_dbg(pm8001_ha, FAIL, "task abort failed status 0x%x ,tag = 0x%x, scp= 0x%x\n", status, tag, scp); switch (status) { case IO_SUCCESS: pm8001_dbg(pm8001_ha, EH, "IO_SUCCESS\n"); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_GOOD; break; case IO_NOT_VALID: pm8001_dbg(pm8001_ha, EH, "IO_NOT_VALID\n"); ts->resp = TMF_RESP_FUNC_FAILED; break; } spin_lock_irqsave(&t->task_state_lock, flags); t->task_state_flags &= ~SAS_TASK_STATE_PENDING; t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; t->task_state_flags |= SAS_TASK_STATE_DONE; spin_unlock_irqrestore(&t->task_state_lock, flags); pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); mb(); if (pm8001_dev->id & NCQ_ABORT_ALL_FLAG) { sas_free_task(t); pm8001_dev->id &= ~NCQ_ABORT_ALL_FLAG; } else { t->task_done(t); } return 0; } /** * mpi_hw_event -The hw event has come. * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb) { unsigned long flags; struct hw_event_resp *pPayload = (struct hw_event_resp *)(piomb + 4); u32 lr_evt_status_phyid_portid = le32_to_cpu(pPayload->lr_evt_status_phyid_portid); u8 port_id = (u8)(lr_evt_status_phyid_portid & 0x0000000F); u8 phy_id = (u8)((lr_evt_status_phyid_portid & 0x000000F0) >> 4); u16 eventType = (u16)((lr_evt_status_phyid_portid & 0x00FFFF00) >> 8); u8 status = (u8)((lr_evt_status_phyid_portid & 0x0F000000) >> 24); struct sas_ha_struct *sas_ha = pm8001_ha->sas; struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; pm8001_dbg(pm8001_ha, DEVIO, "SPC HW event for portid:%d, phyid:%d, event:%x, status:%x\n", port_id, phy_id, eventType, status); switch (eventType) { case HW_EVENT_PHY_START_STATUS: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS status = %x\n", status); if (status == 0) phy->phy_state = 1; if (pm8001_ha->flags == PM8001F_RUN_TIME && phy->enable_completion != NULL) { complete(phy->enable_completion); phy->enable_completion = NULL; } break; case HW_EVENT_SAS_PHY_UP: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_START_STATUS\n"); hw_event_sas_phy_up(pm8001_ha, piomb); break; case HW_EVENT_SATA_PHY_UP: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_PHY_UP\n"); hw_event_sata_phy_up(pm8001_ha, piomb); break; case HW_EVENT_PHY_STOP_STATUS: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_STOP_STATUS status = %x\n", status); if (status == 0) phy->phy_state = 0; break; case HW_EVENT_SATA_SPINUP_HOLD: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_SATA_SPINUP_HOLD\n"); sas_notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD, GFP_ATOMIC); break; case HW_EVENT_PHY_DOWN: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_DOWN\n"); sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL, GFP_ATOMIC); phy->phy_attached = 0; phy->phy_state = 0; hw_event_phy_down(pm8001_ha, piomb); break; case HW_EVENT_PORT_INVALID: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_INVALID\n"); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; /* the broadcast change primitive received, tell the LIBSAS this event to revalidate the sas domain*/ case HW_EVENT_BROADCAST_CHANGE: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_CHANGE\n"); pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE, port_id, phy_id, 1, 0); spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE; spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, GFP_ATOMIC); break; case HW_EVENT_PHY_ERROR: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PHY_ERROR\n"); sas_phy_disconnected(&phy->sas_phy); phy->phy_attached = 0; sas_notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR, GFP_ATOMIC); break; case HW_EVENT_BROADCAST_EXP: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_EXP\n"); spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP; spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, GFP_ATOMIC); break; case HW_EVENT_LINK_ERR_INVALID_DWORD: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_INVALID_DWORD\n"); pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_LINK_ERR_DISPARITY_ERROR: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_DISPARITY_ERROR\n"); pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_DISPARITY_ERROR, port_id, phy_id, 0, 0); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_LINK_ERR_CODE_VIOLATION: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_CODE_VIOLATION\n"); pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_CODE_VIOLATION, port_id, phy_id, 0, 0); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n"); pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH, port_id, phy_id, 0, 0); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_MALFUNCTION: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_MALFUNCTION\n"); break; case HW_EVENT_BROADCAST_SES: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_BROADCAST_SES\n"); spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); sas_phy->sas_prim = HW_EVENT_BROADCAST_SES; spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); sas_notify_port_event(sas_phy, PORTE_BROADCAST_RCVD, GFP_ATOMIC); break; case HW_EVENT_INBOUND_CRC_ERROR: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_INBOUND_CRC_ERROR\n"); pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_INBOUND_CRC_ERROR, port_id, phy_id, 0, 0); break; case HW_EVENT_HARD_RESET_RECEIVED: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_HARD_RESET_RECEIVED\n"); sas_notify_port_event(sas_phy, PORTE_HARD_RESET, GFP_ATOMIC); break; case HW_EVENT_ID_FRAME_TIMEOUT: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_ID_FRAME_TIMEOUT\n"); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_LINK_ERR_PHY_RESET_FAILED: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n"); pm8001_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_LINK_ERR_PHY_RESET_FAILED, port_id, phy_id, 0, 0); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_PORT_RESET_TIMER_TMO: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_TIMER_TMO\n"); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_PORT_RECOVERY_TIMER_TMO: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVERY_TIMER_TMO\n"); sas_phy_disconnected(sas_phy); phy->phy_attached = 0; sas_notify_port_event(sas_phy, PORTE_LINK_RESET_ERR, GFP_ATOMIC); break; case HW_EVENT_PORT_RECOVER: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RECOVER\n"); break; case HW_EVENT_PORT_RESET_COMPLETE: pm8001_dbg(pm8001_ha, MSG, "HW_EVENT_PORT_RESET_COMPLETE\n"); break; case EVENT_BROADCAST_ASYNCH_EVENT: pm8001_dbg(pm8001_ha, MSG, "EVENT_BROADCAST_ASYNCH_EVENT\n"); break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown event type = %x\n", eventType); break; } return 0; } /** * process_one_iomb - process one outbound Queue memory block * @pm8001_ha: our hba card information * @piomb: IO message buffer */ static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb) { __le32 pHeader = *(__le32 *)piomb; u8 opc = (u8)((le32_to_cpu(pHeader)) & 0xFFF); pm8001_dbg(pm8001_ha, MSG, "process_one_iomb:\n"); switch (opc) { case OPC_OUB_ECHO: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_ECHO\n"); break; case OPC_OUB_HW_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_HW_EVENT\n"); mpi_hw_event(pm8001_ha, piomb); break; case OPC_OUB_SSP_COMP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_COMP\n"); mpi_ssp_completion(pm8001_ha, piomb); break; case OPC_OUB_SMP_COMP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_COMP\n"); mpi_smp_completion(pm8001_ha, piomb); break; case OPC_OUB_LOCAL_PHY_CNTRL: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_LOCAL_PHY_CNTRL\n"); pm8001_mpi_local_phy_ctl(pm8001_ha, piomb); break; case OPC_OUB_DEV_REGIST: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_REGIST\n"); pm8001_mpi_reg_resp(pm8001_ha, piomb); break; case OPC_OUB_DEREG_DEV: pm8001_dbg(pm8001_ha, MSG, "unregister the device\n"); pm8001_mpi_dereg_resp(pm8001_ha, piomb); break; case OPC_OUB_GET_DEV_HANDLE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEV_HANDLE\n"); break; case OPC_OUB_SATA_COMP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_COMP\n"); mpi_sata_completion(pm8001_ha, piomb); break; case OPC_OUB_SATA_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_EVENT\n"); mpi_sata_event(pm8001_ha, piomb); break; case OPC_OUB_SSP_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_EVENT\n"); mpi_ssp_event(pm8001_ha, piomb); break; case OPC_OUB_DEV_HANDLE_ARRIV: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_HANDLE_ARRIV\n"); /*This is for target*/ break; case OPC_OUB_SSP_RECV_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_RECV_EVENT\n"); /*This is for target*/ break; case OPC_OUB_DEV_INFO: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEV_INFO\n"); break; case OPC_OUB_FW_FLASH_UPDATE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_FW_FLASH_UPDATE\n"); pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb); break; case OPC_OUB_GPIO_RESPONSE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_RESPONSE\n"); break; case OPC_OUB_GPIO_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GPIO_EVENT\n"); break; case OPC_OUB_GENERAL_EVENT: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GENERAL_EVENT\n"); pm8001_mpi_general_event(pm8001_ha, piomb); break; case OPC_OUB_SSP_ABORT_RSP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SSP_ABORT_RSP\n"); pm8001_mpi_task_abort_resp(pm8001_ha, piomb); break; case OPC_OUB_SATA_ABORT_RSP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SATA_ABORT_RSP\n"); pm8001_mpi_task_abort_resp(pm8001_ha, piomb); break; case OPC_OUB_SAS_DIAG_MODE_START_END: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_MODE_START_END\n"); break; case OPC_OUB_SAS_DIAG_EXECUTE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_DIAG_EXECUTE\n"); break; case OPC_OUB_GET_TIME_STAMP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_TIME_STAMP\n"); break; case OPC_OUB_SAS_HW_EVENT_ACK: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_HW_EVENT_ACK\n"); break; case OPC_OUB_PORT_CONTROL: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_PORT_CONTROL\n"); break; case OPC_OUB_SMP_ABORT_RSP: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SMP_ABORT_RSP\n"); pm8001_mpi_task_abort_resp(pm8001_ha, piomb); break; case OPC_OUB_GET_NVMD_DATA: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_NVMD_DATA\n"); pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb); break; case OPC_OUB_SET_NVMD_DATA: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_NVMD_DATA\n"); pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb); break; case OPC_OUB_DEVICE_HANDLE_REMOVAL: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_DEVICE_HANDLE_REMOVAL\n"); break; case OPC_OUB_SET_DEVICE_STATE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEVICE_STATE\n"); pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb); break; case OPC_OUB_GET_DEVICE_STATE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_GET_DEVICE_STATE\n"); break; case OPC_OUB_SET_DEV_INFO: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SET_DEV_INFO\n"); break; case OPC_OUB_SAS_RE_INITIALIZE: pm8001_dbg(pm8001_ha, MSG, "OPC_OUB_SAS_RE_INITIALIZE\n"); break; default: pm8001_dbg(pm8001_ha, DEVIO, "Unknown outbound Queue IOMB OPC = %x\n", opc); break; } } static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec) { struct outbound_queue_table *circularQ; void *pMsg1 = NULL; u8 bc; u32 ret = MPI_IO_STATUS_FAIL; unsigned long flags; spin_lock_irqsave(&pm8001_ha->lock, flags); circularQ = &pm8001_ha->outbnd_q_tbl[vec]; do { ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc); if (MPI_IO_STATUS_SUCCESS == ret) { /* process the outbound message */ process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4)); /* free the message from the outbound circular buffer */ pm8001_mpi_msg_free_set(pm8001_ha, pMsg1, circularQ, bc); } if (MPI_IO_STATUS_BUSY == ret) { /* Update the producer index from SPC */ circularQ->producer_index = cpu_to_le32(pm8001_read_32(circularQ->pi_virt)); if (le32_to_cpu(circularQ->producer_index) == circularQ->consumer_idx) /* OQ is empty */ break; } } while (1); spin_unlock_irqrestore(&pm8001_ha->lock, flags); return ret; } /* DMA_... to our direction translation. */ static const u8 data_dir_flags[] = { [DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */ [DMA_TO_DEVICE] = DATA_DIR_OUT, /* OUTBOUND */ [DMA_FROM_DEVICE] = DATA_DIR_IN, /* INBOUND */ [DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */ }; void pm8001_chip_make_sg(struct scatterlist *scatter, int nr, void *prd) { int i; struct scatterlist *sg; struct pm8001_prd *buf_prd = prd; for_each_sg(scatter, sg, nr, i) { buf_prd->addr = cpu_to_le64(sg_dma_address(sg)); buf_prd->im_len.len = cpu_to_le32(sg_dma_len(sg)); buf_prd->im_len.e = 0; buf_prd++; } } static void build_smp_cmd(u32 deviceID, __le32 hTag, struct smp_req *psmp_cmd) { psmp_cmd->tag = hTag; psmp_cmd->device_id = cpu_to_le32(deviceID); psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1)); } /** * pm8001_chip_smp_req - send a SMP task to FW * @pm8001_ha: our hba card information. * @ccb: the ccb information this request used. */ static int pm8001_chip_smp_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { int elem, rc; struct sas_task *task = ccb->task; struct domain_device *dev = task->dev; struct pm8001_device *pm8001_dev = dev->lldd_dev; struct scatterlist *sg_req, *sg_resp; u32 req_len, resp_len; struct smp_req smp_cmd; u32 opc; struct inbound_queue_table *circularQ; memset(&smp_cmd, 0, sizeof(smp_cmd)); /* * DMA-map SMP request, response buffers */ sg_req = &task->smp_task.smp_req; elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, DMA_TO_DEVICE); if (!elem) return -ENOMEM; req_len = sg_dma_len(sg_req); sg_resp = &task->smp_task.smp_resp; elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, DMA_FROM_DEVICE); if (!elem) { rc = -ENOMEM; goto err_out; } resp_len = sg_dma_len(sg_resp); /* must be in dwords */ if ((req_len & 0x3) || (resp_len & 0x3)) { rc = -EINVAL; goto err_out_2; } opc = OPC_INB_SMP_REQUEST; circularQ = &pm8001_ha->inbnd_q_tbl[0]; smp_cmd.tag = cpu_to_le32(ccb->ccb_tag); smp_cmd.long_smp_req.long_req_addr = cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req)); smp_cmd.long_smp_req.long_req_size = cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4); smp_cmd.long_smp_req.long_resp_addr = cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp)); smp_cmd.long_smp_req.long_resp_size = cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4); build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, &smp_cmd); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &smp_cmd, sizeof(smp_cmd), 0); if (rc) goto err_out_2; return 0; err_out_2: dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1, DMA_FROM_DEVICE); err_out: dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1, DMA_TO_DEVICE); return rc; } /** * pm8001_chip_ssp_io_req - send a SSP task to FW * @pm8001_ha: our hba card information. * @ccb: the ccb information this request used. */ static int pm8001_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { struct sas_task *task = ccb->task; struct domain_device *dev = task->dev; struct pm8001_device *pm8001_dev = dev->lldd_dev; struct ssp_ini_io_start_req ssp_cmd; u32 tag = ccb->ccb_tag; int ret; u64 phys_addr; struct inbound_queue_table *circularQ; u32 opc = OPC_INB_SSPINIIOSTART; memset(&ssp_cmd, 0, sizeof(ssp_cmd)); memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8); ssp_cmd.dir_m_tlr = cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0);/*0 for SAS 1.1 compatible TLR*/ ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len); ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id); ssp_cmd.tag = cpu_to_le32(tag); if (task->ssp_task.enable_first_burst) ssp_cmd.ssp_iu.efb_prio_attr |= 0x80; ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3); ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7); memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd, task->ssp_task.cmd->cmd_len); circularQ = &pm8001_ha->inbnd_q_tbl[0]; /* fill in PRD (scatter/gather) table, if any */ if (task->num_scatter > 1) { pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(phys_addr)); ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(phys_addr)); ssp_cmd.esgl = cpu_to_le32(1<<31); } else if (task->num_scatter == 1) { u64 dma_addr = sg_dma_address(task->scatter); ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr)); ssp_cmd.addr_high = cpu_to_le32(upper_32_bits(dma_addr)); ssp_cmd.len = cpu_to_le32(task->total_xfer_len); ssp_cmd.esgl = 0; } else if (task->num_scatter == 0) { ssp_cmd.addr_low = 0; ssp_cmd.addr_high = 0; ssp_cmd.len = cpu_to_le32(task->total_xfer_len); ssp_cmd.esgl = 0; } ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &ssp_cmd, sizeof(ssp_cmd), 0); return ret; } static int pm8001_chip_sata_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { struct sas_task *task = ccb->task; struct domain_device *dev = task->dev; struct pm8001_device *pm8001_ha_dev = dev->lldd_dev; u32 tag = ccb->ccb_tag; int ret; struct sata_start_req sata_cmd; u32 hdr_tag, ncg_tag = 0; u64 phys_addr; u32 ATAP = 0x0; u32 dir; struct inbound_queue_table *circularQ; unsigned long flags; u32 opc = OPC_INB_SATA_HOST_OPSTART; memset(&sata_cmd, 0, sizeof(sata_cmd)); circularQ = &pm8001_ha->inbnd_q_tbl[0]; if (task->data_dir == DMA_NONE && !task->ata_task.use_ncq) { ATAP = 0x04; /* no data*/ pm8001_dbg(pm8001_ha, IO, "no data\n"); } else if (likely(!task->ata_task.device_control_reg_update)) { if (task->ata_task.use_ncq && dev->sata_dev.class != ATA_DEV_ATAPI) { ATAP = 0x07; /* FPDMA */ pm8001_dbg(pm8001_ha, IO, "FPDMA\n"); } else if (task->ata_task.dma_xfer) { ATAP = 0x06; /* DMA */ pm8001_dbg(pm8001_ha, IO, "DMA\n"); } else { ATAP = 0x05; /* PIO*/ pm8001_dbg(pm8001_ha, IO, "PIO\n"); } } if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) { task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); ncg_tag = hdr_tag; } dir = data_dir_flags[task->data_dir] << 8; sata_cmd.tag = cpu_to_le32(tag); sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); sata_cmd.data_len = cpu_to_le32(task->total_xfer_len); sata_cmd.ncqtag_atap_dir_m = cpu_to_le32(((ncg_tag & 0xff)<<16)|((ATAP & 0x3f) << 10) | dir); sata_cmd.sata_fis = task->ata_task.fis; if (likely(!task->ata_task.device_control_reg_update)) sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */ sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */ /* fill in PRD (scatter/gather) table, if any */ if (task->num_scatter > 1) { pm8001_chip_make_sg(task->scatter, ccb->n_elem, ccb->buf_prd); phys_addr = ccb->ccb_dma_handle; sata_cmd.addr_low = lower_32_bits(phys_addr); sata_cmd.addr_high = upper_32_bits(phys_addr); sata_cmd.esgl = cpu_to_le32(1 << 31); } else if (task->num_scatter == 1) { u64 dma_addr = sg_dma_address(task->scatter); sata_cmd.addr_low = lower_32_bits(dma_addr); sata_cmd.addr_high = upper_32_bits(dma_addr); sata_cmd.len = cpu_to_le32(task->total_xfer_len); sata_cmd.esgl = 0; } else if (task->num_scatter == 0) { sata_cmd.addr_low = 0; sata_cmd.addr_high = 0; sata_cmd.len = cpu_to_le32(task->total_xfer_len); sata_cmd.esgl = 0; } /* Check for read log for failed drive and return */ if (sata_cmd.sata_fis.command == 0x2f) { if (((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) || (pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) || (pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) { struct task_status_struct *ts; pm8001_ha_dev->id &= 0xDFFFFFFF; ts = &task->task_status; spin_lock_irqsave(&task->task_state_lock, flags); ts->resp = SAS_TASK_COMPLETE; ts->stat = SAS_SAM_STAT_GOOD; task->task_state_flags &= ~SAS_TASK_STATE_PENDING; task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; task->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((task->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&task->task_state_lock, flags); pm8001_dbg(pm8001_ha, FAIL, "task 0x%p resp 0x%x stat 0x%x but aborted by upper layer\n", task, ts->resp, ts->stat); pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); } else { spin_unlock_irqrestore(&task->task_state_lock, flags); pm8001_ccb_task_free_done(pm8001_ha, task, ccb, tag); return 0; } } } ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd, sizeof(sata_cmd), 0); return ret; } /** * pm8001_chip_phy_start_req - start phy via PHY_START COMMAND * @pm8001_ha: our hba card information. * @phy_id: the phy id which we wanted to start up. */ static int pm8001_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) { struct phy_start_req payload; struct inbound_queue_table *circularQ; int ret; u32 tag = 0x01; u32 opcode = OPC_INB_PHYSTART; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&payload, 0, sizeof(payload)); payload.tag = cpu_to_le32(tag); /* ** [0:7] PHY Identifier ** [8:11] link rate 1.5G, 3G, 6G ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b both ** [14] 0b disable spin up hold; 1b enable spin up hold */ payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE | LINKMODE_AUTO | LINKRATE_15 | LINKRATE_30 | LINKRATE_60 | phy_id); payload.sas_identify.dev_type = SAS_END_DEVICE; payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL; memcpy(payload.sas_identify.sas_addr, &pm8001_ha->phy[phy_id].dev_sas_addr, SAS_ADDR_SIZE); payload.sas_identify.phy_id = phy_id; ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, sizeof(payload), 0); return ret; } /** * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND * @pm8001_ha: our hba card information. * @phy_id: the phy id which we wanted to start up. */ static int pm8001_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) { struct phy_stop_req payload; struct inbound_queue_table *circularQ; int ret; u32 tag = 0x01; u32 opcode = OPC_INB_PHYSTOP; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&payload, 0, sizeof(payload)); payload.tag = cpu_to_le32(tag); payload.phy_id = cpu_to_le32(phy_id); ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, sizeof(payload), 0); return ret; } /* * see comments on pm8001_mpi_reg_resp. */ static int pm8001_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_device *pm8001_dev, u32 flag) { struct reg_dev_req payload; u32 opc; u32 stp_sspsmp_sata = 0x4; struct inbound_queue_table *circularQ; u32 linkrate, phy_id; int rc, tag = 0xdeadbeef; struct pm8001_ccb_info *ccb; u8 retryFlag = 0x1; u16 firstBurstSize = 0; u16 ITNT = 2000; struct domain_device *dev = pm8001_dev->sas_device; struct domain_device *parent_dev = dev->parent; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&payload, 0, sizeof(payload)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) return rc; ccb = &pm8001_ha->ccb_info[tag]; ccb->device = pm8001_dev; ccb->ccb_tag = tag; payload.tag = cpu_to_le32(tag); if (flag == 1) stp_sspsmp_sata = 0x02; /*direct attached sata */ else { if (pm8001_dev->dev_type == SAS_SATA_DEV) stp_sspsmp_sata = 0x00; /* stp*/ else if (pm8001_dev->dev_type == SAS_END_DEVICE || pm8001_dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || pm8001_dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) stp_sspsmp_sata = 0x01; /*ssp or smp*/ } if (parent_dev && dev_is_expander(parent_dev->dev_type)) phy_id = parent_dev->ex_dev.ex_phy->phy_id; else phy_id = pm8001_dev->attached_phy; opc = OPC_INB_REG_DEV; linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ? pm8001_dev->sas_device->linkrate : dev->port->linkrate; payload.phyid_portid = cpu_to_le32(((pm8001_dev->sas_device->port->id) & 0x0F) | ((phy_id & 0x0F) << 4)); payload.dtype_dlr_retry = cpu_to_le32((retryFlag & 0x01) | ((linkrate & 0x0F) * 0x1000000) | ((stp_sspsmp_sata & 0x03) * 0x10000000)); payload.firstburstsize_ITNexustimeout = cpu_to_le32(ITNT | (firstBurstSize * 0x10000)); memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr, SAS_ADDR_SIZE); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); if (rc) pm8001_tag_free(pm8001_ha, tag); return rc; } /* * see comments on pm8001_mpi_reg_resp. */ int pm8001_chip_dereg_dev_req(struct pm8001_hba_info *pm8001_ha, u32 device_id) { struct dereg_dev_req payload; u32 opc = OPC_INB_DEREG_DEV_HANDLE; int ret; struct inbound_queue_table *circularQ; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&payload, 0, sizeof(payload)); payload.tag = cpu_to_le32(1); payload.device_id = cpu_to_le32(device_id); pm8001_dbg(pm8001_ha, MSG, "unregister device device_id = %d\n", device_id); ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); return ret; } /** * pm8001_chip_phy_ctl_req - support the local phy operation * @pm8001_ha: our hba card information. * @phyId: the phy id which we wanted to operate * @phy_op: the phy operation to request */ static int pm8001_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, u32 phyId, u32 phy_op) { struct local_phy_ctl_req payload; struct inbound_queue_table *circularQ; int ret; u32 opc = OPC_INB_LOCAL_PHY_CONTROL; memset(&payload, 0, sizeof(payload)); circularQ = &pm8001_ha->inbnd_q_tbl[0]; payload.tag = cpu_to_le32(1); payload.phyop_phyid = cpu_to_le32(((phy_op & 0xff) << 8) | (phyId & 0x0F)); ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); return ret; } static u32 pm8001_chip_is_our_interrupt(struct pm8001_hba_info *pm8001_ha) { #ifdef PM8001_USE_MSIX return 1; #else u32 value; value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR); if (value) return 1; return 0; #endif } /** * pm8001_chip_isr - PM8001 isr handler. * @pm8001_ha: our hba card information. * @vec: IRQ number */ static irqreturn_t pm8001_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec) { pm8001_chip_interrupt_disable(pm8001_ha, vec); pm8001_dbg(pm8001_ha, DEVIO, "irq vec %d, ODMR:0x%x\n", vec, pm8001_cr32(pm8001_ha, 0, 0x30)); process_oq(pm8001_ha, vec); pm8001_chip_interrupt_enable(pm8001_ha, vec); return IRQ_HANDLED; } static int send_task_abort(struct pm8001_hba_info *pm8001_ha, u32 opc, u32 dev_id, u8 flag, u32 task_tag, u32 cmd_tag) { struct task_abort_req task_abort; struct inbound_queue_table *circularQ; int ret; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&task_abort, 0, sizeof(task_abort)); if (ABORT_SINGLE == (flag & ABORT_MASK)) { task_abort.abort_all = 0; task_abort.device_id = cpu_to_le32(dev_id); task_abort.tag_to_abort = cpu_to_le32(task_tag); task_abort.tag = cpu_to_le32(cmd_tag); } else if (ABORT_ALL == (flag & ABORT_MASK)) { task_abort.abort_all = cpu_to_le32(1); task_abort.device_id = cpu_to_le32(dev_id); task_abort.tag = cpu_to_le32(cmd_tag); } ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort, sizeof(task_abort), 0); return ret; } /* * pm8001_chip_abort_task - SAS abort task when error or exception happened. */ int pm8001_chip_abort_task(struct pm8001_hba_info *pm8001_ha, struct pm8001_device *pm8001_dev, u8 flag, u32 task_tag, u32 cmd_tag) { u32 opc, device_id; int rc = TMF_RESP_FUNC_FAILED; pm8001_dbg(pm8001_ha, EH, "cmd_tag = %x, abort task tag = 0x%x\n", cmd_tag, task_tag); if (pm8001_dev->dev_type == SAS_END_DEVICE) opc = OPC_INB_SSP_ABORT; else if (pm8001_dev->dev_type == SAS_SATA_DEV) opc = OPC_INB_SATA_ABORT; else opc = OPC_INB_SMP_ABORT;/* SMP */ device_id = pm8001_dev->device_id; rc = send_task_abort(pm8001_ha, opc, device_id, flag, task_tag, cmd_tag); if (rc != TMF_RESP_FUNC_COMPLETE) pm8001_dbg(pm8001_ha, EH, "rc= %d\n", rc); return rc; } /** * pm8001_chip_ssp_tm_req - built the task management command. * @pm8001_ha: our hba card information. * @ccb: the ccb information. * @tmf: task management function. */ int pm8001_chip_ssp_tm_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb, struct pm8001_tmf_task *tmf) { struct sas_task *task = ccb->task; struct domain_device *dev = task->dev; struct pm8001_device *pm8001_dev = dev->lldd_dev; u32 opc = OPC_INB_SSPINITMSTART; struct inbound_queue_table *circularQ; struct ssp_ini_tm_start_req sspTMCmd; int ret; memset(&sspTMCmd, 0, sizeof(sspTMCmd)); sspTMCmd.device_id = cpu_to_le32(pm8001_dev->device_id); sspTMCmd.relate_tag = cpu_to_le32(tmf->tag_of_task_to_be_managed); sspTMCmd.tmf = cpu_to_le32(tmf->tmf); memcpy(sspTMCmd.lun, task->ssp_task.LUN, 8); sspTMCmd.tag = cpu_to_le32(ccb->ccb_tag); if (pm8001_ha->chip_id != chip_8001) sspTMCmd.ds_ads_m = cpu_to_le32(0x08); circularQ = &pm8001_ha->inbnd_q_tbl[0]; ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sspTMCmd, sizeof(sspTMCmd), 0); return ret; } int pm8001_chip_get_nvmd_req(struct pm8001_hba_info *pm8001_ha, void *payload) { u32 opc = OPC_INB_GET_NVMD_DATA; u32 nvmd_type; int rc; u32 tag; struct pm8001_ccb_info *ccb; struct inbound_queue_table *circularQ; struct get_nvm_data_req nvmd_req; struct fw_control_ex *fw_control_context; struct pm8001_ioctl_payload *ioctl_payload = payload; nvmd_type = ioctl_payload->minor_function; fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); if (!fw_control_context) return -ENOMEM; fw_control_context->usrAddr = (u8 *)ioctl_payload->func_specific; fw_control_context->len = ioctl_payload->rd_length; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memset(&nvmd_req, 0, sizeof(nvmd_req)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) { kfree(fw_control_context); return rc; } ccb = &pm8001_ha->ccb_info[tag]; ccb->ccb_tag = tag; ccb->fw_control_context = fw_control_context; nvmd_req.tag = cpu_to_le32(tag); switch (nvmd_type) { case TWI_DEVICE: { u32 twi_addr, twi_page_size; twi_addr = 0xa8; twi_page_size = 2; nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | twi_page_size << 8 | TWI_DEVICE); nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); nvmd_req.resp_addr_hi = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); nvmd_req.resp_addr_lo = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); break; } case C_SEEPROM: { nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); nvmd_req.resp_addr_hi = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); nvmd_req.resp_addr_lo = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); break; } case VPD_FLASH: { nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); nvmd_req.resp_addr_hi = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); nvmd_req.resp_addr_lo = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); break; } case EXPAN_ROM: { nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); nvmd_req.resp_addr_hi = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); nvmd_req.resp_addr_lo = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); break; } case IOP_RDUMP: { nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | IOP_RDUMP); nvmd_req.resp_len = cpu_to_le32(ioctl_payload->rd_length); nvmd_req.vpd_offset = cpu_to_le32(ioctl_payload->offset); nvmd_req.resp_addr_hi = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); nvmd_req.resp_addr_lo = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); break; } default: break; } rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req, sizeof(nvmd_req), 0); if (rc) { kfree(fw_control_context); pm8001_tag_free(pm8001_ha, tag); } return rc; } int pm8001_chip_set_nvmd_req(struct pm8001_hba_info *pm8001_ha, void *payload) { u32 opc = OPC_INB_SET_NVMD_DATA; u32 nvmd_type; int rc; u32 tag; struct pm8001_ccb_info *ccb; struct inbound_queue_table *circularQ; struct set_nvm_data_req nvmd_req; struct fw_control_ex *fw_control_context; struct pm8001_ioctl_payload *ioctl_payload = payload; nvmd_type = ioctl_payload->minor_function; fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); if (!fw_control_context) return -ENOMEM; circularQ = &pm8001_ha->inbnd_q_tbl[0]; memcpy(pm8001_ha->memoryMap.region[NVMD].virt_ptr, &ioctl_payload->func_specific, ioctl_payload->wr_length); memset(&nvmd_req, 0, sizeof(nvmd_req)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) { kfree(fw_control_context); return -EBUSY; } ccb = &pm8001_ha->ccb_info[tag]; ccb->fw_control_context = fw_control_context; ccb->ccb_tag = tag; nvmd_req.tag = cpu_to_le32(tag); switch (nvmd_type) { case TWI_DEVICE: { u32 twi_addr, twi_page_size; twi_addr = 0xa8; twi_page_size = 2; nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | twi_addr << 16 | twi_page_size << 8 | TWI_DEVICE); nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); nvmd_req.resp_addr_hi = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); nvmd_req.resp_addr_lo = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); break; } case C_SEEPROM: nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | C_SEEPROM); nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); nvmd_req.resp_addr_hi = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); nvmd_req.resp_addr_lo = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); break; case VPD_FLASH: nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | VPD_FLASH); nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); nvmd_req.resp_addr_hi = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); nvmd_req.resp_addr_lo = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); break; case EXPAN_ROM: nvmd_req.len_ir_vpdd = cpu_to_le32(IPMode | EXPAN_ROM); nvmd_req.resp_len = cpu_to_le32(ioctl_payload->wr_length); nvmd_req.reserved[0] = cpu_to_le32(0xFEDCBA98); nvmd_req.resp_addr_hi = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_hi); nvmd_req.resp_addr_lo = cpu_to_le32(pm8001_ha->memoryMap.region[NVMD].phys_addr_lo); break; default: break; } rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &nvmd_req, sizeof(nvmd_req), 0); if (rc) { kfree(fw_control_context); pm8001_tag_free(pm8001_ha, tag); } return rc; } /** * pm8001_chip_fw_flash_update_build - support the firmware update operation * @pm8001_ha: our hba card information. * @fw_flash_updata_info: firmware flash update param * @tag: Tag to apply to the payload */ int pm8001_chip_fw_flash_update_build(struct pm8001_hba_info *pm8001_ha, void *fw_flash_updata_info, u32 tag) { struct fw_flash_Update_req payload; struct fw_flash_updata_info *info; struct inbound_queue_table *circularQ; int ret; u32 opc = OPC_INB_FW_FLASH_UPDATE; memset(&payload, 0, sizeof(struct fw_flash_Update_req)); circularQ = &pm8001_ha->inbnd_q_tbl[0]; info = fw_flash_updata_info; payload.tag = cpu_to_le32(tag); payload.cur_image_len = cpu_to_le32(info->cur_image_len); payload.cur_image_offset = cpu_to_le32(info->cur_image_offset); payload.total_image_len = cpu_to_le32(info->total_image_len); payload.len = info->sgl.im_len.len ; payload.sgl_addr_lo = cpu_to_le32(lower_32_bits(le64_to_cpu(info->sgl.addr))); payload.sgl_addr_hi = cpu_to_le32(upper_32_bits(le64_to_cpu(info->sgl.addr))); ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); return ret; } int pm8001_chip_fw_flash_update_req(struct pm8001_hba_info *pm8001_ha, void *payload) { struct fw_flash_updata_info flash_update_info; struct fw_control_info *fw_control; struct fw_control_ex *fw_control_context; int rc; u32 tag; struct pm8001_ccb_info *ccb; void *buffer = pm8001_ha->memoryMap.region[FW_FLASH].virt_ptr; dma_addr_t phys_addr = pm8001_ha->memoryMap.region[FW_FLASH].phys_addr; struct pm8001_ioctl_payload *ioctl_payload = payload; fw_control_context = kzalloc(sizeof(struct fw_control_ex), GFP_KERNEL); if (!fw_control_context) return -ENOMEM; fw_control = (struct fw_control_info *)&ioctl_payload->func_specific; pm8001_dbg(pm8001_ha, DEVIO, "dma fw_control context input length :%x\n", fw_control->len); memcpy(buffer, fw_control->buffer, fw_control->len); flash_update_info.sgl.addr = cpu_to_le64(phys_addr); flash_update_info.sgl.im_len.len = cpu_to_le32(fw_control->len); flash_update_info.sgl.im_len.e = 0; flash_update_info.cur_image_offset = fw_control->offset; flash_update_info.cur_image_len = fw_control->len; flash_update_info.total_image_len = fw_control->size; fw_control_context->fw_control = fw_control; fw_control_context->virtAddr = buffer; fw_control_context->phys_addr = phys_addr; fw_control_context->len = fw_control->len; rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) { kfree(fw_control_context); return -EBUSY; } ccb = &pm8001_ha->ccb_info[tag]; ccb->fw_control_context = fw_control_context; ccb->ccb_tag = tag; rc = pm8001_chip_fw_flash_update_build(pm8001_ha, &flash_update_info, tag); if (rc) { kfree(fw_control_context); pm8001_tag_free(pm8001_ha, tag); } return rc; } ssize_t pm8001_get_gsm_dump(struct device *cdev, u32 length, char *buf) { u32 value, rem, offset = 0, bar = 0; u32 index, work_offset, dw_length; u32 shift_value, gsm_base, gsm_dump_offset; char *direct_data; struct Scsi_Host *shost = class_to_shost(cdev); struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; direct_data = buf; gsm_dump_offset = pm8001_ha->fatal_forensic_shift_offset; /* check max is 1 Mbytes */ if ((length > 0x100000) || (gsm_dump_offset & 3) || ((gsm_dump_offset + length) > 0x1000000)) return -EINVAL; if (pm8001_ha->chip_id == chip_8001) bar = 2; else bar = 1; work_offset = gsm_dump_offset & 0xFFFF0000; offset = gsm_dump_offset & 0x0000FFFF; gsm_dump_offset = work_offset; /* adjust length to dword boundary */ rem = length & 3; dw_length = length >> 2; for (index = 0; index < dw_length; index++) { if ((work_offset + offset) & 0xFFFF0000) { if (pm8001_ha->chip_id == chip_8001) shift_value = ((gsm_dump_offset + offset) & SHIFT_REG_64K_MASK); else shift_value = (((gsm_dump_offset + offset) & SHIFT_REG_64K_MASK) >> SHIFT_REG_BIT_SHIFT); if (pm8001_ha->chip_id == chip_8001) { gsm_base = GSM_BASE; if (-1 == pm8001_bar4_shift(pm8001_ha, (gsm_base + shift_value))) return -EIO; } else { gsm_base = 0; if (-1 == pm80xx_bar4_shift(pm8001_ha, (gsm_base + shift_value))) return -EIO; } gsm_dump_offset = (gsm_dump_offset + offset) & 0xFFFF0000; work_offset = 0; offset = offset & 0x0000FFFF; } value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & 0x0000FFFF); direct_data += sprintf(direct_data, "%08x ", value); offset += 4; } if (rem != 0) { value = pm8001_cr32(pm8001_ha, bar, (work_offset + offset) & 0x0000FFFF); /* xfr for non_dw */ direct_data += sprintf(direct_data, "%08x ", value); } /* Shift back to BAR4 original address */ if (-1 == pm8001_bar4_shift(pm8001_ha, 0)) return -EIO; pm8001_ha->fatal_forensic_shift_offset += 1024; if (pm8001_ha->fatal_forensic_shift_offset >= 0x100000) pm8001_ha->fatal_forensic_shift_offset = 0; return direct_data - buf; } int pm8001_chip_set_dev_state_req(struct pm8001_hba_info *pm8001_ha, struct pm8001_device *pm8001_dev, u32 state) { struct set_dev_state_req payload; struct inbound_queue_table *circularQ; struct pm8001_ccb_info *ccb; int rc; u32 tag; u32 opc = OPC_INB_SET_DEVICE_STATE; memset(&payload, 0, sizeof(payload)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) return -1; ccb = &pm8001_ha->ccb_info[tag]; ccb->ccb_tag = tag; ccb->device = pm8001_dev; circularQ = &pm8001_ha->inbnd_q_tbl[0]; payload.tag = cpu_to_le32(tag); payload.device_id = cpu_to_le32(pm8001_dev->device_id); payload.nds = cpu_to_le32(state); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); if (rc) pm8001_tag_free(pm8001_ha, tag); return rc; } static int pm8001_chip_sas_re_initialization(struct pm8001_hba_info *pm8001_ha) { struct sas_re_initialization_req payload; struct inbound_queue_table *circularQ; struct pm8001_ccb_info *ccb; int rc; u32 tag; u32 opc = OPC_INB_SAS_RE_INITIALIZE; memset(&payload, 0, sizeof(payload)); rc = pm8001_tag_alloc(pm8001_ha, &tag); if (rc) return -ENOMEM; ccb = &pm8001_ha->ccb_info[tag]; ccb->ccb_tag = tag; circularQ = &pm8001_ha->inbnd_q_tbl[0]; payload.tag = cpu_to_le32(tag); payload.SSAHOLT = cpu_to_le32(0xd << 25); payload.sata_hol_tmo = cpu_to_le32(80); payload.open_reject_cmdretries_data_retries = cpu_to_le32(0xff00ff); rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, sizeof(payload), 0); if (rc) pm8001_tag_free(pm8001_ha, tag); return rc; } const struct pm8001_dispatch pm8001_8001_dispatch = { .name = "pmc8001", .chip_init = pm8001_chip_init, .chip_soft_rst = pm8001_chip_soft_rst, .chip_rst = pm8001_hw_chip_rst, .chip_iounmap = pm8001_chip_iounmap, .isr = pm8001_chip_isr, .is_our_interrupt = pm8001_chip_is_our_interrupt, .isr_process_oq = process_oq, .interrupt_enable = pm8001_chip_interrupt_enable, .interrupt_disable = pm8001_chip_interrupt_disable, .make_prd = pm8001_chip_make_sg, .smp_req = pm8001_chip_smp_req, .ssp_io_req = pm8001_chip_ssp_io_req, .sata_req = pm8001_chip_sata_req, .phy_start_req = pm8001_chip_phy_start_req, .phy_stop_req = pm8001_chip_phy_stop_req, .reg_dev_req = pm8001_chip_reg_dev_req, .dereg_dev_req = pm8001_chip_dereg_dev_req, .phy_ctl_req = pm8001_chip_phy_ctl_req, .task_abort = pm8001_chip_abort_task, .ssp_tm_req = pm8001_chip_ssp_tm_req, .get_nvmd_req = pm8001_chip_get_nvmd_req, .set_nvmd_req = pm8001_chip_set_nvmd_req, .fw_flash_update_req = pm8001_chip_fw_flash_update_req, .set_dev_state_req = pm8001_chip_set_dev_state_req, .sas_re_init_req = pm8001_chip_sas_re_initialization, .fatal_errors = pm80xx_fatal_errors, };