// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2015, Sony Mobile Communications, AB. */ #include #include #include #include #include #include #include #include #include #include /* From DT binding */ #define WLED_MAX_STRINGS 4 #define MOD_A 0 #define MOD_B 1 #define WLED_DEFAULT_BRIGHTNESS 2048 #define WLED_SOFT_START_DLY_US 10000 #define WLED3_SINK_REG_BRIGHT_MAX 0xFFF #define WLED5_SINK_REG_BRIGHT_MAX_12B 0xFFF #define WLED5_SINK_REG_BRIGHT_MAX_15B 0x7FFF /* WLED3/WLED4 control registers */ #define WLED3_CTRL_REG_FAULT_STATUS 0x08 #define WLED3_CTRL_REG_ILIM_FAULT_BIT BIT(0) #define WLED3_CTRL_REG_OVP_FAULT_BIT BIT(1) #define WLED4_CTRL_REG_SC_FAULT_BIT BIT(2) #define WLED5_CTRL_REG_OVP_PRE_ALARM_BIT BIT(4) #define WLED3_CTRL_REG_INT_RT_STS 0x10 #define WLED3_CTRL_REG_OVP_FAULT_STATUS BIT(1) #define WLED3_CTRL_REG_MOD_EN 0x46 #define WLED3_CTRL_REG_MOD_EN_MASK BIT(7) #define WLED3_CTRL_REG_MOD_EN_SHIFT 7 #define WLED3_CTRL_REG_FEEDBACK_CONTROL 0x48 #define WLED3_CTRL_REG_FREQ 0x4c #define WLED3_CTRL_REG_FREQ_MASK GENMASK(3, 0) #define WLED3_CTRL_REG_OVP 0x4d #define WLED3_CTRL_REG_OVP_MASK GENMASK(1, 0) #define WLED5_CTRL_REG_OVP_MASK GENMASK(3, 0) #define WLED3_CTRL_REG_ILIMIT 0x4e #define WLED3_CTRL_REG_ILIMIT_MASK GENMASK(2, 0) /* WLED3/WLED4 sink registers */ #define WLED3_SINK_REG_SYNC 0x47 #define WLED3_SINK_REG_SYNC_CLEAR 0x00 #define WLED3_SINK_REG_CURR_SINK 0x4f #define WLED3_SINK_REG_CURR_SINK_MASK GENMASK(7, 5) #define WLED3_SINK_REG_CURR_SINK_SHFT 5 /* WLED3 specific per-'string' registers below */ #define WLED3_SINK_REG_BRIGHT(n) (0x40 + n) #define WLED3_SINK_REG_STR_MOD_EN(n) (0x60 + (n * 0x10)) #define WLED3_SINK_REG_STR_MOD_MASK BIT(7) #define WLED3_SINK_REG_STR_FULL_SCALE_CURR(n) (0x62 + (n * 0x10)) #define WLED3_SINK_REG_STR_FULL_SCALE_CURR_MASK GENMASK(4, 0) #define WLED3_SINK_REG_STR_MOD_SRC(n) (0x63 + (n * 0x10)) #define WLED3_SINK_REG_STR_MOD_SRC_MASK BIT(0) #define WLED3_SINK_REG_STR_MOD_SRC_INT 0x00 #define WLED3_SINK_REG_STR_MOD_SRC_EXT 0x01 #define WLED3_SINK_REG_STR_CABC(n) (0x66 + (n * 0x10)) #define WLED3_SINK_REG_STR_CABC_MASK BIT(7) /* WLED4 specific control registers */ #define WLED4_CTRL_REG_SHORT_PROTECT 0x5e #define WLED4_CTRL_REG_SHORT_EN_MASK BIT(7) #define WLED4_CTRL_REG_SEC_ACCESS 0xd0 #define WLED4_CTRL_REG_SEC_UNLOCK 0xa5 #define WLED4_CTRL_REG_TEST1 0xe2 #define WLED4_CTRL_REG_TEST1_EXT_FET_DTEST2 0x09 /* WLED4 specific sink registers */ #define WLED4_SINK_REG_CURR_SINK 0x46 #define WLED4_SINK_REG_CURR_SINK_MASK GENMASK(7, 4) #define WLED4_SINK_REG_CURR_SINK_SHFT 4 /* WLED4 specific per-'string' registers below */ #define WLED4_SINK_REG_STR_MOD_EN(n) (0x50 + (n * 0x10)) #define WLED4_SINK_REG_STR_MOD_MASK BIT(7) #define WLED4_SINK_REG_STR_FULL_SCALE_CURR(n) (0x52 + (n * 0x10)) #define WLED4_SINK_REG_STR_FULL_SCALE_CURR_MASK GENMASK(3, 0) #define WLED4_SINK_REG_STR_MOD_SRC(n) (0x53 + (n * 0x10)) #define WLED4_SINK_REG_STR_MOD_SRC_MASK BIT(0) #define WLED4_SINK_REG_STR_MOD_SRC_INT 0x00 #define WLED4_SINK_REG_STR_MOD_SRC_EXT 0x01 #define WLED4_SINK_REG_STR_CABC(n) (0x56 + (n * 0x10)) #define WLED4_SINK_REG_STR_CABC_MASK BIT(7) #define WLED4_SINK_REG_BRIGHT(n) (0x57 + (n * 0x10)) /* WLED5 specific control registers */ #define WLED5_CTRL_REG_OVP_INT_CTL 0x5f #define WLED5_CTRL_REG_OVP_INT_TIMER_MASK GENMASK(2, 0) /* WLED5 specific sink registers */ #define WLED5_SINK_REG_MOD_A_EN 0x50 #define WLED5_SINK_REG_MOD_B_EN 0x60 #define WLED5_SINK_REG_MOD_EN_MASK BIT(7) #define WLED5_SINK_REG_MOD_A_SRC_SEL 0x51 #define WLED5_SINK_REG_MOD_B_SRC_SEL 0x61 #define WLED5_SINK_REG_MOD_SRC_SEL_HIGH 0 #define WLED5_SINK_REG_MOD_SRC_SEL_EXT 0x03 #define WLED5_SINK_REG_MOD_SRC_SEL_MASK GENMASK(1, 0) #define WLED5_SINK_REG_MOD_A_BRIGHTNESS_WIDTH_SEL 0x52 #define WLED5_SINK_REG_MOD_B_BRIGHTNESS_WIDTH_SEL 0x62 #define WLED5_SINK_REG_BRIGHTNESS_WIDTH_12B 0 #define WLED5_SINK_REG_BRIGHTNESS_WIDTH_15B 1 #define WLED5_SINK_REG_MOD_A_BRIGHTNESS_LSB 0x53 #define WLED5_SINK_REG_MOD_A_BRIGHTNESS_MSB 0x54 #define WLED5_SINK_REG_MOD_B_BRIGHTNESS_LSB 0x63 #define WLED5_SINK_REG_MOD_B_BRIGHTNESS_MSB 0x64 #define WLED5_SINK_REG_MOD_SYNC_BIT 0x65 #define WLED5_SINK_REG_SYNC_MOD_A_BIT BIT(0) #define WLED5_SINK_REG_SYNC_MOD_B_BIT BIT(1) #define WLED5_SINK_REG_SYNC_MASK GENMASK(1, 0) /* WLED5 specific per-'string' registers below */ #define WLED5_SINK_REG_STR_FULL_SCALE_CURR(n) (0x72 + (n * 0x10)) #define WLED5_SINK_REG_STR_SRC_SEL(n) (0x73 + (n * 0x10)) #define WLED5_SINK_REG_SRC_SEL_MOD_A 0 #define WLED5_SINK_REG_SRC_SEL_MOD_B 1 #define WLED5_SINK_REG_SRC_SEL_MASK GENMASK(1, 0) struct wled_var_cfg { const u32 *values; u32 (*fn)(u32); int size; }; struct wled_u32_opts { const char *name; u32 *val_ptr; const struct wled_var_cfg *cfg; }; struct wled_bool_opts { const char *name; bool *val_ptr; }; struct wled_config { u32 boost_i_limit; u32 ovp; u32 switch_freq; u32 num_strings; u32 string_i_limit; u32 enabled_strings[WLED_MAX_STRINGS]; u32 mod_sel; u32 cabc_sel; bool cs_out_en; bool ext_gen; bool cabc; bool external_pfet; bool auto_detection_enabled; }; struct wled { const char *name; struct device *dev; struct regmap *regmap; struct mutex lock; /* Lock to avoid race from thread irq handler */ ktime_t last_short_event; ktime_t start_ovp_fault_time; u16 ctrl_addr; u16 sink_addr; u16 max_string_count; u16 auto_detection_ovp_count; u32 brightness; u32 max_brightness; u32 short_count; u32 auto_detect_count; u32 version; bool disabled_by_short; bool has_short_detect; bool cabc_disabled; int short_irq; int ovp_irq; struct wled_config cfg; struct delayed_work ovp_work; /* Configures the brightness. Applicable for wled3, wled4 and wled5 */ int (*wled_set_brightness)(struct wled *wled, u16 brightness); /* Configures the cabc register. Applicable for wled4 and wled5 */ int (*wled_cabc_config)(struct wled *wled, bool enable); /* * Toggles the sync bit for the brightness update to take place. * Applicable for WLED3, WLED4 and WLED5. */ int (*wled_sync_toggle)(struct wled *wled); /* * Time to wait before checking the OVP status after wled module enable. * Applicable for WLED4 and WLED5. */ int (*wled_ovp_delay)(struct wled *wled); /* * Determines if the auto string detection is required. * Applicable for WLED4 and WLED5 */ bool (*wled_auto_detection_required)(struct wled *wled); }; static int wled3_set_brightness(struct wled *wled, u16 brightness) { int rc, i; __le16 v; v = cpu_to_le16(brightness & WLED3_SINK_REG_BRIGHT_MAX); for (i = 0; i < wled->cfg.num_strings; ++i) { rc = regmap_bulk_write(wled->regmap, wled->ctrl_addr + WLED3_SINK_REG_BRIGHT(wled->cfg.enabled_strings[i]), &v, sizeof(v)); if (rc < 0) return rc; } return 0; } static int wled4_set_brightness(struct wled *wled, u16 brightness) { int rc, i; u16 low_limit = wled->max_brightness * 4 / 1000; __le16 v; /* WLED4's lower limit of operation is 0.4% */ if (brightness > 0 && brightness < low_limit) brightness = low_limit; v = cpu_to_le16(brightness & WLED3_SINK_REG_BRIGHT_MAX); for (i = 0; i < wled->cfg.num_strings; ++i) { rc = regmap_bulk_write(wled->regmap, wled->sink_addr + WLED4_SINK_REG_BRIGHT(wled->cfg.enabled_strings[i]), &v, sizeof(v)); if (rc < 0) return rc; } return 0; } static int wled5_set_brightness(struct wled *wled, u16 brightness) { int rc, offset; u16 low_limit = wled->max_brightness * 1 / 1000; __le16 v; /* WLED5's lower limit is 0.1% */ if (brightness < low_limit) brightness = low_limit; v = cpu_to_le16(brightness & WLED5_SINK_REG_BRIGHT_MAX_15B); offset = (wled->cfg.mod_sel == MOD_A) ? WLED5_SINK_REG_MOD_A_BRIGHTNESS_LSB : WLED5_SINK_REG_MOD_B_BRIGHTNESS_LSB; rc = regmap_bulk_write(wled->regmap, wled->sink_addr + offset, &v, sizeof(v)); return rc; } static void wled_ovp_work(struct work_struct *work) { struct wled *wled = container_of(work, struct wled, ovp_work.work); enable_irq(wled->ovp_irq); } static int wled_module_enable(struct wled *wled, int val) { int rc; if (wled->disabled_by_short) return -ENXIO; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN, WLED3_CTRL_REG_MOD_EN_MASK, val << WLED3_CTRL_REG_MOD_EN_SHIFT); if (rc < 0) return rc; if (wled->ovp_irq > 0) { if (val) { /* * The hardware generates a storm of spurious OVP * interrupts during soft start operations. So defer * enabling the IRQ for 10ms to ensure that the * soft start is complete. */ schedule_delayed_work(&wled->ovp_work, HZ / 100); } else { if (!cancel_delayed_work_sync(&wled->ovp_work)) disable_irq(wled->ovp_irq); } } return 0; } static int wled3_sync_toggle(struct wled *wled) { int rc; unsigned int mask = GENMASK(wled->max_string_count - 1, 0); rc = regmap_update_bits(wled->regmap, wled->sink_addr + WLED3_SINK_REG_SYNC, mask, WLED3_SINK_REG_SYNC_CLEAR); if (rc < 0) return rc; rc = regmap_update_bits(wled->regmap, wled->sink_addr + WLED3_SINK_REG_SYNC, mask, mask); return rc; } static int wled5_mod_sync_toggle(struct wled *wled) { int rc; u8 val; rc = regmap_update_bits(wled->regmap, wled->sink_addr + WLED5_SINK_REG_MOD_SYNC_BIT, WLED5_SINK_REG_SYNC_MASK, 0); if (rc < 0) return rc; val = (wled->cfg.mod_sel == MOD_A) ? WLED5_SINK_REG_SYNC_MOD_A_BIT : WLED5_SINK_REG_SYNC_MOD_B_BIT; return regmap_update_bits(wled->regmap, wled->sink_addr + WLED5_SINK_REG_MOD_SYNC_BIT, WLED5_SINK_REG_SYNC_MASK, val); } static int wled_ovp_fault_status(struct wled *wled, bool *fault_set) { int rc; u32 int_rt_sts, fault_sts; *fault_set = false; rc = regmap_read(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_INT_RT_STS, &int_rt_sts); if (rc < 0) { dev_err(wled->dev, "Failed to read INT_RT_STS rc=%d\n", rc); return rc; } rc = regmap_read(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_FAULT_STATUS, &fault_sts); if (rc < 0) { dev_err(wled->dev, "Failed to read FAULT_STATUS rc=%d\n", rc); return rc; } if (int_rt_sts & WLED3_CTRL_REG_OVP_FAULT_STATUS) *fault_set = true; if (wled->version == 4 && (fault_sts & WLED3_CTRL_REG_OVP_FAULT_BIT)) *fault_set = true; if (wled->version == 5 && (fault_sts & (WLED3_CTRL_REG_OVP_FAULT_BIT | WLED5_CTRL_REG_OVP_PRE_ALARM_BIT))) *fault_set = true; if (*fault_set) dev_dbg(wled->dev, "WLED OVP fault detected, int_rt_sts=0x%x fault_sts=0x%x\n", int_rt_sts, fault_sts); return rc; } static int wled4_ovp_delay(struct wled *wled) { return WLED_SOFT_START_DLY_US; } static int wled5_ovp_delay(struct wled *wled) { int rc, delay_us; u32 val; u8 ovp_timer_ms[8] = {1, 2, 4, 8, 12, 16, 20, 24}; /* For WLED5, get the delay based on OVP timer */ rc = regmap_read(wled->regmap, wled->ctrl_addr + WLED5_CTRL_REG_OVP_INT_CTL, &val); if (rc < 0) delay_us = ovp_timer_ms[val & WLED5_CTRL_REG_OVP_INT_TIMER_MASK] * 1000; else delay_us = 2 * WLED_SOFT_START_DLY_US; dev_dbg(wled->dev, "delay_time_us: %d\n", delay_us); return delay_us; } static int wled_update_status(struct backlight_device *bl) { struct wled *wled = bl_get_data(bl); u16 brightness = backlight_get_brightness(bl); int rc = 0; mutex_lock(&wled->lock); if (brightness) { rc = wled->wled_set_brightness(wled, brightness); if (rc < 0) { dev_err(wled->dev, "wled failed to set brightness rc:%d\n", rc); goto unlock_mutex; } if (wled->version < 5) { rc = wled->wled_sync_toggle(wled); if (rc < 0) { dev_err(wled->dev, "wled sync failed rc:%d\n", rc); goto unlock_mutex; } } else { /* * For WLED5 toggling the MOD_SYNC_BIT updates the * brightness */ rc = wled5_mod_sync_toggle(wled); if (rc < 0) { dev_err(wled->dev, "wled mod sync failed rc:%d\n", rc); goto unlock_mutex; } } } if (!!brightness != !!wled->brightness) { rc = wled_module_enable(wled, !!brightness); if (rc < 0) { dev_err(wled->dev, "wled enable failed rc:%d\n", rc); goto unlock_mutex; } } wled->brightness = brightness; unlock_mutex: mutex_unlock(&wled->lock); return rc; } static int wled4_cabc_config(struct wled *wled, bool enable) { int i, j, rc; u8 val; for (i = 0; i < wled->cfg.num_strings; i++) { j = wled->cfg.enabled_strings[i]; val = enable ? WLED4_SINK_REG_STR_CABC_MASK : 0; rc = regmap_update_bits(wled->regmap, wled->sink_addr + WLED4_SINK_REG_STR_CABC(j), WLED4_SINK_REG_STR_CABC_MASK, val); if (rc < 0) return rc; } return 0; } static int wled5_cabc_config(struct wled *wled, bool enable) { int rc, offset; u8 reg; if (wled->cabc_disabled) return 0; reg = enable ? wled->cfg.cabc_sel : 0; offset = (wled->cfg.mod_sel == MOD_A) ? WLED5_SINK_REG_MOD_A_SRC_SEL : WLED5_SINK_REG_MOD_B_SRC_SEL; rc = regmap_update_bits(wled->regmap, wled->sink_addr + offset, WLED5_SINK_REG_MOD_SRC_SEL_MASK, reg); if (rc < 0) { pr_err("Error in configuring CABC rc=%d\n", rc); return rc; } if (!wled->cfg.cabc_sel) wled->cabc_disabled = true; return 0; } #define WLED_SHORT_DLY_MS 20 #define WLED_SHORT_CNT_MAX 5 #define WLED_SHORT_RESET_CNT_DLY_US USEC_PER_SEC static irqreturn_t wled_short_irq_handler(int irq, void *_wled) { struct wled *wled = _wled; int rc; s64 elapsed_time; wled->short_count++; mutex_lock(&wled->lock); rc = wled_module_enable(wled, false); if (rc < 0) { dev_err(wled->dev, "wled disable failed rc:%d\n", rc); goto unlock_mutex; } elapsed_time = ktime_us_delta(ktime_get(), wled->last_short_event); if (elapsed_time > WLED_SHORT_RESET_CNT_DLY_US) wled->short_count = 1; if (wled->short_count > WLED_SHORT_CNT_MAX) { dev_err(wled->dev, "Short triggered %d times, disabling WLED forever!\n", wled->short_count); wled->disabled_by_short = true; goto unlock_mutex; } wled->last_short_event = ktime_get(); msleep(WLED_SHORT_DLY_MS); rc = wled_module_enable(wled, true); if (rc < 0) dev_err(wled->dev, "wled enable failed rc:%d\n", rc); unlock_mutex: mutex_unlock(&wled->lock); return IRQ_HANDLED; } #define AUTO_DETECT_BRIGHTNESS 200 static void wled_auto_string_detection(struct wled *wled) { int rc = 0, i, j, delay_time_us; u32 sink_config = 0; u8 sink_test = 0, sink_valid = 0, val; bool fault_set; /* Read configured sink configuration */ rc = regmap_read(wled->regmap, wled->sink_addr + WLED4_SINK_REG_CURR_SINK, &sink_config); if (rc < 0) { dev_err(wled->dev, "Failed to read SINK configuration rc=%d\n", rc); goto failed_detect; } /* Disable the module before starting detection */ rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN, WLED3_CTRL_REG_MOD_EN_MASK, 0); if (rc < 0) { dev_err(wled->dev, "Failed to disable WLED module rc=%d\n", rc); goto failed_detect; } /* Set low brightness across all sinks */ rc = wled4_set_brightness(wled, AUTO_DETECT_BRIGHTNESS); if (rc < 0) { dev_err(wled->dev, "Failed to set brightness for auto detection rc=%d\n", rc); goto failed_detect; } if (wled->cfg.cabc) { rc = wled->wled_cabc_config(wled, false); if (rc < 0) goto failed_detect; } /* Disable all sinks */ rc = regmap_write(wled->regmap, wled->sink_addr + WLED4_SINK_REG_CURR_SINK, 0); if (rc < 0) { dev_err(wled->dev, "Failed to disable all sinks rc=%d\n", rc); goto failed_detect; } /* Iterate through the strings one by one */ for (i = 0; i < wled->cfg.num_strings; i++) { j = wled->cfg.enabled_strings[i]; sink_test = BIT((WLED4_SINK_REG_CURR_SINK_SHFT + j)); /* Enable feedback control */ rc = regmap_write(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_FEEDBACK_CONTROL, j + 1); if (rc < 0) { dev_err(wled->dev, "Failed to enable feedback for SINK %d rc = %d\n", j + 1, rc); goto failed_detect; } /* Enable the sink */ rc = regmap_write(wled->regmap, wled->sink_addr + WLED4_SINK_REG_CURR_SINK, sink_test); if (rc < 0) { dev_err(wled->dev, "Failed to configure SINK %d rc=%d\n", j + 1, rc); goto failed_detect; } /* Enable the module */ rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN, WLED3_CTRL_REG_MOD_EN_MASK, WLED3_CTRL_REG_MOD_EN_MASK); if (rc < 0) { dev_err(wled->dev, "Failed to enable WLED module rc=%d\n", rc); goto failed_detect; } delay_time_us = wled->wled_ovp_delay(wled); usleep_range(delay_time_us, delay_time_us + 1000); rc = wled_ovp_fault_status(wled, &fault_set); if (rc < 0) { dev_err(wled->dev, "Error in getting OVP fault_sts, rc=%d\n", rc); goto failed_detect; } if (fault_set) dev_dbg(wled->dev, "WLED OVP fault detected with SINK %d\n", j + 1); else sink_valid |= sink_test; /* Disable the module */ rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN, WLED3_CTRL_REG_MOD_EN_MASK, 0); if (rc < 0) { dev_err(wled->dev, "Failed to disable WLED module rc=%d\n", rc); goto failed_detect; } } if (!sink_valid) { dev_err(wled->dev, "No valid WLED sinks found\n"); wled->disabled_by_short = true; goto failed_detect; } if (sink_valid != sink_config) { dev_warn(wled->dev, "%x is not a valid sink configuration - using %x instead\n", sink_config, sink_valid); sink_config = sink_valid; } /* Write the new sink configuration */ rc = regmap_write(wled->regmap, wled->sink_addr + WLED4_SINK_REG_CURR_SINK, sink_config); if (rc < 0) { dev_err(wled->dev, "Failed to reconfigure the default sink rc=%d\n", rc); goto failed_detect; } /* Enable valid sinks */ if (wled->version == 4) { for (i = 0; i < wled->cfg.num_strings; i++) { j = wled->cfg.enabled_strings[i]; if (sink_config & BIT(WLED4_SINK_REG_CURR_SINK_SHFT + j)) val = WLED4_SINK_REG_STR_MOD_MASK; else /* Disable modulator_en for unused sink */ val = 0; rc = regmap_write(wled->regmap, wled->sink_addr + WLED4_SINK_REG_STR_MOD_EN(j), val); if (rc < 0) { dev_err(wled->dev, "Failed to configure MODULATOR_EN rc=%d\n", rc); goto failed_detect; } } } /* Enable CABC */ rc = wled->wled_cabc_config(wled, true); if (rc < 0) goto failed_detect; /* Restore the feedback setting */ rc = regmap_write(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_FEEDBACK_CONTROL, 0); if (rc < 0) { dev_err(wled->dev, "Failed to restore feedback setting rc=%d\n", rc); goto failed_detect; } /* Restore brightness */ rc = wled4_set_brightness(wled, wled->brightness); if (rc < 0) { dev_err(wled->dev, "Failed to set brightness after auto detection rc=%d\n", rc); goto failed_detect; } rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN, WLED3_CTRL_REG_MOD_EN_MASK, WLED3_CTRL_REG_MOD_EN_MASK); if (rc < 0) { dev_err(wled->dev, "Failed to enable WLED module rc=%d\n", rc); goto failed_detect; } failed_detect: return; } #define WLED_AUTO_DETECT_OVP_COUNT 5 #define WLED_AUTO_DETECT_CNT_DLY_US USEC_PER_SEC static bool wled4_auto_detection_required(struct wled *wled) { s64 elapsed_time_us; if (!wled->cfg.auto_detection_enabled) return false; /* * Check if the OVP fault was an occasional one * or if it's firing continuously, the latter qualifies * for an auto-detection check. */ if (!wled->auto_detection_ovp_count) { wled->start_ovp_fault_time = ktime_get(); wled->auto_detection_ovp_count++; } else { elapsed_time_us = ktime_us_delta(ktime_get(), wled->start_ovp_fault_time); if (elapsed_time_us > WLED_AUTO_DETECT_CNT_DLY_US) wled->auto_detection_ovp_count = 0; else wled->auto_detection_ovp_count++; if (wled->auto_detection_ovp_count >= WLED_AUTO_DETECT_OVP_COUNT) { wled->auto_detection_ovp_count = 0; return true; } } return false; } static bool wled5_auto_detection_required(struct wled *wled) { if (!wled->cfg.auto_detection_enabled) return false; /* * Unlike WLED4, WLED5 has OVP fault density interrupt configuration * i.e. to count the number of OVP alarms for a certain duration before * triggering OVP fault interrupt. By default, number of OVP fault * events counted before an interrupt is fired is 32 and the time * interval is 12 ms. If we see one OVP fault interrupt, then that * should qualify for a real OVP fault condition to run auto detection * algorithm. */ return true; } static int wled_auto_detection_at_init(struct wled *wled) { int rc; bool fault_set; if (!wled->cfg.auto_detection_enabled) return 0; rc = wled_ovp_fault_status(wled, &fault_set); if (rc < 0) { dev_err(wled->dev, "Error in getting OVP fault_sts, rc=%d\n", rc); return rc; } if (fault_set) { mutex_lock(&wled->lock); wled_auto_string_detection(wled); mutex_unlock(&wled->lock); } return rc; } static irqreturn_t wled_ovp_irq_handler(int irq, void *_wled) { struct wled *wled = _wled; int rc; u32 int_sts, fault_sts; rc = regmap_read(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_INT_RT_STS, &int_sts); if (rc < 0) { dev_err(wled->dev, "Error in reading WLED3_INT_RT_STS rc=%d\n", rc); return IRQ_HANDLED; } rc = regmap_read(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_FAULT_STATUS, &fault_sts); if (rc < 0) { dev_err(wled->dev, "Error in reading WLED_FAULT_STATUS rc=%d\n", rc); return IRQ_HANDLED; } if (fault_sts & (WLED3_CTRL_REG_OVP_FAULT_BIT | WLED3_CTRL_REG_ILIM_FAULT_BIT)) dev_dbg(wled->dev, "WLED OVP fault detected, int_sts=%x fault_sts= %x\n", int_sts, fault_sts); if (fault_sts & WLED3_CTRL_REG_OVP_FAULT_BIT) { if (wled->wled_auto_detection_required(wled)) { mutex_lock(&wled->lock); wled_auto_string_detection(wled); mutex_unlock(&wled->lock); } } return IRQ_HANDLED; } static int wled3_setup(struct wled *wled) { u16 addr; u8 sink_en = 0; int rc, i, j; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_OVP, WLED3_CTRL_REG_OVP_MASK, wled->cfg.ovp); if (rc) return rc; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_ILIMIT, WLED3_CTRL_REG_ILIMIT_MASK, wled->cfg.boost_i_limit); if (rc) return rc; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_FREQ, WLED3_CTRL_REG_FREQ_MASK, wled->cfg.switch_freq); if (rc) return rc; for (i = 0; i < wled->cfg.num_strings; ++i) { j = wled->cfg.enabled_strings[i]; addr = wled->ctrl_addr + WLED3_SINK_REG_STR_MOD_EN(j); rc = regmap_update_bits(wled->regmap, addr, WLED3_SINK_REG_STR_MOD_MASK, WLED3_SINK_REG_STR_MOD_MASK); if (rc) return rc; if (wled->cfg.ext_gen) { addr = wled->ctrl_addr + WLED3_SINK_REG_STR_MOD_SRC(j); rc = regmap_update_bits(wled->regmap, addr, WLED3_SINK_REG_STR_MOD_SRC_MASK, WLED3_SINK_REG_STR_MOD_SRC_EXT); if (rc) return rc; } addr = wled->ctrl_addr + WLED3_SINK_REG_STR_FULL_SCALE_CURR(j); rc = regmap_update_bits(wled->regmap, addr, WLED3_SINK_REG_STR_FULL_SCALE_CURR_MASK, wled->cfg.string_i_limit); if (rc) return rc; addr = wled->ctrl_addr + WLED3_SINK_REG_STR_CABC(j); rc = regmap_update_bits(wled->regmap, addr, WLED3_SINK_REG_STR_CABC_MASK, wled->cfg.cabc ? WLED3_SINK_REG_STR_CABC_MASK : 0); if (rc) return rc; sink_en |= BIT(j + WLED3_SINK_REG_CURR_SINK_SHFT); } rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_SINK_REG_CURR_SINK, WLED3_SINK_REG_CURR_SINK_MASK, sink_en); if (rc) return rc; return 0; } static const struct wled_config wled3_config_defaults = { .boost_i_limit = 3, .string_i_limit = 20, .ovp = 2, .num_strings = 3, .switch_freq = 5, .cs_out_en = false, .ext_gen = false, .cabc = false, .enabled_strings = {0, 1, 2, 3}, }; static int wled4_setup(struct wled *wled) { int rc, temp, i, j; u16 addr; u8 sink_en = 0; u32 sink_cfg; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_OVP, WLED3_CTRL_REG_OVP_MASK, wled->cfg.ovp); if (rc < 0) return rc; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_ILIMIT, WLED3_CTRL_REG_ILIMIT_MASK, wled->cfg.boost_i_limit); if (rc < 0) return rc; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_FREQ, WLED3_CTRL_REG_FREQ_MASK, wled->cfg.switch_freq); if (rc < 0) return rc; if (wled->cfg.external_pfet) { /* Unlock the secure register access */ rc = regmap_write(wled->regmap, wled->ctrl_addr + WLED4_CTRL_REG_SEC_ACCESS, WLED4_CTRL_REG_SEC_UNLOCK); if (rc < 0) return rc; rc = regmap_write(wled->regmap, wled->ctrl_addr + WLED4_CTRL_REG_TEST1, WLED4_CTRL_REG_TEST1_EXT_FET_DTEST2); if (rc < 0) return rc; } rc = regmap_read(wled->regmap, wled->sink_addr + WLED4_SINK_REG_CURR_SINK, &sink_cfg); if (rc < 0) return rc; for (i = 0; i < wled->cfg.num_strings; i++) { j = wled->cfg.enabled_strings[i]; temp = j + WLED4_SINK_REG_CURR_SINK_SHFT; sink_en |= 1 << temp; } if (sink_cfg == sink_en) { rc = wled_auto_detection_at_init(wled); return rc; } rc = regmap_update_bits(wled->regmap, wled->sink_addr + WLED4_SINK_REG_CURR_SINK, WLED4_SINK_REG_CURR_SINK_MASK, 0); if (rc < 0) return rc; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN, WLED3_CTRL_REG_MOD_EN_MASK, 0); if (rc < 0) return rc; /* Per sink/string configuration */ for (i = 0; i < wled->cfg.num_strings; i++) { j = wled->cfg.enabled_strings[i]; addr = wled->sink_addr + WLED4_SINK_REG_STR_MOD_EN(j); rc = regmap_update_bits(wled->regmap, addr, WLED4_SINK_REG_STR_MOD_MASK, WLED4_SINK_REG_STR_MOD_MASK); if (rc < 0) return rc; addr = wled->sink_addr + WLED4_SINK_REG_STR_FULL_SCALE_CURR(j); rc = regmap_update_bits(wled->regmap, addr, WLED4_SINK_REG_STR_FULL_SCALE_CURR_MASK, wled->cfg.string_i_limit); if (rc < 0) return rc; } rc = wled4_cabc_config(wled, wled->cfg.cabc); if (rc < 0) return rc; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN, WLED3_CTRL_REG_MOD_EN_MASK, WLED3_CTRL_REG_MOD_EN_MASK); if (rc < 0) return rc; rc = regmap_update_bits(wled->regmap, wled->sink_addr + WLED4_SINK_REG_CURR_SINK, WLED4_SINK_REG_CURR_SINK_MASK, sink_en); if (rc < 0) return rc; rc = wled->wled_sync_toggle(wled); if (rc < 0) { dev_err(wled->dev, "Failed to toggle sync reg rc:%d\n", rc); return rc; } rc = wled_auto_detection_at_init(wled); return rc; } static const struct wled_config wled4_config_defaults = { .boost_i_limit = 4, .string_i_limit = 10, .ovp = 1, .num_strings = 4, .switch_freq = 11, .cabc = false, .external_pfet = false, .auto_detection_enabled = false, }; static int wled5_setup(struct wled *wled) { int rc, temp, i, j, offset; u8 sink_en = 0; u16 addr; u32 val; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_OVP, WLED5_CTRL_REG_OVP_MASK, wled->cfg.ovp); if (rc < 0) return rc; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_ILIMIT, WLED3_CTRL_REG_ILIMIT_MASK, wled->cfg.boost_i_limit); if (rc < 0) return rc; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_FREQ, WLED3_CTRL_REG_FREQ_MASK, wled->cfg.switch_freq); if (rc < 0) return rc; /* Per sink/string configuration */ for (i = 0; i < wled->cfg.num_strings; ++i) { j = wled->cfg.enabled_strings[i]; addr = wled->sink_addr + WLED4_SINK_REG_STR_FULL_SCALE_CURR(j); rc = regmap_update_bits(wled->regmap, addr, WLED4_SINK_REG_STR_FULL_SCALE_CURR_MASK, wled->cfg.string_i_limit); if (rc < 0) return rc; addr = wled->sink_addr + WLED5_SINK_REG_STR_SRC_SEL(j); rc = regmap_update_bits(wled->regmap, addr, WLED5_SINK_REG_SRC_SEL_MASK, wled->cfg.mod_sel == MOD_A ? WLED5_SINK_REG_SRC_SEL_MOD_A : WLED5_SINK_REG_SRC_SEL_MOD_B); temp = j + WLED4_SINK_REG_CURR_SINK_SHFT; sink_en |= 1 << temp; } rc = wled5_cabc_config(wled, wled->cfg.cabc_sel ? true : false); if (rc < 0) return rc; /* Enable one of the modulators A or B based on mod_sel */ addr = wled->sink_addr + WLED5_SINK_REG_MOD_A_EN; val = (wled->cfg.mod_sel == MOD_A) ? WLED5_SINK_REG_MOD_EN_MASK : 0; rc = regmap_update_bits(wled->regmap, addr, WLED5_SINK_REG_MOD_EN_MASK, val); if (rc < 0) return rc; addr = wled->sink_addr + WLED5_SINK_REG_MOD_B_EN; val = (wled->cfg.mod_sel == MOD_B) ? WLED5_SINK_REG_MOD_EN_MASK : 0; rc = regmap_update_bits(wled->regmap, addr, WLED5_SINK_REG_MOD_EN_MASK, val); if (rc < 0) return rc; offset = (wled->cfg.mod_sel == MOD_A) ? WLED5_SINK_REG_MOD_A_BRIGHTNESS_WIDTH_SEL : WLED5_SINK_REG_MOD_B_BRIGHTNESS_WIDTH_SEL; addr = wled->sink_addr + offset; val = (wled->max_brightness == WLED5_SINK_REG_BRIGHT_MAX_15B) ? WLED5_SINK_REG_BRIGHTNESS_WIDTH_15B : WLED5_SINK_REG_BRIGHTNESS_WIDTH_12B; rc = regmap_write(wled->regmap, addr, val); if (rc < 0) return rc; rc = regmap_update_bits(wled->regmap, wled->sink_addr + WLED4_SINK_REG_CURR_SINK, WLED4_SINK_REG_CURR_SINK_MASK, sink_en); if (rc < 0) return rc; /* This updates only FSC configuration in WLED5 */ rc = wled->wled_sync_toggle(wled); if (rc < 0) { pr_err("Failed to toggle sync reg rc:%d\n", rc); return rc; } rc = wled_auto_detection_at_init(wled); if (rc < 0) return rc; return 0; } static const struct wled_config wled5_config_defaults = { .boost_i_limit = 5, .string_i_limit = 10, .ovp = 4, .num_strings = 4, .switch_freq = 11, .mod_sel = 0, .cabc_sel = 0, .cabc = false, .external_pfet = false, .auto_detection_enabled = false, }; static const u32 wled3_boost_i_limit_values[] = { 105, 385, 525, 805, 980, 1260, 1400, 1680, }; static const struct wled_var_cfg wled3_boost_i_limit_cfg = { .values = wled3_boost_i_limit_values, .size = ARRAY_SIZE(wled3_boost_i_limit_values), }; static const u32 wled4_boost_i_limit_values[] = { 105, 280, 450, 620, 970, 1150, 1300, 1500, }; static const struct wled_var_cfg wled4_boost_i_limit_cfg = { .values = wled4_boost_i_limit_values, .size = ARRAY_SIZE(wled4_boost_i_limit_values), }; static inline u32 wled5_boost_i_limit_values_fn(u32 idx) { return 525 + (idx * 175); } static const struct wled_var_cfg wled5_boost_i_limit_cfg = { .fn = wled5_boost_i_limit_values_fn, .size = 8, }; static const u32 wled3_ovp_values[] = { 35, 32, 29, 27, }; static const struct wled_var_cfg wled3_ovp_cfg = { .values = wled3_ovp_values, .size = ARRAY_SIZE(wled3_ovp_values), }; static const u32 wled4_ovp_values[] = { 31100, 29600, 19600, 18100, }; static const struct wled_var_cfg wled4_ovp_cfg = { .values = wled4_ovp_values, .size = ARRAY_SIZE(wled4_ovp_values), }; static inline u32 wled5_ovp_values_fn(u32 idx) { /* * 0000 - 38.5 V * 0001 - 37 V .. * 1111 - 16 V */ return 38500 - (idx * 1500); } static const struct wled_var_cfg wled5_ovp_cfg = { .fn = wled5_ovp_values_fn, .size = 16, }; static u32 wled3_switch_freq_values_fn(u32 idx) { return 19200 / (2 * (1 + idx)); } static const struct wled_var_cfg wled3_switch_freq_cfg = { .fn = wled3_switch_freq_values_fn, .size = 16, }; static const struct wled_var_cfg wled3_string_i_limit_cfg = { .size = 26, }; static const u32 wled4_string_i_limit_values[] = { 0, 2500, 5000, 7500, 10000, 12500, 15000, 17500, 20000, 22500, 25000, 27500, 30000, }; static const struct wled_var_cfg wled4_string_i_limit_cfg = { .values = wled4_string_i_limit_values, .size = ARRAY_SIZE(wled4_string_i_limit_values), }; static const struct wled_var_cfg wled5_mod_sel_cfg = { .size = 2, }; static const struct wled_var_cfg wled5_cabc_sel_cfg = { .size = 4, }; static u32 wled_values(const struct wled_var_cfg *cfg, u32 idx) { if (idx >= cfg->size) return UINT_MAX; if (cfg->fn) return cfg->fn(idx); if (cfg->values) return cfg->values[idx]; return idx; } static int wled_configure(struct wled *wled) { struct wled_config *cfg = &wled->cfg; struct device *dev = wled->dev; const __be32 *prop_addr; u32 size, val, c; int rc, i, j, string_len; const struct wled_u32_opts *u32_opts = NULL; const struct wled_u32_opts wled3_opts[] = { { .name = "qcom,current-boost-limit", .val_ptr = &cfg->boost_i_limit, .cfg = &wled3_boost_i_limit_cfg, }, { .name = "qcom,current-limit", .val_ptr = &cfg->string_i_limit, .cfg = &wled3_string_i_limit_cfg, }, { .name = "qcom,ovp", .val_ptr = &cfg->ovp, .cfg = &wled3_ovp_cfg, }, { .name = "qcom,switching-freq", .val_ptr = &cfg->switch_freq, .cfg = &wled3_switch_freq_cfg, }, }; const struct wled_u32_opts wled4_opts[] = { { .name = "qcom,current-boost-limit", .val_ptr = &cfg->boost_i_limit, .cfg = &wled4_boost_i_limit_cfg, }, { .name = "qcom,current-limit-microamp", .val_ptr = &cfg->string_i_limit, .cfg = &wled4_string_i_limit_cfg, }, { .name = "qcom,ovp-millivolt", .val_ptr = &cfg->ovp, .cfg = &wled4_ovp_cfg, }, { .name = "qcom,switching-freq", .val_ptr = &cfg->switch_freq, .cfg = &wled3_switch_freq_cfg, }, }; const struct wled_u32_opts wled5_opts[] = { { .name = "qcom,current-boost-limit", .val_ptr = &cfg->boost_i_limit, .cfg = &wled5_boost_i_limit_cfg, }, { .name = "qcom,current-limit-microamp", .val_ptr = &cfg->string_i_limit, .cfg = &wled4_string_i_limit_cfg, }, { .name = "qcom,ovp-millivolt", .val_ptr = &cfg->ovp, .cfg = &wled5_ovp_cfg, }, { .name = "qcom,switching-freq", .val_ptr = &cfg->switch_freq, .cfg = &wled3_switch_freq_cfg, }, { .name = "qcom,modulator-sel", .val_ptr = &cfg->mod_sel, .cfg = &wled5_mod_sel_cfg, }, { .name = "qcom,cabc-sel", .val_ptr = &cfg->cabc_sel, .cfg = &wled5_cabc_sel_cfg, }, }; const struct wled_bool_opts bool_opts[] = { { "qcom,cs-out", &cfg->cs_out_en, }, { "qcom,ext-gen", &cfg->ext_gen, }, { "qcom,cabc", &cfg->cabc, }, { "qcom,external-pfet", &cfg->external_pfet, }, { "qcom,auto-string-detection", &cfg->auto_detection_enabled, }, }; prop_addr = of_get_address(dev->of_node, 0, NULL, NULL); if (!prop_addr) { dev_err(wled->dev, "invalid IO resources\n"); return -EINVAL; } wled->ctrl_addr = be32_to_cpu(*prop_addr); rc = of_property_read_string(dev->of_node, "label", &wled->name); if (rc) wled->name = devm_kasprintf(dev, GFP_KERNEL, "%pOFn", dev->of_node); switch (wled->version) { case 3: u32_opts = wled3_opts; size = ARRAY_SIZE(wled3_opts); *cfg = wled3_config_defaults; wled->wled_set_brightness = wled3_set_brightness; wled->wled_sync_toggle = wled3_sync_toggle; wled->max_string_count = 3; wled->sink_addr = wled->ctrl_addr; break; case 4: u32_opts = wled4_opts; size = ARRAY_SIZE(wled4_opts); *cfg = wled4_config_defaults; wled->wled_set_brightness = wled4_set_brightness; wled->wled_sync_toggle = wled3_sync_toggle; wled->wled_cabc_config = wled4_cabc_config; wled->wled_ovp_delay = wled4_ovp_delay; wled->wled_auto_detection_required = wled4_auto_detection_required; wled->max_string_count = 4; prop_addr = of_get_address(dev->of_node, 1, NULL, NULL); if (!prop_addr) { dev_err(wled->dev, "invalid IO resources\n"); return -EINVAL; } wled->sink_addr = be32_to_cpu(*prop_addr); break; case 5: u32_opts = wled5_opts; size = ARRAY_SIZE(wled5_opts); *cfg = wled5_config_defaults; wled->wled_set_brightness = wled5_set_brightness; wled->wled_sync_toggle = wled3_sync_toggle; wled->wled_cabc_config = wled5_cabc_config; wled->wled_ovp_delay = wled5_ovp_delay; wled->wled_auto_detection_required = wled5_auto_detection_required; wled->max_string_count = 4; prop_addr = of_get_address(dev->of_node, 1, NULL, NULL); if (!prop_addr) { dev_err(wled->dev, "invalid IO resources\n"); return -EINVAL; } wled->sink_addr = be32_to_cpu(*prop_addr); break; default: dev_err(wled->dev, "Invalid WLED version\n"); return -EINVAL; } for (i = 0; i < size; ++i) { rc = of_property_read_u32(dev->of_node, u32_opts[i].name, &val); if (rc == -EINVAL) { continue; } else if (rc) { dev_err(dev, "error reading '%s'\n", u32_opts[i].name); return rc; } c = UINT_MAX; for (j = 0; c != val; j++) { c = wled_values(u32_opts[i].cfg, j); if (c == UINT_MAX) { dev_err(dev, "invalid value for '%s'\n", u32_opts[i].name); return -EINVAL; } if (c == val) break; } dev_dbg(dev, "'%s' = %u\n", u32_opts[i].name, c); *u32_opts[i].val_ptr = j; } for (i = 0; i < ARRAY_SIZE(bool_opts); ++i) { if (of_property_read_bool(dev->of_node, bool_opts[i].name)) *bool_opts[i].val_ptr = true; } string_len = of_property_count_elems_of_size(dev->of_node, "qcom,enabled-strings", sizeof(u32)); if (string_len > 0) { if (string_len > wled->max_string_count) { dev_err(dev, "Cannot have more than %d strings\n", wled->max_string_count); return -EINVAL; } rc = of_property_read_u32_array(dev->of_node, "qcom,enabled-strings", wled->cfg.enabled_strings, string_len); if (rc) { dev_err(dev, "Failed to read %d elements from qcom,enabled-strings: %d\n", string_len, rc); return rc; } for (i = 0; i < string_len; ++i) { if (wled->cfg.enabled_strings[i] >= wled->max_string_count) { dev_err(dev, "qcom,enabled-strings index %d at %d is out of bounds\n", wled->cfg.enabled_strings[i], i); return -EINVAL; } } cfg->num_strings = string_len; } rc = of_property_read_u32(dev->of_node, "qcom,num-strings", &val); if (!rc) { if (val < 1 || val > wled->max_string_count) { dev_err(dev, "qcom,num-strings must be between 1 and %d\n", wled->max_string_count); return -EINVAL; } if (string_len > 0) { dev_warn(dev, "Only one of qcom,num-strings or qcom,enabled-strings" " should be set\n"); if (val > string_len) { dev_err(dev, "qcom,num-strings exceeds qcom,enabled-strings\n"); return -EINVAL; } } cfg->num_strings = val; } return 0; } static int wled_configure_short_irq(struct wled *wled, struct platform_device *pdev) { int rc; if (!wled->has_short_detect) return 0; rc = regmap_update_bits(wled->regmap, wled->ctrl_addr + WLED4_CTRL_REG_SHORT_PROTECT, WLED4_CTRL_REG_SHORT_EN_MASK, WLED4_CTRL_REG_SHORT_EN_MASK); if (rc < 0) return rc; wled->short_irq = platform_get_irq_byname(pdev, "short"); if (wled->short_irq < 0) { dev_dbg(&pdev->dev, "short irq is not used\n"); return 0; } rc = devm_request_threaded_irq(wled->dev, wled->short_irq, NULL, wled_short_irq_handler, IRQF_ONESHOT, "wled_short_irq", wled); if (rc < 0) dev_err(wled->dev, "Unable to request short_irq (err:%d)\n", rc); return rc; } static int wled_configure_ovp_irq(struct wled *wled, struct platform_device *pdev) { int rc; u32 val; wled->ovp_irq = platform_get_irq_byname(pdev, "ovp"); if (wled->ovp_irq < 0) { dev_dbg(&pdev->dev, "OVP IRQ not found - disabling automatic string detection\n"); return 0; } rc = devm_request_threaded_irq(wled->dev, wled->ovp_irq, NULL, wled_ovp_irq_handler, IRQF_ONESHOT, "wled_ovp_irq", wled); if (rc < 0) { dev_err(wled->dev, "Unable to request ovp_irq (err:%d)\n", rc); wled->ovp_irq = 0; return 0; } rc = regmap_read(wled->regmap, wled->ctrl_addr + WLED3_CTRL_REG_MOD_EN, &val); if (rc < 0) return rc; /* Keep OVP irq disabled until module is enabled */ if (!(val & WLED3_CTRL_REG_MOD_EN_MASK)) disable_irq(wled->ovp_irq); return 0; } static const struct backlight_ops wled_ops = { .update_status = wled_update_status, }; static int wled_probe(struct platform_device *pdev) { struct backlight_properties props; struct backlight_device *bl; struct wled *wled; struct regmap *regmap; u32 val; int rc; regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!regmap) { dev_err(&pdev->dev, "Unable to get regmap\n"); return -EINVAL; } wled = devm_kzalloc(&pdev->dev, sizeof(*wled), GFP_KERNEL); if (!wled) return -ENOMEM; wled->regmap = regmap; wled->dev = &pdev->dev; wled->version = (uintptr_t)of_device_get_match_data(&pdev->dev); if (!wled->version) { dev_err(&pdev->dev, "Unknown device version\n"); return -ENODEV; } mutex_init(&wled->lock); rc = wled_configure(wled); if (rc) return rc; val = WLED3_SINK_REG_BRIGHT_MAX; of_property_read_u32(pdev->dev.of_node, "max-brightness", &val); wled->max_brightness = val; switch (wled->version) { case 3: wled->cfg.auto_detection_enabled = false; rc = wled3_setup(wled); if (rc) { dev_err(&pdev->dev, "wled3_setup failed\n"); return rc; } break; case 4: wled->has_short_detect = true; rc = wled4_setup(wled); if (rc) { dev_err(&pdev->dev, "wled4_setup failed\n"); return rc; } break; case 5: wled->has_short_detect = true; if (wled->cfg.cabc_sel) wled->max_brightness = WLED5_SINK_REG_BRIGHT_MAX_12B; rc = wled5_setup(wled); if (rc) { dev_err(&pdev->dev, "wled5_setup failed\n"); return rc; } break; default: dev_err(wled->dev, "Invalid WLED version\n"); break; } INIT_DELAYED_WORK(&wled->ovp_work, wled_ovp_work); rc = wled_configure_short_irq(wled, pdev); if (rc < 0) return rc; rc = wled_configure_ovp_irq(wled, pdev); if (rc < 0) return rc; val = WLED_DEFAULT_BRIGHTNESS; of_property_read_u32(pdev->dev.of_node, "default-brightness", &val); memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_RAW; props.brightness = val; props.max_brightness = wled->max_brightness; bl = devm_backlight_device_register(&pdev->dev, wled->name, &pdev->dev, wled, &wled_ops, &props); return PTR_ERR_OR_ZERO(bl); }; static int wled_remove(struct platform_device *pdev) { struct wled *wled = platform_get_drvdata(pdev); mutex_destroy(&wled->lock); cancel_delayed_work_sync(&wled->ovp_work); disable_irq(wled->short_irq); disable_irq(wled->ovp_irq); return 0; } static const struct of_device_id wled_match_table[] = { { .compatible = "qcom,pm8941-wled", .data = (void *)3 }, { .compatible = "qcom,pmi8994-wled", .data = (void *)4 }, { .compatible = "qcom,pmi8998-wled", .data = (void *)4 }, { .compatible = "qcom,pm660l-wled", .data = (void *)4 }, { .compatible = "qcom,pm8150l-wled", .data = (void *)5 }, {} }; MODULE_DEVICE_TABLE(of, wled_match_table); static struct platform_driver wled_driver = { .probe = wled_probe, .remove = wled_remove, .driver = { .name = "qcom,wled", .of_match_table = wled_match_table, }, }; module_platform_driver(wled_driver); MODULE_DESCRIPTION("Qualcomm WLED driver"); MODULE_LICENSE("GPL v2");