// SPDX-License-Identifier: GPL-2.0 /* * Original code based Host AP (software wireless LAN access point) driver * for Intersil Prism2/2.5/3 - hostap.o module, common routines * * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen * * Copyright (c) 2002-2003, Jouni Malinen * Copyright (c) 2004, Intel Corporation * * Few modifications for Realtek's Wi-Fi drivers by * Andrea Merello * * A special thanks goes to Realtek for their support ! */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rtllib.h" #include "dot11d.h" static void rtllib_rx_mgt(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *stats); static inline void rtllib_monitor_rx(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_status, size_t hdr_length) { skb->dev = ieee->dev; skb_reset_mac_header(skb); skb_pull(skb, hdr_length); skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_80211_RAW); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } /* Called only as a tasklet (software IRQ) */ static struct rtllib_frag_entry * rtllib_frag_cache_find(struct rtllib_device *ieee, unsigned int seq, unsigned int frag, u8 tid, u8 *src, u8 *dst) { struct rtllib_frag_entry *entry; int i; for (i = 0; i < RTLLIB_FRAG_CACHE_LEN; i++) { entry = &ieee->frag_cache[tid][i]; if (entry->skb != NULL && time_after(jiffies, entry->first_frag_time + 2 * HZ)) { netdev_dbg(ieee->dev, "expiring fragment cache entry seq=%u last_frag=%u\n", entry->seq, entry->last_frag); dev_kfree_skb_any(entry->skb); entry->skb = NULL; } if (entry->skb != NULL && entry->seq == seq && (entry->last_frag + 1 == frag || frag == -1) && memcmp(entry->src_addr, src, ETH_ALEN) == 0 && memcmp(entry->dst_addr, dst, ETH_ALEN) == 0) return entry; } return NULL; } /* Called only as a tasklet (software IRQ) */ static struct sk_buff * rtllib_frag_cache_get(struct rtllib_device *ieee, struct rtllib_hdr_4addr *hdr) { struct sk_buff *skb = NULL; u16 fc = le16_to_cpu(hdr->frame_ctl); u16 sc = le16_to_cpu(hdr->seq_ctl); unsigned int frag = WLAN_GET_SEQ_FRAG(sc); unsigned int seq = WLAN_GET_SEQ_SEQ(sc); struct rtllib_frag_entry *entry; struct rtllib_hdr_3addrqos *hdr_3addrqos; struct rtllib_hdr_4addrqos *hdr_4addrqos; u8 tid; if (((fc & RTLLIB_FCTL_DSTODS) == RTLLIB_FCTL_DSTODS) && RTLLIB_QOS_HAS_SEQ(fc)) { hdr_4addrqos = (struct rtllib_hdr_4addrqos *)hdr; tid = le16_to_cpu(hdr_4addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else if (RTLLIB_QOS_HAS_SEQ(fc)) { hdr_3addrqos = (struct rtllib_hdr_3addrqos *)hdr; tid = le16_to_cpu(hdr_3addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else { tid = 0; } if (frag == 0) { /* Reserve enough space to fit maximum frame length */ skb = dev_alloc_skb(ieee->dev->mtu + sizeof(struct rtllib_hdr_4addr) + 8 /* LLC */ + 2 /* alignment */ + 8 /* WEP */ + ETH_ALEN /* WDS */ + /* QOS Control */ (RTLLIB_QOS_HAS_SEQ(fc) ? 2 : 0)); if (!skb) return NULL; entry = &ieee->frag_cache[tid][ieee->frag_next_idx[tid]]; ieee->frag_next_idx[tid]++; if (ieee->frag_next_idx[tid] >= RTLLIB_FRAG_CACHE_LEN) ieee->frag_next_idx[tid] = 0; if (entry->skb != NULL) dev_kfree_skb_any(entry->skb); entry->first_frag_time = jiffies; entry->seq = seq; entry->last_frag = frag; entry->skb = skb; ether_addr_copy(entry->src_addr, hdr->addr2); ether_addr_copy(entry->dst_addr, hdr->addr1); } else { /* received a fragment of a frame for which the head fragment * should have already been received */ entry = rtllib_frag_cache_find(ieee, seq, frag, tid, hdr->addr2, hdr->addr1); if (entry != NULL) { entry->last_frag = frag; skb = entry->skb; } } return skb; } /* Called only as a tasklet (software IRQ) */ static int rtllib_frag_cache_invalidate(struct rtllib_device *ieee, struct rtllib_hdr_4addr *hdr) { u16 fc = le16_to_cpu(hdr->frame_ctl); u16 sc = le16_to_cpu(hdr->seq_ctl); unsigned int seq = WLAN_GET_SEQ_SEQ(sc); struct rtllib_frag_entry *entry; struct rtllib_hdr_3addrqos *hdr_3addrqos; struct rtllib_hdr_4addrqos *hdr_4addrqos; u8 tid; if (((fc & RTLLIB_FCTL_DSTODS) == RTLLIB_FCTL_DSTODS) && RTLLIB_QOS_HAS_SEQ(fc)) { hdr_4addrqos = (struct rtllib_hdr_4addrqos *)hdr; tid = le16_to_cpu(hdr_4addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else if (RTLLIB_QOS_HAS_SEQ(fc)) { hdr_3addrqos = (struct rtllib_hdr_3addrqos *)hdr; tid = le16_to_cpu(hdr_3addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else { tid = 0; } entry = rtllib_frag_cache_find(ieee, seq, -1, tid, hdr->addr2, hdr->addr1); if (entry == NULL) { netdev_dbg(ieee->dev, "Couldn't invalidate fragment cache entry (seq=%u)\n", seq); return -1; } entry->skb = NULL; return 0; } /* rtllib_rx_frame_mgtmt * * Responsible for handling management control frames * * Called by rtllib_rx */ static inline int rtllib_rx_frame_mgmt(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats, u16 type, u16 stype) { /* On the struct stats definition there is written that * this is not mandatory.... but seems that the probe * response parser uses it */ struct rtllib_hdr_3addr *hdr = (struct rtllib_hdr_3addr *)skb->data; rx_stats->len = skb->len; rtllib_rx_mgt(ieee, skb, rx_stats); if ((memcmp(hdr->addr1, ieee->dev->dev_addr, ETH_ALEN))) { dev_kfree_skb_any(skb); return 0; } rtllib_rx_frame_softmac(ieee, skb, rx_stats, type, stype); dev_kfree_skb_any(skb); return 0; } /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation * Ethernet-II snap header (RFC1042 for most EtherTypes) */ static unsigned char rfc1042_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ static unsigned char bridge_tunnel_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; /* No encapsulation header if EtherType < 0x600 (=length) */ /* Called by rtllib_rx_frame_decrypt */ static int rtllib_is_eapol_frame(struct rtllib_device *ieee, struct sk_buff *skb, size_t hdrlen) { struct net_device *dev = ieee->dev; u16 fc, ethertype; struct rtllib_hdr_4addr *hdr; u8 *pos; if (skb->len < 24) return 0; hdr = (struct rtllib_hdr_4addr *) skb->data; fc = le16_to_cpu(hdr->frame_ctl); /* check that the frame is unicast frame to us */ if ((fc & (RTLLIB_FCTL_TODS | RTLLIB_FCTL_FROMDS)) == RTLLIB_FCTL_TODS && memcmp(hdr->addr1, dev->dev_addr, ETH_ALEN) == 0 && memcmp(hdr->addr3, dev->dev_addr, ETH_ALEN) == 0) { /* ToDS frame with own addr BSSID and DA */ } else if ((fc & (RTLLIB_FCTL_TODS | RTLLIB_FCTL_FROMDS)) == RTLLIB_FCTL_FROMDS && memcmp(hdr->addr1, dev->dev_addr, ETH_ALEN) == 0) { /* FromDS frame with own addr as DA */ } else return 0; if (skb->len < 24 + 8) return 0; /* check for port access entity Ethernet type */ pos = skb->data + hdrlen; ethertype = (pos[6] << 8) | pos[7]; if (ethertype == ETH_P_PAE) return 1; return 0; } /* Called only as a tasklet (software IRQ), by rtllib_rx */ static inline int rtllib_rx_frame_decrypt(struct rtllib_device *ieee, struct sk_buff *skb, struct lib80211_crypt_data *crypt) { struct rtllib_hdr_4addr *hdr; int res, hdrlen; if (crypt == NULL || crypt->ops->decrypt_mpdu == NULL) return 0; if (ieee->hwsec_active) { struct cb_desc *tcb_desc = (struct cb_desc *) (skb->cb + MAX_DEV_ADDR_SIZE); tcb_desc->bHwSec = 1; if (ieee->need_sw_enc) tcb_desc->bHwSec = 0; } hdr = (struct rtllib_hdr_4addr *) skb->data; hdrlen = rtllib_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); atomic_inc(&crypt->refcnt); res = crypt->ops->decrypt_mpdu(skb, hdrlen, crypt->priv); atomic_dec(&crypt->refcnt); if (res < 0) { netdev_dbg(ieee->dev, "decryption failed (SA= %pM) res=%d\n", hdr->addr2, res); if (res == -2) netdev_dbg(ieee->dev, "Decryption failed ICV mismatch (key %d)\n", skb->data[hdrlen + 3] >> 6); return -1; } return res; } /* Called only as a tasklet (software IRQ), by rtllib_rx */ static inline int rtllib_rx_frame_decrypt_msdu(struct rtllib_device *ieee, struct sk_buff *skb, int keyidx, struct lib80211_crypt_data *crypt) { struct rtllib_hdr_4addr *hdr; int res, hdrlen; if (crypt == NULL || crypt->ops->decrypt_msdu == NULL) return 0; if (ieee->hwsec_active) { struct cb_desc *tcb_desc = (struct cb_desc *) (skb->cb + MAX_DEV_ADDR_SIZE); tcb_desc->bHwSec = 1; if (ieee->need_sw_enc) tcb_desc->bHwSec = 0; } hdr = (struct rtllib_hdr_4addr *) skb->data; hdrlen = rtllib_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); atomic_inc(&crypt->refcnt); res = crypt->ops->decrypt_msdu(skb, keyidx, hdrlen, crypt->priv); atomic_dec(&crypt->refcnt); if (res < 0) { netdev_dbg(ieee->dev, "MSDU decryption/MIC verification failed (SA= %pM keyidx=%d)\n", hdr->addr2, keyidx); return -1; } return 0; } /* this function is stolen from ipw2200 driver*/ #define IEEE_PACKET_RETRY_TIME (5*HZ) static int is_duplicate_packet(struct rtllib_device *ieee, struct rtllib_hdr_4addr *header) { u16 fc = le16_to_cpu(header->frame_ctl); u16 sc = le16_to_cpu(header->seq_ctl); u16 seq = WLAN_GET_SEQ_SEQ(sc); u16 frag = WLAN_GET_SEQ_FRAG(sc); u16 *last_seq, *last_frag; unsigned long *last_time; struct rtllib_hdr_3addrqos *hdr_3addrqos; struct rtllib_hdr_4addrqos *hdr_4addrqos; u8 tid; if (((fc & RTLLIB_FCTL_DSTODS) == RTLLIB_FCTL_DSTODS) && RTLLIB_QOS_HAS_SEQ(fc)) { hdr_4addrqos = (struct rtllib_hdr_4addrqos *)header; tid = le16_to_cpu(hdr_4addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else if (RTLLIB_QOS_HAS_SEQ(fc)) { hdr_3addrqos = (struct rtllib_hdr_3addrqos *)header; tid = le16_to_cpu(hdr_3addrqos->qos_ctl) & RTLLIB_QCTL_TID; tid = UP2AC(tid); tid++; } else { tid = 0; } switch (ieee->iw_mode) { case IW_MODE_ADHOC: { struct list_head *p; struct ieee_ibss_seq *entry = NULL; u8 *mac = header->addr2; int index = mac[5] % IEEE_IBSS_MAC_HASH_SIZE; list_for_each(p, &ieee->ibss_mac_hash[index]) { entry = list_entry(p, struct ieee_ibss_seq, list); if (!memcmp(entry->mac, mac, ETH_ALEN)) break; } if (p == &ieee->ibss_mac_hash[index]) { entry = kmalloc(sizeof(struct ieee_ibss_seq), GFP_ATOMIC); if (!entry) return 0; ether_addr_copy(entry->mac, mac); entry->seq_num[tid] = seq; entry->frag_num[tid] = frag; entry->packet_time[tid] = jiffies; list_add(&entry->list, &ieee->ibss_mac_hash[index]); return 0; } last_seq = &entry->seq_num[tid]; last_frag = &entry->frag_num[tid]; last_time = &entry->packet_time[tid]; break; } case IW_MODE_INFRA: last_seq = &ieee->last_rxseq_num[tid]; last_frag = &ieee->last_rxfrag_num[tid]; last_time = &ieee->last_packet_time[tid]; break; default: return 0; } if ((*last_seq == seq) && time_after(*last_time + IEEE_PACKET_RETRY_TIME, jiffies)) { if (*last_frag == frag) goto drop; if (*last_frag + 1 != frag) /* out-of-order fragment */ goto drop; } else *last_seq = seq; *last_frag = frag; *last_time = jiffies; return 0; drop: return 1; } static bool AddReorderEntry(struct rx_ts_record *pTS, struct rx_reorder_entry *pReorderEntry) { struct list_head *pList = &pTS->rx_pending_pkt_list; while (pList->next != &pTS->rx_pending_pkt_list) { if (SN_LESS(pReorderEntry->SeqNum, ((struct rx_reorder_entry *) list_entry(pList->next, struct rx_reorder_entry, List))->SeqNum)) pList = pList->next; else if (SN_EQUAL(pReorderEntry->SeqNum, ((struct rx_reorder_entry *)list_entry(pList->next, struct rx_reorder_entry, List))->SeqNum)) return false; else break; } pReorderEntry->List.next = pList->next; pReorderEntry->List.next->prev = &pReorderEntry->List; pReorderEntry->List.prev = pList; pList->next = &pReorderEntry->List; return true; } void rtllib_indicate_packets(struct rtllib_device *ieee, struct rtllib_rxb **prxbIndicateArray, u8 index) { struct net_device_stats *stats = &ieee->stats; u8 i = 0, j = 0; u16 ethertype; for (j = 0; j < index; j++) { struct rtllib_rxb *prxb = prxbIndicateArray[j]; for (i = 0; i < prxb->nr_subframes; i++) { struct sk_buff *sub_skb = prxb->subframes[i]; /* convert hdr + possible LLC headers into Ethernet header */ ethertype = (sub_skb->data[6] << 8) | sub_skb->data[7]; if (sub_skb->len >= 8 && ((memcmp(sub_skb->data, rfc1042_header, SNAP_SIZE) == 0 && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || memcmp(sub_skb->data, bridge_tunnel_header, SNAP_SIZE) == 0)) { /* remove RFC1042 or Bridge-Tunnel encapsulation * and replace EtherType */ skb_pull(sub_skb, SNAP_SIZE); memcpy(skb_push(sub_skb, ETH_ALEN), prxb->src, ETH_ALEN); memcpy(skb_push(sub_skb, ETH_ALEN), prxb->dst, ETH_ALEN); } else { u16 len; /* Leave Ethernet header part of hdr and full payload */ len = sub_skb->len; memcpy(skb_push(sub_skb, 2), &len, 2); memcpy(skb_push(sub_skb, ETH_ALEN), prxb->src, ETH_ALEN); memcpy(skb_push(sub_skb, ETH_ALEN), prxb->dst, ETH_ALEN); } /* Indicate the packets to upper layer */ if (sub_skb) { stats->rx_packets++; stats->rx_bytes += sub_skb->len; memset(sub_skb->cb, 0, sizeof(sub_skb->cb)); sub_skb->protocol = eth_type_trans(sub_skb, ieee->dev); sub_skb->dev = ieee->dev; sub_skb->dev->stats.rx_packets++; sub_skb->dev->stats.rx_bytes += sub_skb->len; /* 802.11 crc not sufficient */ sub_skb->ip_summed = CHECKSUM_NONE; ieee->last_rx_ps_time = jiffies; netif_rx(sub_skb); } } kfree(prxb); prxb = NULL; } } void rtllib_FlushRxTsPendingPkts(struct rtllib_device *ieee, struct rx_ts_record *pTS) { struct rx_reorder_entry *pRxReorderEntry; u8 RfdCnt = 0; del_timer_sync(&pTS->rx_pkt_pending_timer); while (!list_empty(&pTS->rx_pending_pkt_list)) { if (RfdCnt >= REORDER_WIN_SIZE) { netdev_info(ieee->dev, "-------------->%s() error! RfdCnt >= REORDER_WIN_SIZE\n", __func__); break; } pRxReorderEntry = (struct rx_reorder_entry *) list_entry(pTS->rx_pending_pkt_list.prev, struct rx_reorder_entry, List); netdev_dbg(ieee->dev, "%s(): Indicate SeqNum %d!\n", __func__, pRxReorderEntry->SeqNum); list_del_init(&pRxReorderEntry->List); ieee->RfdArray[RfdCnt] = pRxReorderEntry->prxb; RfdCnt = RfdCnt + 1; list_add_tail(&pRxReorderEntry->List, &ieee->RxReorder_Unused_List); } rtllib_indicate_packets(ieee, ieee->RfdArray, RfdCnt); pTS->rx_indicate_seq = 0xffff; } static void RxReorderIndicatePacket(struct rtllib_device *ieee, struct rtllib_rxb *prxb, struct rx_ts_record *pTS, u16 SeqNum) { struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; struct rx_reorder_entry *pReorderEntry = NULL; u8 WinSize = pHTInfo->RxReorderWinSize; u16 WinEnd = 0; u8 index = 0; bool bMatchWinStart = false, bPktInBuf = false; unsigned long flags; netdev_dbg(ieee->dev, "%s(): Seq is %d, pTS->rx_indicate_seq is %d, WinSize is %d\n", __func__, SeqNum, pTS->rx_indicate_seq, WinSize); spin_lock_irqsave(&(ieee->reorder_spinlock), flags); WinEnd = (pTS->rx_indicate_seq + WinSize - 1) % 4096; /* Rx Reorder initialize condition.*/ if (pTS->rx_indicate_seq == 0xffff) pTS->rx_indicate_seq = SeqNum; /* Drop out the packet which SeqNum is smaller than WinStart */ if (SN_LESS(SeqNum, pTS->rx_indicate_seq)) { netdev_dbg(ieee->dev, "Packet Drop! IndicateSeq: %d, NewSeq: %d\n", pTS->rx_indicate_seq, SeqNum); pHTInfo->RxReorderDropCounter++; { int i; for (i = 0; i < prxb->nr_subframes; i++) dev_kfree_skb(prxb->subframes[i]); kfree(prxb); prxb = NULL; } spin_unlock_irqrestore(&(ieee->reorder_spinlock), flags); return; } /* Sliding window manipulation. Conditions includes: * 1. Incoming SeqNum is equal to WinStart =>Window shift 1 * 2. Incoming SeqNum is larger than the WinEnd => Window shift N */ if (SN_EQUAL(SeqNum, pTS->rx_indicate_seq)) { pTS->rx_indicate_seq = (pTS->rx_indicate_seq + 1) % 4096; bMatchWinStart = true; } else if (SN_LESS(WinEnd, SeqNum)) { if (SeqNum >= (WinSize - 1)) pTS->rx_indicate_seq = SeqNum + 1 - WinSize; else pTS->rx_indicate_seq = 4095 - (WinSize - (SeqNum + 1)) + 1; netdev_dbg(ieee->dev, "Window Shift! IndicateSeq: %d, NewSeq: %d\n", pTS->rx_indicate_seq, SeqNum); } /* Indication process. * After Packet dropping and Sliding Window shifting as above, we can * now just indicate the packets with the SeqNum smaller than latest * WinStart and struct buffer other packets. * * For Rx Reorder condition: * 1. All packets with SeqNum smaller than WinStart => Indicate * 2. All packets with SeqNum larger than or equal to * WinStart => Buffer it. */ if (bMatchWinStart) { /* Current packet is going to be indicated.*/ netdev_dbg(ieee->dev, "Packets indication! IndicateSeq: %d, NewSeq: %d\n", pTS->rx_indicate_seq, SeqNum); ieee->prxbIndicateArray[0] = prxb; index = 1; } else { /* Current packet is going to be inserted into pending list.*/ if (!list_empty(&ieee->RxReorder_Unused_List)) { pReorderEntry = (struct rx_reorder_entry *) list_entry(ieee->RxReorder_Unused_List.next, struct rx_reorder_entry, List); list_del_init(&pReorderEntry->List); /* Make a reorder entry and insert * into a the packet list. */ pReorderEntry->SeqNum = SeqNum; pReorderEntry->prxb = prxb; if (!AddReorderEntry(pTS, pReorderEntry)) { int i; netdev_dbg(ieee->dev, "%s(): Duplicate packet is dropped. IndicateSeq: %d, NewSeq: %d\n", __func__, pTS->rx_indicate_seq, SeqNum); list_add_tail(&pReorderEntry->List, &ieee->RxReorder_Unused_List); for (i = 0; i < prxb->nr_subframes; i++) dev_kfree_skb(prxb->subframes[i]); kfree(prxb); prxb = NULL; } else { netdev_dbg(ieee->dev, "Pkt insert into struct buffer. IndicateSeq: %d, NewSeq: %d\n", pTS->rx_indicate_seq, SeqNum); } } else { /* Packets are dropped if there are not enough reorder * entries. This part should be modified!! We can just * indicate all the packets in struct buffer and get * reorder entries. */ netdev_err(ieee->dev, "%s(): There is no reorder entry! Packet is dropped!\n", __func__); { int i; for (i = 0; i < prxb->nr_subframes; i++) dev_kfree_skb(prxb->subframes[i]); kfree(prxb); prxb = NULL; } } } /* Check if there is any packet need indicate.*/ while (!list_empty(&pTS->rx_pending_pkt_list)) { netdev_dbg(ieee->dev, "%s(): start RREORDER indicate\n", __func__); pReorderEntry = (struct rx_reorder_entry *) list_entry(pTS->rx_pending_pkt_list.prev, struct rx_reorder_entry, List); if (SN_LESS(pReorderEntry->SeqNum, pTS->rx_indicate_seq) || SN_EQUAL(pReorderEntry->SeqNum, pTS->rx_indicate_seq)) { /* This protect struct buffer from overflow. */ if (index >= REORDER_WIN_SIZE) { netdev_err(ieee->dev, "%s(): Buffer overflow!\n", __func__); bPktInBuf = true; break; } list_del_init(&pReorderEntry->List); if (SN_EQUAL(pReorderEntry->SeqNum, pTS->rx_indicate_seq)) pTS->rx_indicate_seq = (pTS->rx_indicate_seq + 1) % 4096; ieee->prxbIndicateArray[index] = pReorderEntry->prxb; netdev_dbg(ieee->dev, "%s(): Indicate SeqNum %d!\n", __func__, pReorderEntry->SeqNum); index++; list_add_tail(&pReorderEntry->List, &ieee->RxReorder_Unused_List); } else { bPktInBuf = true; break; } } /* Handling pending timer. Set this timer to prevent from long time * Rx buffering. */ if (index > 0) { if (timer_pending(&pTS->rx_pkt_pending_timer)) del_timer_sync(&pTS->rx_pkt_pending_timer); pTS->rx_timeout_indicate_seq = 0xffff; if (index > REORDER_WIN_SIZE) { netdev_err(ieee->dev, "%s(): Rx Reorder struct buffer full!\n", __func__); spin_unlock_irqrestore(&(ieee->reorder_spinlock), flags); return; } rtllib_indicate_packets(ieee, ieee->prxbIndicateArray, index); bPktInBuf = false; } if (bPktInBuf && pTS->rx_timeout_indicate_seq == 0xffff) { netdev_dbg(ieee->dev, "%s(): SET rx timeout timer\n", __func__); pTS->rx_timeout_indicate_seq = pTS->rx_indicate_seq; mod_timer(&pTS->rx_pkt_pending_timer, jiffies + msecs_to_jiffies(pHTInfo->RxReorderPendingTime)); } spin_unlock_irqrestore(&(ieee->reorder_spinlock), flags); } static u8 parse_subframe(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats, struct rtllib_rxb *rxb, u8 *src, u8 *dst) { struct rtllib_hdr_3addr *hdr = (struct rtllib_hdr_3addr *)skb->data; u16 fc = le16_to_cpu(hdr->frame_ctl); u16 LLCOffset = sizeof(struct rtllib_hdr_3addr); u16 ChkLength; bool bIsAggregateFrame = false; u16 nSubframe_Length; u8 nPadding_Length = 0; u16 SeqNum = 0; struct sk_buff *sub_skb; /* just for debug purpose */ SeqNum = WLAN_GET_SEQ_SEQ(le16_to_cpu(hdr->seq_ctl)); if ((RTLLIB_QOS_HAS_SEQ(fc)) && (((union frameqos *)(skb->data + RTLLIB_3ADDR_LEN))->field.reserved)) bIsAggregateFrame = true; if (RTLLIB_QOS_HAS_SEQ(fc)) LLCOffset += 2; if (rx_stats->bContainHTC) LLCOffset += sHTCLng; ChkLength = LLCOffset; if (skb->len <= ChkLength) return 0; skb_pull(skb, LLCOffset); ieee->bIsAggregateFrame = bIsAggregateFrame; if (!bIsAggregateFrame) { rxb->nr_subframes = 1; /* altered by clark 3/30/2010 * The struct buffer size of the skb indicated to upper layer * must be less than 5000, or the defraged IP datagram * in the IP layer will exceed "ipfrag_high_tresh" and be * discarded. so there must not use the function * "skb_copy" and "skb_clone" for "skb". */ /* Allocate new skb for releasing to upper layer */ sub_skb = dev_alloc_skb(RTLLIB_SKBBUFFER_SIZE); if (!sub_skb) return 0; skb_reserve(sub_skb, 12); skb_put_data(sub_skb, skb->data, skb->len); sub_skb->dev = ieee->dev; rxb->subframes[0] = sub_skb; memcpy(rxb->src, src, ETH_ALEN); memcpy(rxb->dst, dst, ETH_ALEN); rxb->subframes[0]->dev = ieee->dev; return 1; } rxb->nr_subframes = 0; memcpy(rxb->src, src, ETH_ALEN); memcpy(rxb->dst, dst, ETH_ALEN); while (skb->len > ETHERNET_HEADER_SIZE) { /* Offset 12 denote 2 mac address */ nSubframe_Length = *((u16 *)(skb->data + 12)); nSubframe_Length = (nSubframe_Length >> 8) + (nSubframe_Length << 8); if (skb->len < (ETHERNET_HEADER_SIZE + nSubframe_Length)) { netdev_info(ieee->dev, "%s: A-MSDU parse error!! pRfd->nTotalSubframe : %d\n", __func__, rxb->nr_subframes); netdev_info(ieee->dev, "%s: A-MSDU parse error!! Subframe Length: %d\n", __func__, nSubframe_Length); netdev_info(ieee->dev, "nRemain_Length is %d and nSubframe_Length is : %d\n", skb->len, nSubframe_Length); netdev_info(ieee->dev, "The Packet SeqNum is %d\n", SeqNum); return 0; } /* move the data point to data content */ skb_pull(skb, ETHERNET_HEADER_SIZE); /* altered by clark 3/30/2010 * The struct buffer size of the skb indicated to upper layer * must be less than 5000, or the defraged IP datagram * in the IP layer will exceed "ipfrag_high_tresh" and be * discarded. so there must not use the function * "skb_copy" and "skb_clone" for "skb". */ /* Allocate new skb for releasing to upper layer */ sub_skb = dev_alloc_skb(nSubframe_Length + 12); if (!sub_skb) return 0; skb_reserve(sub_skb, 12); skb_put_data(sub_skb, skb->data, nSubframe_Length); sub_skb->dev = ieee->dev; rxb->subframes[rxb->nr_subframes++] = sub_skb; if (rxb->nr_subframes >= MAX_SUBFRAME_COUNT) { netdev_dbg(ieee->dev, "ParseSubframe(): Too many Subframes! Packets dropped!\n"); break; } skb_pull(skb, nSubframe_Length); if (skb->len != 0) { nPadding_Length = 4 - ((nSubframe_Length + ETHERNET_HEADER_SIZE) % 4); if (nPadding_Length == 4) nPadding_Length = 0; if (skb->len < nPadding_Length) return 0; skb_pull(skb, nPadding_Length); } } return rxb->nr_subframes; } static size_t rtllib_rx_get_hdrlen(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; u16 fc = le16_to_cpu(hdr->frame_ctl); size_t hdrlen; hdrlen = rtllib_get_hdrlen(fc); if (HTCCheck(ieee, skb->data)) { if (net_ratelimit()) netdev_info(ieee->dev, "%s: find HTCControl!\n", __func__); hdrlen += 4; rx_stats->bContainHTC = true; } if (RTLLIB_QOS_HAS_SEQ(fc)) rx_stats->bIsQosData = true; return hdrlen; } static int rtllib_rx_check_duplicate(struct rtllib_device *ieee, struct sk_buff *skb, u8 multicast) { struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; u16 fc, sc; u8 frag, type, stype; fc = le16_to_cpu(hdr->frame_ctl); type = WLAN_FC_GET_TYPE(fc); stype = WLAN_FC_GET_STYPE(fc); sc = le16_to_cpu(hdr->seq_ctl); frag = WLAN_GET_SEQ_FRAG(sc); if (!ieee->pHTInfo->bCurRxReorderEnable || !ieee->current_network.qos_data.active || !IsDataFrame(skb->data) || IsLegacyDataFrame(skb->data)) { if (!((type == RTLLIB_FTYPE_MGMT) && (stype == RTLLIB_STYPE_BEACON))) { if (is_duplicate_packet(ieee, hdr)) return -1; } } else { struct rx_ts_record *pRxTS = NULL; if (GetTs(ieee, (struct ts_common_info **) &pRxTS, hdr->addr2, (u8)Frame_QoSTID((u8 *)(skb->data)), RX_DIR, true)) { if ((fc & (1<<11)) && (frag == pRxTS->rx_last_frag_num) && (WLAN_GET_SEQ_SEQ(sc) == pRxTS->rx_last_seq_num)) return -1; pRxTS->rx_last_frag_num = frag; pRxTS->rx_last_seq_num = WLAN_GET_SEQ_SEQ(sc); } else { netdev_warn(ieee->dev, "%s(): No TS! Skip the check!\n", __func__); return -1; } } return 0; } static void rtllib_rx_extract_addr(struct rtllib_device *ieee, struct rtllib_hdr_4addr *hdr, u8 *dst, u8 *src, u8 *bssid) { u16 fc = le16_to_cpu(hdr->frame_ctl); switch (fc & (RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS)) { case RTLLIB_FCTL_FROMDS: ether_addr_copy(dst, hdr->addr1); ether_addr_copy(src, hdr->addr3); ether_addr_copy(bssid, hdr->addr2); break; case RTLLIB_FCTL_TODS: ether_addr_copy(dst, hdr->addr3); ether_addr_copy(src, hdr->addr2); ether_addr_copy(bssid, hdr->addr1); break; case RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS: ether_addr_copy(dst, hdr->addr3); ether_addr_copy(src, hdr->addr4); ether_addr_copy(bssid, ieee->current_network.bssid); break; default: ether_addr_copy(dst, hdr->addr1); ether_addr_copy(src, hdr->addr2); ether_addr_copy(bssid, hdr->addr3); break; } } static int rtllib_rx_data_filter(struct rtllib_device *ieee, u16 fc, u8 *dst, u8 *src, u8 *bssid, u8 *addr2) { u8 type, stype; type = WLAN_FC_GET_TYPE(fc); stype = WLAN_FC_GET_STYPE(fc); /* Filter frames from different BSS */ if (((fc & RTLLIB_FCTL_DSTODS) != RTLLIB_FCTL_DSTODS) && !ether_addr_equal(ieee->current_network.bssid, bssid) && !is_zero_ether_addr(ieee->current_network.bssid)) { return -1; } /* Filter packets sent by an STA that will be forwarded by AP */ if (ieee->IntelPromiscuousModeInfo.bPromiscuousOn && ieee->IntelPromiscuousModeInfo.bFilterSourceStationFrame) { if ((fc & RTLLIB_FCTL_TODS) && !(fc & RTLLIB_FCTL_FROMDS) && !ether_addr_equal(dst, ieee->current_network.bssid) && ether_addr_equal(bssid, ieee->current_network.bssid)) { return -1; } } /* Nullfunc frames may have PS-bit set, so they must be passed to * hostap_handle_sta_rx() before being dropped here. */ if (!ieee->IntelPromiscuousModeInfo.bPromiscuousOn) { if (stype != RTLLIB_STYPE_DATA && stype != RTLLIB_STYPE_DATA_CFACK && stype != RTLLIB_STYPE_DATA_CFPOLL && stype != RTLLIB_STYPE_DATA_CFACKPOLL && stype != RTLLIB_STYPE_QOS_DATA) { if (stype != RTLLIB_STYPE_NULLFUNC) netdev_dbg(ieee->dev, "RX: dropped data frame with no data (type=0x%02x, subtype=0x%02x)\n", type, stype); return -1; } } if (ieee->iw_mode != IW_MODE_MESH) { /* packets from our adapter are dropped (echo) */ if (!memcmp(src, ieee->dev->dev_addr, ETH_ALEN)) return -1; /* {broad,multi}cast packets to our BSS go through */ if (is_multicast_ether_addr(dst)) { if (memcmp(bssid, ieee->current_network.bssid, ETH_ALEN)) return -1; } } return 0; } static int rtllib_rx_get_crypt(struct rtllib_device *ieee, struct sk_buff *skb, struct lib80211_crypt_data **crypt, size_t hdrlen) { struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; u16 fc = le16_to_cpu(hdr->frame_ctl); int idx = 0; if (ieee->host_decrypt) { if (skb->len >= hdrlen + 3) idx = skb->data[hdrlen + 3] >> 6; *crypt = ieee->crypt_info.crypt[idx]; /* allow NULL decrypt to indicate an station specific override * for default encryption */ if (*crypt && ((*crypt)->ops == NULL || (*crypt)->ops->decrypt_mpdu == NULL)) *crypt = NULL; if (!*crypt && (fc & RTLLIB_FCTL_WEP)) { /* This seems to be triggered by some (multicast?) * frames from other than current BSS, so just drop the * frames silently instead of filling system log with * these reports. */ netdev_dbg(ieee->dev, "Decryption failed (not set) (SA= %pM)\n", hdr->addr2); return -1; } } return 0; } static int rtllib_rx_decrypt(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats, struct lib80211_crypt_data *crypt, size_t hdrlen) { struct rtllib_hdr_4addr *hdr; int keyidx = 0; u16 fc, sc; u8 frag; hdr = (struct rtllib_hdr_4addr *)skb->data; fc = le16_to_cpu(hdr->frame_ctl); sc = le16_to_cpu(hdr->seq_ctl); frag = WLAN_GET_SEQ_FRAG(sc); if ((!rx_stats->Decrypted)) ieee->need_sw_enc = 1; else ieee->need_sw_enc = 0; keyidx = rtllib_rx_frame_decrypt(ieee, skb, crypt); if (ieee->host_decrypt && (fc & RTLLIB_FCTL_WEP) && (keyidx < 0)) { netdev_info(ieee->dev, "%s: decrypt frame error\n", __func__); return -1; } hdr = (struct rtllib_hdr_4addr *) skb->data; if ((frag != 0 || (fc & RTLLIB_FCTL_MOREFRAGS))) { int flen; struct sk_buff *frag_skb = rtllib_frag_cache_get(ieee, hdr); netdev_dbg(ieee->dev, "Rx Fragment received (%u)\n", frag); if (!frag_skb) { netdev_dbg(ieee->dev, "Rx cannot get skb from fragment cache (morefrag=%d seq=%u frag=%u)\n", (fc & RTLLIB_FCTL_MOREFRAGS) != 0, WLAN_GET_SEQ_SEQ(sc), frag); return -1; } flen = skb->len; if (frag != 0) flen -= hdrlen; if (frag_skb->tail + flen > frag_skb->end) { netdev_warn(ieee->dev, "%s: host decrypted and reassembled frame did not fit skb\n", __func__); rtllib_frag_cache_invalidate(ieee, hdr); return -1; } if (frag == 0) { /* copy first fragment (including full headers) into * beginning of the fragment cache skb */ skb_put_data(frag_skb, skb->data, flen); } else { /* append frame payload to the end of the fragment * cache skb */ skb_put_data(frag_skb, skb->data + hdrlen, flen); } dev_kfree_skb_any(skb); skb = NULL; if (fc & RTLLIB_FCTL_MOREFRAGS) { /* more fragments expected - leave the skb in fragment * cache for now; it will be delivered to upper layers * after all fragments have been received */ return -2; } /* this was the last fragment and the frame will be * delivered, so remove skb from fragment cache */ skb = frag_skb; hdr = (struct rtllib_hdr_4addr *) skb->data; rtllib_frag_cache_invalidate(ieee, hdr); } /* skb: hdr + (possible reassembled) full MSDU payload; possibly still * encrypted/authenticated */ if (ieee->host_decrypt && (fc & RTLLIB_FCTL_WEP) && rtllib_rx_frame_decrypt_msdu(ieee, skb, keyidx, crypt)) { netdev_info(ieee->dev, "%s: ==>decrypt msdu error\n", __func__); return -1; } hdr = (struct rtllib_hdr_4addr *) skb->data; if (crypt && !(fc & RTLLIB_FCTL_WEP) && !ieee->open_wep) { if (/*ieee->ieee802_1x &&*/ rtllib_is_eapol_frame(ieee, skb, hdrlen)) { /* pass unencrypted EAPOL frames even if encryption is * configured */ struct eapol *eap = (struct eapol *)(skb->data + 24); netdev_dbg(ieee->dev, "RX: IEEE 802.1X EAPOL frame: %s\n", eap_get_type(eap->type)); } else { netdev_dbg(ieee->dev, "encryption configured, but RX frame not encrypted (SA= %pM)\n", hdr->addr2); return -1; } } if (crypt && !(fc & RTLLIB_FCTL_WEP) && rtllib_is_eapol_frame(ieee, skb, hdrlen)) { struct eapol *eap = (struct eapol *)(skb->data + 24); netdev_dbg(ieee->dev, "RX: IEEE 802.1X EAPOL frame: %s\n", eap_get_type(eap->type)); } if (crypt && !(fc & RTLLIB_FCTL_WEP) && !ieee->open_wep && !rtllib_is_eapol_frame(ieee, skb, hdrlen)) { netdev_dbg(ieee->dev, "dropped unencrypted RX data frame from %pM (drop_unencrypted=1)\n", hdr->addr2); return -1; } return 0; } static void rtllib_rx_check_leave_lps(struct rtllib_device *ieee, u8 unicast, u8 nr_subframes) { if (unicast) { if (ieee->state == RTLLIB_LINKED) { if (((ieee->LinkDetectInfo.NumRxUnicastOkInPeriod + ieee->LinkDetectInfo.NumTxOkInPeriod) > 8) || (ieee->LinkDetectInfo.NumRxUnicastOkInPeriod > 2)) { if (ieee->LeisurePSLeave) ieee->LeisurePSLeave(ieee->dev); } } } ieee->last_rx_ps_time = jiffies; } static void rtllib_rx_indicate_pkt_legacy(struct rtllib_device *ieee, struct rtllib_rx_stats *rx_stats, struct rtllib_rxb *rxb, u8 *dst, u8 *src) { struct net_device *dev = ieee->dev; u16 ethertype; int i = 0; if (rxb == NULL) { netdev_info(dev, "%s: rxb is NULL!!\n", __func__); return; } for (i = 0; i < rxb->nr_subframes; i++) { struct sk_buff *sub_skb = rxb->subframes[i]; if (sub_skb) { /* convert hdr + possible LLC headers * into Ethernet header */ ethertype = (sub_skb->data[6] << 8) | sub_skb->data[7]; if (sub_skb->len >= 8 && ((memcmp(sub_skb->data, rfc1042_header, SNAP_SIZE) == 0 && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || memcmp(sub_skb->data, bridge_tunnel_header, SNAP_SIZE) == 0)) { /* remove RFC1042 or Bridge-Tunnel encapsulation * and replace EtherType */ skb_pull(sub_skb, SNAP_SIZE); ether_addr_copy(skb_push(sub_skb, ETH_ALEN), src); ether_addr_copy(skb_push(sub_skb, ETH_ALEN), dst); } else { u16 len; /* Leave Ethernet header part of hdr * and full payload */ len = sub_skb->len; memcpy(skb_push(sub_skb, 2), &len, 2); ether_addr_copy(skb_push(sub_skb, ETH_ALEN), src); ether_addr_copy(skb_push(sub_skb, ETH_ALEN), dst); } ieee->stats.rx_packets++; ieee->stats.rx_bytes += sub_skb->len; if (is_multicast_ether_addr(dst)) ieee->stats.multicast++; /* Indicate the packets to upper layer */ memset(sub_skb->cb, 0, sizeof(sub_skb->cb)); sub_skb->protocol = eth_type_trans(sub_skb, dev); sub_skb->dev = dev; sub_skb->dev->stats.rx_packets++; sub_skb->dev->stats.rx_bytes += sub_skb->len; /* 802.11 crc not sufficient */ sub_skb->ip_summed = CHECKSUM_NONE; netif_rx(sub_skb); } } kfree(rxb); } static int rtllib_rx_InfraAdhoc(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { struct net_device *dev = ieee->dev; struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; struct lib80211_crypt_data *crypt = NULL; struct rtllib_rxb *rxb = NULL; struct rx_ts_record *pTS = NULL; u16 fc, sc, SeqNum = 0; u8 type, stype, multicast = 0, unicast = 0, nr_subframes = 0, TID = 0; u8 dst[ETH_ALEN]; u8 src[ETH_ALEN]; u8 bssid[ETH_ALEN] = {0}; size_t hdrlen = 0; bool bToOtherSTA = false; int ret = 0, i = 0; fc = le16_to_cpu(hdr->frame_ctl); type = WLAN_FC_GET_TYPE(fc); stype = WLAN_FC_GET_STYPE(fc); sc = le16_to_cpu(hdr->seq_ctl); /*Filter pkt not to me*/ multicast = is_multicast_ether_addr(hdr->addr1); unicast = !multicast; if (unicast && !ether_addr_equal(dev->dev_addr, hdr->addr1)) { if (ieee->bNetPromiscuousMode) bToOtherSTA = true; else goto rx_dropped; } /*Filter pkt has too small length */ hdrlen = rtllib_rx_get_hdrlen(ieee, skb, rx_stats); if (skb->len < hdrlen) { netdev_info(dev, "%s():ERR!!! skb->len is smaller than hdrlen\n", __func__); goto rx_dropped; } /* Filter Duplicate pkt */ ret = rtllib_rx_check_duplicate(ieee, skb, multicast); if (ret < 0) goto rx_dropped; /* Filter CTRL Frame */ if (type == RTLLIB_FTYPE_CTL) goto rx_dropped; /* Filter MGNT Frame */ if (type == RTLLIB_FTYPE_MGMT) { if (bToOtherSTA) goto rx_dropped; if (rtllib_rx_frame_mgmt(ieee, skb, rx_stats, type, stype)) goto rx_dropped; else goto rx_exit; } /* Filter WAPI DATA Frame */ /* Update statstics for AP roaming */ if (!bToOtherSTA) { ieee->LinkDetectInfo.NumRecvDataInPeriod++; ieee->LinkDetectInfo.NumRxOkInPeriod++; } /* Data frame - extract src/dst addresses */ rtllib_rx_extract_addr(ieee, hdr, dst, src, bssid); /* Filter Data frames */ ret = rtllib_rx_data_filter(ieee, fc, dst, src, bssid, hdr->addr2); if (ret < 0) goto rx_dropped; if (skb->len == hdrlen) goto rx_dropped; /* Send pspoll based on moredata */ if ((ieee->iw_mode == IW_MODE_INFRA) && (ieee->sta_sleep == LPS_IS_SLEEP) && (ieee->polling) && (!bToOtherSTA)) { if (WLAN_FC_MORE_DATA(fc)) { /* more data bit is set, let's request a new frame * from the AP */ rtllib_sta_ps_send_pspoll_frame(ieee); } else { ieee->polling = false; } } /* Get crypt if encrypted */ ret = rtllib_rx_get_crypt(ieee, skb, &crypt, hdrlen); if (ret == -1) goto rx_dropped; /* Decrypt data frame (including reassemble) */ ret = rtllib_rx_decrypt(ieee, skb, rx_stats, crypt, hdrlen); if (ret == -1) goto rx_dropped; else if (ret == -2) goto rx_exit; /* Get TS for Rx Reorder */ hdr = (struct rtllib_hdr_4addr *) skb->data; if (ieee->current_network.qos_data.active && IsQoSDataFrame(skb->data) && !is_multicast_ether_addr(hdr->addr1) && (!bToOtherSTA)) { TID = Frame_QoSTID(skb->data); SeqNum = WLAN_GET_SEQ_SEQ(sc); GetTs(ieee, (struct ts_common_info **) &pTS, hdr->addr2, TID, RX_DIR, true); if (TID != 0 && TID != 3) ieee->bis_any_nonbepkts = true; } /* Parse rx data frame (For AMSDU) */ /* skb: hdr + (possible reassembled) full plaintext payload */ rxb = kmalloc(sizeof(struct rtllib_rxb), GFP_ATOMIC); if (!rxb) goto rx_dropped; /* to parse amsdu packets */ /* qos data packets & reserved bit is 1 */ if (parse_subframe(ieee, skb, rx_stats, rxb, src, dst) == 0) { /* only to free rxb, and not submit the packets * to upper layer */ for (i = 0; i < rxb->nr_subframes; i++) dev_kfree_skb(rxb->subframes[i]); kfree(rxb); rxb = NULL; goto rx_dropped; } /* Update WAPI PN */ /* Check if leave LPS */ if (!bToOtherSTA) { if (ieee->bIsAggregateFrame) nr_subframes = rxb->nr_subframes; else nr_subframes = 1; if (unicast) ieee->LinkDetectInfo.NumRxUnicastOkInPeriod += nr_subframes; rtllib_rx_check_leave_lps(ieee, unicast, nr_subframes); } /* Indicate packets to upper layer or Rx Reorder */ if (!ieee->pHTInfo->bCurRxReorderEnable || pTS == NULL || bToOtherSTA) rtllib_rx_indicate_pkt_legacy(ieee, rx_stats, rxb, dst, src); else RxReorderIndicatePacket(ieee, rxb, pTS, SeqNum); dev_kfree_skb(skb); rx_exit: return 1; rx_dropped: ieee->stats.rx_dropped++; /* Returning 0 indicates to caller that we have not handled the SKB-- * so it is still allocated and can be used again by underlying * hardware as a DMA target */ return 0; } static int rtllib_rx_Master(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { return 0; } static int rtllib_rx_Monitor(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { struct rtllib_hdr_4addr *hdr = (struct rtllib_hdr_4addr *)skb->data; u16 fc = le16_to_cpu(hdr->frame_ctl); size_t hdrlen = rtllib_get_hdrlen(fc); if (skb->len < hdrlen) { netdev_info(ieee->dev, "%s():ERR!!! skb->len is smaller than hdrlen\n", __func__); return 0; } if (HTCCheck(ieee, skb->data)) { if (net_ratelimit()) netdev_info(ieee->dev, "%s: Find HTCControl!\n", __func__); hdrlen += 4; } ieee->stats.rx_packets++; ieee->stats.rx_bytes += skb->len; rtllib_monitor_rx(ieee, skb, rx_stats, hdrlen); return 1; } static int rtllib_rx_Mesh(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { return 0; } /* All received frames are sent to this function. @skb contains the frame in * IEEE 802.11 format, i.e., in the format it was sent over air. * This function is called only as a tasklet (software IRQ). */ int rtllib_rx(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *rx_stats) { int ret = 0; if (!ieee || !skb || !rx_stats) { pr_info("%s: Input parameters NULL!\n", __func__); goto rx_dropped; } if (skb->len < 10) { netdev_info(ieee->dev, "%s: SKB length < 10\n", __func__); goto rx_dropped; } switch (ieee->iw_mode) { case IW_MODE_ADHOC: case IW_MODE_INFRA: ret = rtllib_rx_InfraAdhoc(ieee, skb, rx_stats); break; case IW_MODE_MASTER: case IW_MODE_REPEAT: ret = rtllib_rx_Master(ieee, skb, rx_stats); break; case IW_MODE_MONITOR: ret = rtllib_rx_Monitor(ieee, skb, rx_stats); break; case IW_MODE_MESH: ret = rtllib_rx_Mesh(ieee, skb, rx_stats); break; default: netdev_info(ieee->dev, "%s: ERR iw mode!!!\n", __func__); break; } return ret; rx_dropped: if (ieee) ieee->stats.rx_dropped++; return 0; } EXPORT_SYMBOL(rtllib_rx); static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; /* Make ther structure we read from the beacon packet has the right values */ static int rtllib_verify_qos_info(struct rtllib_qos_information_element *info_element, int sub_type) { if (info_element->elementID != QOS_ELEMENT_ID) return -1; if (info_element->qui_subtype != sub_type) return -1; if (memcmp(info_element->qui, qos_oui, QOS_OUI_LEN)) return -1; if (info_element->qui_type != QOS_OUI_TYPE) return -1; if (info_element->version != QOS_VERSION_1) return -1; return 0; } /* Parse a QoS parameter element */ static int rtllib_read_qos_param_element( struct rtllib_qos_parameter_info *element_param, struct rtllib_info_element *info_element) { size_t size = sizeof(*element_param); if (!element_param || !info_element || info_element->len != size - 2) return -1; memcpy(element_param, info_element, size); return rtllib_verify_qos_info(&element_param->info_element, QOS_OUI_PARAM_SUB_TYPE); } /* Parse a QoS information element */ static int rtllib_read_qos_info_element( struct rtllib_qos_information_element *element_info, struct rtllib_info_element *info_element) { size_t size = sizeof(*element_info); if (!element_info || !info_element || info_element->len != size - 2) return -1; memcpy(element_info, info_element, size); return rtllib_verify_qos_info(element_info, QOS_OUI_INFO_SUB_TYPE); } /* Write QoS parameters from the ac parameters. */ static int rtllib_qos_convert_ac_to_parameters(struct rtllib_qos_parameter_info *param_elm, struct rtllib_qos_data *qos_data) { struct rtllib_qos_ac_parameter *ac_params; struct rtllib_qos_parameters *qos_param = &(qos_data->parameters); int i; u8 aci; u8 acm; qos_data->wmm_acm = 0; for (i = 0; i < QOS_QUEUE_NUM; i++) { ac_params = &(param_elm->ac_params_record[i]); aci = (ac_params->aci_aifsn & 0x60) >> 5; acm = (ac_params->aci_aifsn & 0x10) >> 4; if (aci >= QOS_QUEUE_NUM) continue; switch (aci) { case 1: /* BIT(0) | BIT(3) */ if (acm) qos_data->wmm_acm |= (0x01<<0)|(0x01<<3); break; case 2: /* BIT(4) | BIT(5) */ if (acm) qos_data->wmm_acm |= (0x01<<4)|(0x01<<5); break; case 3: /* BIT(6) | BIT(7) */ if (acm) qos_data->wmm_acm |= (0x01<<6)|(0x01<<7); break; case 0: default: /* BIT(1) | BIT(2) */ if (acm) qos_data->wmm_acm |= (0x01<<1)|(0x01<<2); break; } qos_param->aifs[aci] = (ac_params->aci_aifsn) & 0x0f; /* WMM spec P.11: The minimum value for AIFSN shall be 2 */ qos_param->aifs[aci] = max_t(u8, qos_param->aifs[aci], 2); qos_param->cw_min[aci] = cpu_to_le16(ac_params->ecw_min_max & 0x0F); qos_param->cw_max[aci] = cpu_to_le16((ac_params->ecw_min_max & 0xF0) >> 4); qos_param->flag[aci] = (ac_params->aci_aifsn & 0x10) ? 0x01 : 0x00; qos_param->tx_op_limit[aci] = ac_params->tx_op_limit; } return 0; } /* we have a generic data element which it may contain QoS information or * parameters element. check the information element length to decide * which type to read */ static int rtllib_parse_qos_info_param_IE(struct rtllib_device *ieee, struct rtllib_info_element *info_element, struct rtllib_network *network) { int rc = 0; struct rtllib_qos_information_element qos_info_element; rc = rtllib_read_qos_info_element(&qos_info_element, info_element); if (rc == 0) { network->qos_data.param_count = qos_info_element.ac_info & 0x0F; network->flags |= NETWORK_HAS_QOS_INFORMATION; } else { struct rtllib_qos_parameter_info param_element; rc = rtllib_read_qos_param_element(¶m_element, info_element); if (rc == 0) { rtllib_qos_convert_ac_to_parameters(¶m_element, &(network->qos_data)); network->flags |= NETWORK_HAS_QOS_PARAMETERS; network->qos_data.param_count = param_element.info_element.ac_info & 0x0F; } } if (rc == 0) { netdev_dbg(ieee->dev, "QoS is supported\n"); network->qos_data.supported = 1; } return rc; } static const char *get_info_element_string(u16 id) { switch (id) { case MFIE_TYPE_SSID: return "SSID"; case MFIE_TYPE_RATES: return "RATES"; case MFIE_TYPE_FH_SET: return "FH_SET"; case MFIE_TYPE_DS_SET: return "DS_SET"; case MFIE_TYPE_CF_SET: return "CF_SET"; case MFIE_TYPE_TIM: return "TIM"; case MFIE_TYPE_IBSS_SET: return "IBSS_SET"; case MFIE_TYPE_COUNTRY: return "COUNTRY"; case MFIE_TYPE_HOP_PARAMS: return "HOP_PARAMS"; case MFIE_TYPE_HOP_TABLE: return "HOP_TABLE"; case MFIE_TYPE_REQUEST: return "REQUEST"; case MFIE_TYPE_CHALLENGE: return "CHALLENGE"; case MFIE_TYPE_POWER_CONSTRAINT: return "POWER_CONSTRAINT"; case MFIE_TYPE_POWER_CAPABILITY: return "POWER_CAPABILITY"; case MFIE_TYPE_TPC_REQUEST: return "TPC_REQUEST"; case MFIE_TYPE_TPC_REPORT: return "TPC_REPORT"; case MFIE_TYPE_SUPP_CHANNELS: return "SUPP_CHANNELS"; case MFIE_TYPE_CSA: return "CSA"; case MFIE_TYPE_MEASURE_REQUEST: return "MEASURE_REQUEST"; case MFIE_TYPE_MEASURE_REPORT: return "MEASURE_REPORT"; case MFIE_TYPE_QUIET: return "QUIET"; case MFIE_TYPE_IBSS_DFS: return "IBSS_DFS"; case MFIE_TYPE_RSN: return "RSN"; case MFIE_TYPE_RATES_EX: return "RATES_EX"; case MFIE_TYPE_GENERIC: return "GENERIC"; case MFIE_TYPE_QOS_PARAMETER: return "QOS_PARAMETER"; default: return "UNKNOWN"; } } static inline void rtllib_extract_country_ie( struct rtllib_device *ieee, struct rtllib_info_element *info_element, struct rtllib_network *network, u8 *addr2) { if (IS_DOT11D_ENABLE(ieee)) { if (info_element->len != 0) { memcpy(network->CountryIeBuf, info_element->data, info_element->len); network->CountryIeLen = info_element->len; if (!IS_COUNTRY_IE_VALID(ieee)) { if (rtllib_act_scanning(ieee, false) && ieee->FirstIe_InScan) netdev_info(ieee->dev, "Received beacon ContryIE, SSID: <%s>\n", network->ssid); dot11d_update_country(ieee, addr2, info_element->len, info_element->data); } } if (IS_EQUAL_CIE_SRC(ieee, addr2)) UPDATE_CIE_WATCHDOG(ieee); } } static void rtllib_parse_mife_generic(struct rtllib_device *ieee, struct rtllib_info_element *info_element, struct rtllib_network *network, u16 *tmp_htcap_len, u16 *tmp_htinfo_len) { u16 ht_realtek_agg_len = 0; u8 ht_realtek_agg_buf[MAX_IE_LEN]; if (!rtllib_parse_qos_info_param_IE(ieee, info_element, network)) return; if (info_element->len >= 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x50 && info_element->data[2] == 0xf2 && info_element->data[3] == 0x01) { network->wpa_ie_len = min(info_element->len + 2, MAX_WPA_IE_LEN); memcpy(network->wpa_ie, info_element, network->wpa_ie_len); return; } if (info_element->len == 7 && info_element->data[0] == 0x00 && info_element->data[1] == 0xe0 && info_element->data[2] == 0x4c && info_element->data[3] == 0x01 && info_element->data[4] == 0x02) network->Turbo_Enable = 1; if (*tmp_htcap_len == 0) { if (info_element->len >= 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x90 && info_element->data[2] == 0x4c && info_element->data[3] == 0x033) { *tmp_htcap_len = min_t(u8, info_element->len, MAX_IE_LEN); if (*tmp_htcap_len != 0) { network->bssht.bd_ht_spec_ver = HT_SPEC_VER_EWC; network->bssht.bd_ht_cap_len = min_t(u16, *tmp_htcap_len, sizeof(network->bssht.bd_ht_cap_buf)); memcpy(network->bssht.bd_ht_cap_buf, info_element->data, network->bssht.bd_ht_cap_len); } } if (*tmp_htcap_len != 0) { network->bssht.bd_support_ht = true; network->bssht.bd_ht_1r = ((((struct ht_capab_ele *)(network->bssht.bd_ht_cap_buf))->MCS[1]) == 0); } else { network->bssht.bd_support_ht = false; network->bssht.bd_ht_1r = false; } } if (*tmp_htinfo_len == 0) { if (info_element->len >= 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x90 && info_element->data[2] == 0x4c && info_element->data[3] == 0x034) { *tmp_htinfo_len = min_t(u8, info_element->len, MAX_IE_LEN); if (*tmp_htinfo_len != 0) { network->bssht.bd_ht_spec_ver = HT_SPEC_VER_EWC; network->bssht.bd_ht_info_len = min_t(u16, *tmp_htinfo_len, sizeof(network->bssht.bd_ht_info_buf)); memcpy(network->bssht.bd_ht_info_buf, info_element->data, network->bssht.bd_ht_info_len); } } } if (network->bssht.bd_support_ht) { if (info_element->len >= 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0xe0 && info_element->data[2] == 0x4c && info_element->data[3] == 0x02) { ht_realtek_agg_len = min_t(u8, info_element->len, MAX_IE_LEN); memcpy(ht_realtek_agg_buf, info_element->data, info_element->len); } if (ht_realtek_agg_len >= 5) { network->realtek_cap_exit = true; network->bssht.bd_rt2rt_aggregation = true; if ((ht_realtek_agg_buf[4] == 1) && (ht_realtek_agg_buf[5] & 0x02)) network->bssht.bd_rt2rt_long_slot_time = true; if ((ht_realtek_agg_buf[4] == 1) && (ht_realtek_agg_buf[5] & RT_HT_CAP_USE_92SE)) network->bssht.rt2rt_ht_mode |= RT_HT_CAP_USE_92SE; } } if (ht_realtek_agg_len >= 5) { if ((ht_realtek_agg_buf[5] & RT_HT_CAP_USE_SOFTAP)) network->bssht.rt2rt_ht_mode |= RT_HT_CAP_USE_SOFTAP; } if ((info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x05 && info_element->data[2] == 0xb5) || (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x0a && info_element->data[2] == 0xf7) || (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x10 && info_element->data[2] == 0x18)) { network->broadcom_cap_exist = true; } if (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x0c && info_element->data[2] == 0x43) network->ralink_cap_exist = true; if ((info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x03 && info_element->data[2] == 0x7f) || (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x13 && info_element->data[2] == 0x74)) network->atheros_cap_exist = true; if ((info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x50 && info_element->data[2] == 0x43)) network->marvell_cap_exist = true; if (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x40 && info_element->data[2] == 0x96) network->cisco_cap_exist = true; if (info_element->len >= 3 && info_element->data[0] == 0x00 && info_element->data[1] == 0x0a && info_element->data[2] == 0xf5) network->airgo_cap_exist = true; if (info_element->len > 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x40 && info_element->data[2] == 0x96 && info_element->data[3] == 0x01) { if (info_element->len == 6) { memcpy(network->CcxRmState, &info_element->data[4], 2); if (network->CcxRmState[0] != 0) network->bCcxRmEnable = true; else network->bCcxRmEnable = false; network->MBssidMask = network->CcxRmState[1] & 0x07; if (network->MBssidMask != 0) { network->bMBssidValid = true; network->MBssidMask = 0xff << (network->MBssidMask); ether_addr_copy(network->MBssid, network->bssid); network->MBssid[5] &= network->MBssidMask; } else { network->bMBssidValid = false; } } else { network->bCcxRmEnable = false; } } if (info_element->len > 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x40 && info_element->data[2] == 0x96 && info_element->data[3] == 0x03) { if (info_element->len == 5) { network->bWithCcxVerNum = true; network->BssCcxVerNumber = info_element->data[4]; } else { network->bWithCcxVerNum = false; network->BssCcxVerNumber = 0; } } if (info_element->len > 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x50 && info_element->data[2] == 0xf2 && info_element->data[3] == 0x04) { netdev_dbg(ieee->dev, "MFIE_TYPE_WZC: %d bytes\n", info_element->len); network->wzc_ie_len = min(info_element->len+2, MAX_WZC_IE_LEN); memcpy(network->wzc_ie, info_element, network->wzc_ie_len); } } static void rtllib_parse_mfie_ht_cap(struct rtllib_info_element *info_element, struct rtllib_network *network, u16 *tmp_htcap_len) { struct bss_ht *ht = &network->bssht; *tmp_htcap_len = min_t(u8, info_element->len, MAX_IE_LEN); if (*tmp_htcap_len != 0) { ht->bd_ht_spec_ver = HT_SPEC_VER_EWC; ht->bd_ht_cap_len = min_t(u16, *tmp_htcap_len, sizeof(ht->bd_ht_cap_buf)); memcpy(ht->bd_ht_cap_buf, info_element->data, ht->bd_ht_cap_len); ht->bd_support_ht = true; ht->bd_ht_1r = ((((struct ht_capab_ele *) ht->bd_ht_cap_buf))->MCS[1]) == 0; ht->bd_bandwidth = (enum ht_channel_width) (((struct ht_capab_ele *) (ht->bd_ht_cap_buf))->ChlWidth); } else { ht->bd_support_ht = false; ht->bd_ht_1r = false; ht->bd_bandwidth = HT_CHANNEL_WIDTH_20; } } int rtllib_parse_info_param(struct rtllib_device *ieee, struct rtllib_info_element *info_element, u16 length, struct rtllib_network *network, struct rtllib_rx_stats *stats) { u8 i; short offset; u16 tmp_htcap_len = 0; u16 tmp_htinfo_len = 0; char rates_str[64]; char *p; while (length >= sizeof(*info_element)) { if (sizeof(*info_element) + info_element->len > length) { netdev_dbg(ieee->dev, "Info elem: parse failed: info_element->len + 2 > left : info_element->len+2=%zd left=%d, id=%d.\n", info_element->len + sizeof(*info_element), length, info_element->id); /* We stop processing but don't return an error here * because some misbehaviour APs break this rule. ie. * Orinoco AP1000. */ break; } switch (info_element->id) { case MFIE_TYPE_SSID: if (rtllib_is_empty_essid(info_element->data, info_element->len)) { network->flags |= NETWORK_EMPTY_ESSID; break; } network->ssid_len = min(info_element->len, (u8) IW_ESSID_MAX_SIZE); memcpy(network->ssid, info_element->data, network->ssid_len); if (network->ssid_len < IW_ESSID_MAX_SIZE) memset(network->ssid + network->ssid_len, 0, IW_ESSID_MAX_SIZE - network->ssid_len); netdev_dbg(ieee->dev, "MFIE_TYPE_SSID: '%s' len=%d.\n", network->ssid, network->ssid_len); break; case MFIE_TYPE_RATES: p = rates_str; network->rates_len = min(info_element->len, MAX_RATES_LENGTH); for (i = 0; i < network->rates_len; i++) { network->rates[i] = info_element->data[i]; p += scnprintf(p, sizeof(rates_str) - (p - rates_str), "%02X ", network->rates[i]); if (rtllib_is_ofdm_rate (info_element->data[i])) { network->flags |= NETWORK_HAS_OFDM; if (info_element->data[i] & RTLLIB_BASIC_RATE_MASK) network->flags &= ~NETWORK_HAS_CCK; } if (rtllib_is_cck_rate (info_element->data[i])) { network->flags |= NETWORK_HAS_CCK; } } netdev_dbg(ieee->dev, "MFIE_TYPE_RATES: '%s' (%d)\n", rates_str, network->rates_len); break; case MFIE_TYPE_RATES_EX: p = rates_str; network->rates_ex_len = min(info_element->len, MAX_RATES_EX_LENGTH); for (i = 0; i < network->rates_ex_len; i++) { network->rates_ex[i] = info_element->data[i]; p += scnprintf(p, sizeof(rates_str) - (p - rates_str), "%02X ", network->rates_ex[i]); if (rtllib_is_ofdm_rate (info_element->data[i])) { network->flags |= NETWORK_HAS_OFDM; if (info_element->data[i] & RTLLIB_BASIC_RATE_MASK) network->flags &= ~NETWORK_HAS_CCK; } } netdev_dbg(ieee->dev, "MFIE_TYPE_RATES_EX: '%s' (%d)\n", rates_str, network->rates_ex_len); break; case MFIE_TYPE_DS_SET: netdev_dbg(ieee->dev, "MFIE_TYPE_DS_SET: %d\n", info_element->data[0]); network->channel = info_element->data[0]; break; case MFIE_TYPE_FH_SET: netdev_dbg(ieee->dev, "MFIE_TYPE_FH_SET: ignored\n"); break; case MFIE_TYPE_CF_SET: netdev_dbg(ieee->dev, "MFIE_TYPE_CF_SET: ignored\n"); break; case MFIE_TYPE_TIM: if (info_element->len < 4) break; network->tim.tim_count = info_element->data[0]; network->tim.tim_period = info_element->data[1]; network->dtim_period = info_element->data[1]; if (ieee->state != RTLLIB_LINKED) break; network->last_dtim_sta_time = jiffies; network->dtim_data = RTLLIB_DTIM_VALID; if (info_element->data[2] & 1) network->dtim_data |= RTLLIB_DTIM_MBCAST; offset = (info_element->data[2] >> 1)*2; if (ieee->assoc_id < 8*offset || ieee->assoc_id > 8*(offset + info_element->len - 3)) break; offset = (ieee->assoc_id / 8) - offset; if (info_element->data[3 + offset] & (1 << (ieee->assoc_id % 8))) network->dtim_data |= RTLLIB_DTIM_UCAST; network->listen_interval = network->dtim_period; break; case MFIE_TYPE_ERP: network->erp_value = info_element->data[0]; network->flags |= NETWORK_HAS_ERP_VALUE; netdev_dbg(ieee->dev, "MFIE_TYPE_ERP_SET: %d\n", network->erp_value); break; case MFIE_TYPE_IBSS_SET: network->atim_window = info_element->data[0]; netdev_dbg(ieee->dev, "MFIE_TYPE_IBSS_SET: %d\n", network->atim_window); break; case MFIE_TYPE_CHALLENGE: netdev_dbg(ieee->dev, "MFIE_TYPE_CHALLENGE: ignored\n"); break; case MFIE_TYPE_GENERIC: netdev_dbg(ieee->dev, "MFIE_TYPE_GENERIC: %d bytes\n", info_element->len); rtllib_parse_mife_generic(ieee, info_element, network, &tmp_htcap_len, &tmp_htinfo_len); break; case MFIE_TYPE_RSN: netdev_dbg(ieee->dev, "MFIE_TYPE_RSN: %d bytes\n", info_element->len); network->rsn_ie_len = min(info_element->len + 2, MAX_WPA_IE_LEN); memcpy(network->rsn_ie, info_element, network->rsn_ie_len); break; case MFIE_TYPE_HT_CAP: netdev_dbg(ieee->dev, "MFIE_TYPE_HT_CAP: %d bytes\n", info_element->len); rtllib_parse_mfie_ht_cap(info_element, network, &tmp_htcap_len); break; case MFIE_TYPE_HT_INFO: netdev_dbg(ieee->dev, "MFIE_TYPE_HT_INFO: %d bytes\n", info_element->len); tmp_htinfo_len = min_t(u8, info_element->len, MAX_IE_LEN); if (tmp_htinfo_len) { network->bssht.bd_ht_spec_ver = HT_SPEC_VER_IEEE; network->bssht.bd_ht_info_len = tmp_htinfo_len > sizeof(network->bssht.bd_ht_info_buf) ? sizeof(network->bssht.bd_ht_info_buf) : tmp_htinfo_len; memcpy(network->bssht.bd_ht_info_buf, info_element->data, network->bssht.bd_ht_info_len); } break; case MFIE_TYPE_AIRONET: netdev_dbg(ieee->dev, "MFIE_TYPE_AIRONET: %d bytes\n", info_element->len); if (info_element->len > IE_CISCO_FLAG_POSITION) { network->bWithAironetIE = true; if ((info_element->data[IE_CISCO_FLAG_POSITION] & SUPPORT_CKIP_MIC) || (info_element->data[IE_CISCO_FLAG_POSITION] & SUPPORT_CKIP_PK)) network->bCkipSupported = true; else network->bCkipSupported = false; } else { network->bWithAironetIE = false; network->bCkipSupported = false; } break; case MFIE_TYPE_QOS_PARAMETER: netdev_err(ieee->dev, "QoS Error need to parse QOS_PARAMETER IE\n"); break; case MFIE_TYPE_COUNTRY: netdev_dbg(ieee->dev, "MFIE_TYPE_COUNTRY: %d bytes\n", info_element->len); rtllib_extract_country_ie(ieee, info_element, network, network->bssid); break; /* TODO */ default: netdev_dbg(ieee->dev, "Unsupported info element: %s (%d)\n", get_info_element_string(info_element->id), info_element->id); break; } length -= sizeof(*info_element) + info_element->len; info_element = (struct rtllib_info_element *)&info_element->data[info_element->len]; } if (!network->atheros_cap_exist && !network->broadcom_cap_exist && !network->cisco_cap_exist && !network->ralink_cap_exist && !network->bssht.bd_rt2rt_aggregation) network->unknown_cap_exist = true; else network->unknown_cap_exist = false; return 0; } static long rtllib_translate_todbm(u8 signal_strength_index) { long signal_power; signal_power = (long)((signal_strength_index + 1) >> 1); signal_power -= 95; return signal_power; } static inline int rtllib_network_init( struct rtllib_device *ieee, struct rtllib_probe_response *beacon, struct rtllib_network *network, struct rtllib_rx_stats *stats) { memset(&network->qos_data, 0, sizeof(struct rtllib_qos_data)); /* Pull out fixed field data */ ether_addr_copy(network->bssid, beacon->header.addr3); network->capability = le16_to_cpu(beacon->capability); network->last_scanned = jiffies; network->time_stamp[0] = beacon->time_stamp[0]; network->time_stamp[1] = beacon->time_stamp[1]; network->beacon_interval = le16_to_cpu(beacon->beacon_interval); /* Where to pull this? beacon->listen_interval;*/ network->listen_interval = 0x0A; network->rates_len = network->rates_ex_len = 0; network->ssid_len = 0; network->hidden_ssid_len = 0; memset(network->hidden_ssid, 0, sizeof(network->hidden_ssid)); network->flags = 0; network->atim_window = 0; network->erp_value = (network->capability & WLAN_CAPABILITY_IBSS) ? 0x3 : 0x0; network->berp_info_valid = false; network->broadcom_cap_exist = false; network->ralink_cap_exist = false; network->atheros_cap_exist = false; network->cisco_cap_exist = false; network->unknown_cap_exist = false; network->realtek_cap_exit = false; network->marvell_cap_exist = false; network->airgo_cap_exist = false; network->Turbo_Enable = 0; network->SignalStrength = stats->SignalStrength; network->RSSI = stats->SignalStrength; network->CountryIeLen = 0; memset(network->CountryIeBuf, 0, MAX_IE_LEN); HTInitializeBssDesc(&network->bssht); if (stats->freq == RTLLIB_52GHZ_BAND) { /* for A band (No DS info) */ network->channel = stats->received_channel; } else network->flags |= NETWORK_HAS_CCK; network->wpa_ie_len = 0; network->rsn_ie_len = 0; network->wzc_ie_len = 0; if (rtllib_parse_info_param(ieee, beacon->info_element, (stats->len - sizeof(*beacon)), network, stats)) return 1; network->mode = 0; if (stats->freq == RTLLIB_52GHZ_BAND) network->mode = IEEE_A; else { if (network->flags & NETWORK_HAS_OFDM) network->mode |= IEEE_G; if (network->flags & NETWORK_HAS_CCK) network->mode |= IEEE_B; } if (network->mode == 0) { netdev_dbg(ieee->dev, "Filtered out '%s (%pM)' network.\n", escape_essid(network->ssid, network->ssid_len), network->bssid); return 1; } if (network->bssht.bd_support_ht) { if (network->mode == IEEE_A) network->mode = IEEE_N_5G; else if (network->mode & (IEEE_G | IEEE_B)) network->mode = IEEE_N_24G; } if (rtllib_is_empty_essid(network->ssid, network->ssid_len)) network->flags |= NETWORK_EMPTY_ESSID; stats->signal = 30 + (stats->SignalStrength * 70) / 100; stats->noise = rtllib_translate_todbm((u8)(100-stats->signal)) - 25; memcpy(&network->stats, stats, sizeof(network->stats)); return 0; } static inline int is_same_network(struct rtllib_network *src, struct rtllib_network *dst, u8 ssidbroad) { /* A network is only a duplicate if the channel, BSSID, ESSID * and the capability field (in particular IBSS and BSS) all match. * We treat all with the same BSSID and channel * as one network */ return (((src->ssid_len == dst->ssid_len) || (!ssidbroad)) && (src->channel == dst->channel) && !memcmp(src->bssid, dst->bssid, ETH_ALEN) && (!memcmp(src->ssid, dst->ssid, src->ssid_len) || (!ssidbroad)) && ((src->capability & WLAN_CAPABILITY_IBSS) == (dst->capability & WLAN_CAPABILITY_IBSS)) && ((src->capability & WLAN_CAPABILITY_ESS) == (dst->capability & WLAN_CAPABILITY_ESS))); } static inline void update_network(struct rtllib_device *ieee, struct rtllib_network *dst, struct rtllib_network *src) { int qos_active; u8 old_param; memcpy(&dst->stats, &src->stats, sizeof(struct rtllib_rx_stats)); dst->capability = src->capability; memcpy(dst->rates, src->rates, src->rates_len); dst->rates_len = src->rates_len; memcpy(dst->rates_ex, src->rates_ex, src->rates_ex_len); dst->rates_ex_len = src->rates_ex_len; if (src->ssid_len > 0) { if (dst->ssid_len == 0) { memset(dst->hidden_ssid, 0, sizeof(dst->hidden_ssid)); dst->hidden_ssid_len = src->ssid_len; memcpy(dst->hidden_ssid, src->ssid, src->ssid_len); } else { memset(dst->ssid, 0, dst->ssid_len); dst->ssid_len = src->ssid_len; memcpy(dst->ssid, src->ssid, src->ssid_len); } } dst->mode = src->mode; dst->flags = src->flags; dst->time_stamp[0] = src->time_stamp[0]; dst->time_stamp[1] = src->time_stamp[1]; if (src->flags & NETWORK_HAS_ERP_VALUE) { dst->erp_value = src->erp_value; dst->berp_info_valid = src->berp_info_valid = true; } dst->beacon_interval = src->beacon_interval; dst->listen_interval = src->listen_interval; dst->atim_window = src->atim_window; dst->dtim_period = src->dtim_period; dst->dtim_data = src->dtim_data; dst->last_dtim_sta_time = src->last_dtim_sta_time; memcpy(&dst->tim, &src->tim, sizeof(struct rtllib_tim_parameters)); dst->bssht.bd_support_ht = src->bssht.bd_support_ht; dst->bssht.bd_rt2rt_aggregation = src->bssht.bd_rt2rt_aggregation; dst->bssht.bd_ht_cap_len = src->bssht.bd_ht_cap_len; memcpy(dst->bssht.bd_ht_cap_buf, src->bssht.bd_ht_cap_buf, src->bssht.bd_ht_cap_len); dst->bssht.bd_ht_info_len = src->bssht.bd_ht_info_len; memcpy(dst->bssht.bd_ht_info_buf, src->bssht.bd_ht_info_buf, src->bssht.bd_ht_info_len); dst->bssht.bd_ht_spec_ver = src->bssht.bd_ht_spec_ver; dst->bssht.bd_rt2rt_long_slot_time = src->bssht.bd_rt2rt_long_slot_time; dst->broadcom_cap_exist = src->broadcom_cap_exist; dst->ralink_cap_exist = src->ralink_cap_exist; dst->atheros_cap_exist = src->atheros_cap_exist; dst->realtek_cap_exit = src->realtek_cap_exit; dst->marvell_cap_exist = src->marvell_cap_exist; dst->cisco_cap_exist = src->cisco_cap_exist; dst->airgo_cap_exist = src->airgo_cap_exist; dst->unknown_cap_exist = src->unknown_cap_exist; memcpy(dst->wpa_ie, src->wpa_ie, src->wpa_ie_len); dst->wpa_ie_len = src->wpa_ie_len; memcpy(dst->rsn_ie, src->rsn_ie, src->rsn_ie_len); dst->rsn_ie_len = src->rsn_ie_len; memcpy(dst->wzc_ie, src->wzc_ie, src->wzc_ie_len); dst->wzc_ie_len = src->wzc_ie_len; dst->last_scanned = jiffies; /* qos related parameters */ qos_active = dst->qos_data.active; old_param = dst->qos_data.param_count; dst->qos_data.supported = src->qos_data.supported; if (dst->flags & NETWORK_HAS_QOS_PARAMETERS) memcpy(&dst->qos_data, &src->qos_data, sizeof(struct rtllib_qos_data)); if (dst->qos_data.supported == 1) { if (dst->ssid_len) netdev_dbg(ieee->dev, "QoS the network %s is QoS supported\n", dst->ssid); else netdev_dbg(ieee->dev, "QoS the network is QoS supported\n"); } dst->qos_data.active = qos_active; dst->qos_data.old_param_count = old_param; dst->wmm_info = src->wmm_info; if (src->wmm_param[0].ac_aci_acm_aifsn || src->wmm_param[1].ac_aci_acm_aifsn || src->wmm_param[2].ac_aci_acm_aifsn || src->wmm_param[3].ac_aci_acm_aifsn) memcpy(dst->wmm_param, src->wmm_param, WME_AC_PRAM_LEN); dst->SignalStrength = src->SignalStrength; dst->RSSI = src->RSSI; dst->Turbo_Enable = src->Turbo_Enable; dst->CountryIeLen = src->CountryIeLen; memcpy(dst->CountryIeBuf, src->CountryIeBuf, src->CountryIeLen); dst->bWithAironetIE = src->bWithAironetIE; dst->bCkipSupported = src->bCkipSupported; memcpy(dst->CcxRmState, src->CcxRmState, 2); dst->bCcxRmEnable = src->bCcxRmEnable; dst->MBssidMask = src->MBssidMask; dst->bMBssidValid = src->bMBssidValid; memcpy(dst->MBssid, src->MBssid, 6); dst->bWithCcxVerNum = src->bWithCcxVerNum; dst->BssCcxVerNumber = src->BssCcxVerNumber; } static inline int is_beacon(u16 fc) { return (WLAN_FC_GET_STYPE(fc) == RTLLIB_STYPE_BEACON); } static int IsPassiveChannel(struct rtllib_device *rtllib, u8 channel) { if (channel > MAX_CHANNEL_NUMBER) { netdev_info(rtllib->dev, "%s(): Invalid Channel\n", __func__); return 0; } if (rtllib->active_channel_map[channel] == 2) return 1; return 0; } int rtllib_legal_channel(struct rtllib_device *rtllib, u8 channel) { if (channel > MAX_CHANNEL_NUMBER) { netdev_info(rtllib->dev, "%s(): Invalid Channel\n", __func__); return 0; } if (rtllib->active_channel_map[channel] > 0) return 1; return 0; } EXPORT_SYMBOL(rtllib_legal_channel); static inline void rtllib_process_probe_response( struct rtllib_device *ieee, struct rtllib_probe_response *beacon, struct rtllib_rx_stats *stats) { struct rtllib_network *target; struct rtllib_network *oldest = NULL; struct rtllib_info_element *info_element = &beacon->info_element[0]; unsigned long flags; short renew; struct rtllib_network *network = kzalloc(sizeof(struct rtllib_network), GFP_ATOMIC); u16 frame_ctl = le16_to_cpu(beacon->header.frame_ctl); if (!network) return; netdev_dbg(ieee->dev, "'%s' ( %pM ): %c%c%c%c %c%c%c%c-%c%c%c%c %c%c%c%c\n", escape_essid(info_element->data, info_element->len), beacon->header.addr3, (le16_to_cpu(beacon->capability) & (1<<0xf)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0xe)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0xd)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0xc)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0xb)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0xa)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x9)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x8)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x7)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x6)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x5)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x4)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x3)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x2)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x1)) ? '1' : '0', (le16_to_cpu(beacon->capability) & (1<<0x0)) ? '1' : '0'); if (rtllib_network_init(ieee, beacon, network, stats)) { netdev_dbg(ieee->dev, "Dropped '%s' ( %pM) via %s.\n", escape_essid(info_element->data, info_element->len), beacon->header.addr3, is_beacon(frame_ctl) ? "BEACON" : "PROBE RESPONSE"); goto free_network; } if (!rtllib_legal_channel(ieee, network->channel)) goto free_network; if (WLAN_FC_GET_STYPE(frame_ctl) == RTLLIB_STYPE_PROBE_RESP) { if (IsPassiveChannel(ieee, network->channel)) { netdev_info(ieee->dev, "GetScanInfo(): For Global Domain, filter probe response at channel(%d).\n", network->channel); goto free_network; } } /* The network parsed correctly -- so now we scan our known networks * to see if we can find it in our list. * * NOTE: This search is definitely not optimized. Once its doing * the "right thing" we'll optimize it for efficiency if * necessary */ /* Search for this entry in the list and update it if it is * already there. */ spin_lock_irqsave(&ieee->lock, flags); if (is_same_network(&ieee->current_network, network, (network->ssid_len ? 1 : 0))) { update_network(ieee, &ieee->current_network, network); if ((ieee->current_network.mode == IEEE_N_24G || ieee->current_network.mode == IEEE_G) && ieee->current_network.berp_info_valid) { if (ieee->current_network.erp_value & ERP_UseProtection) ieee->current_network.buseprotection = true; else ieee->current_network.buseprotection = false; } if (is_beacon(frame_ctl)) { if (ieee->state >= RTLLIB_LINKED) ieee->LinkDetectInfo.NumRecvBcnInPeriod++; } } list_for_each_entry(target, &ieee->network_list, list) { if (is_same_network(target, network, (target->ssid_len ? 1 : 0))) break; if ((oldest == NULL) || (target->last_scanned < oldest->last_scanned)) oldest = target; } /* If we didn't find a match, then get a new network slot to initialize * with this beacon's information */ if (&target->list == &ieee->network_list) { if (list_empty(&ieee->network_free_list)) { /* If there are no more slots, expire the oldest */ list_del(&oldest->list); target = oldest; netdev_dbg(ieee->dev, "Expired '%s' ( %pM) from network list.\n", escape_essid(target->ssid, target->ssid_len), target->bssid); } else { /* Otherwise just pull from the free list */ target = list_entry(ieee->network_free_list.next, struct rtllib_network, list); list_del(ieee->network_free_list.next); } netdev_dbg(ieee->dev, "Adding '%s' ( %pM) via %s.\n", escape_essid(network->ssid, network->ssid_len), network->bssid, is_beacon(frame_ctl) ? "BEACON" : "PROBE RESPONSE"); memcpy(target, network, sizeof(*target)); list_add_tail(&target->list, &ieee->network_list); if (ieee->softmac_features & IEEE_SOFTMAC_ASSOCIATE) rtllib_softmac_new_net(ieee, network); } else { netdev_dbg(ieee->dev, "Updating '%s' ( %pM) via %s.\n", escape_essid(target->ssid, target->ssid_len), target->bssid, is_beacon(frame_ctl) ? "BEACON" : "PROBE RESPONSE"); /* we have an entry and we are going to update it. But this * entry may be already expired. In this case we do the same * as we found a new net and call the new_net handler */ renew = !time_after(target->last_scanned + ieee->scan_age, jiffies); if ((!target->ssid_len) && (((network->ssid_len > 0) && (target->hidden_ssid_len == 0)) || ((ieee->current_network.ssid_len == network->ssid_len) && (strncmp(ieee->current_network.ssid, network->ssid, network->ssid_len) == 0) && (ieee->state == RTLLIB_NOLINK)))) renew = 1; update_network(ieee, target, network); if (renew && (ieee->softmac_features & IEEE_SOFTMAC_ASSOCIATE)) rtllib_softmac_new_net(ieee, network); } spin_unlock_irqrestore(&ieee->lock, flags); if (is_beacon(frame_ctl) && is_same_network(&ieee->current_network, network, (network->ssid_len ? 1 : 0)) && (ieee->state == RTLLIB_LINKED)) { if (ieee->handle_beacon != NULL) ieee->handle_beacon(ieee->dev, beacon, &ieee->current_network); } free_network: kfree(network); } static void rtllib_rx_mgt(struct rtllib_device *ieee, struct sk_buff *skb, struct rtllib_rx_stats *stats) { struct rtllib_hdr_4addr *header = (struct rtllib_hdr_4addr *)skb->data; if ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) != RTLLIB_STYPE_PROBE_RESP) && (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) != RTLLIB_STYPE_BEACON)) ieee->last_rx_ps_time = jiffies; switch (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl))) { case RTLLIB_STYPE_BEACON: netdev_dbg(ieee->dev, "received BEACON (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl))); rtllib_process_probe_response( ieee, (struct rtllib_probe_response *)header, stats); if (ieee->sta_sleep || (ieee->ps != RTLLIB_PS_DISABLED && ieee->iw_mode == IW_MODE_INFRA && ieee->state == RTLLIB_LINKED)) tasklet_schedule(&ieee->ps_task); break; case RTLLIB_STYPE_PROBE_RESP: netdev_dbg(ieee->dev, "received PROBE RESPONSE (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl))); rtllib_process_probe_response(ieee, (struct rtllib_probe_response *)header, stats); break; case RTLLIB_STYPE_PROBE_REQ: netdev_dbg(ieee->dev, "received PROBE RESQUEST (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl))); if ((ieee->softmac_features & IEEE_SOFTMAC_PROBERS) && ((ieee->iw_mode == IW_MODE_ADHOC || ieee->iw_mode == IW_MODE_MASTER) && ieee->state == RTLLIB_LINKED)) rtllib_rx_probe_rq(ieee, skb); break; } }