/* * linux/drivers/video/fb_defio.c * * Copyright (C) 2006 Jaya Kumar * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include /* to support deferred IO */ #include #include static struct page *fb_deferred_io_page(struct fb_info *info, unsigned long offs) { void *screen_base = (void __force *) info->screen_base; struct page *page; if (is_vmalloc_addr(screen_base + offs)) page = vmalloc_to_page(screen_base + offs); else page = pfn_to_page((info->fix.smem_start + offs) >> PAGE_SHIFT); return page; } static struct fb_deferred_io_pageref *fb_deferred_io_pageref_get(struct fb_info *info, unsigned long offset, struct page *page) { struct fb_deferred_io *fbdefio = info->fbdefio; struct list_head *pos = &fbdefio->pagereflist; unsigned long pgoff = offset >> PAGE_SHIFT; struct fb_deferred_io_pageref *pageref, *cur; if (WARN_ON_ONCE(pgoff >= info->npagerefs)) return NULL; /* incorrect allocation size */ /* 1:1 mapping between pageref and page offset */ pageref = &info->pagerefs[pgoff]; /* * This check is to catch the case where a new process could start * writing to the same page through a new PTE. This new access * can cause a call to .page_mkwrite even if the original process' * PTE is marked writable. */ if (!list_empty(&pageref->list)) goto pageref_already_added; pageref->page = page; pageref->offset = pgoff << PAGE_SHIFT; if (unlikely(fbdefio->sort_pagereflist)) { /* * We loop through the list of pagerefs before adding in * order to keep the pagerefs sorted. This has significant * overhead of O(n^2) with n being the number of written * pages. If possible, drivers should try to work with * unsorted page lists instead. */ list_for_each_entry(cur, &fbdefio->pagereflist, list) { if (cur->offset > pageref->offset) break; } pos = &cur->list; } list_add_tail(&pageref->list, pos); pageref_already_added: return pageref; } static void fb_deferred_io_pageref_put(struct fb_deferred_io_pageref *pageref, struct fb_info *info) { list_del_init(&pageref->list); } /* this is to find and return the vmalloc-ed fb pages */ static vm_fault_t fb_deferred_io_fault(struct vm_fault *vmf) { unsigned long offset; struct page *page; struct fb_info *info = vmf->vma->vm_private_data; offset = vmf->pgoff << PAGE_SHIFT; if (offset >= info->fix.smem_len) return VM_FAULT_SIGBUS; page = fb_deferred_io_page(info, offset); if (!page) return VM_FAULT_SIGBUS; get_page(page); if (vmf->vma->vm_file) page->mapping = vmf->vma->vm_file->f_mapping; else printk(KERN_ERR "no mapping available\n"); BUG_ON(!page->mapping); page->index = vmf->pgoff; /* for page_mkclean() */ vmf->page = page; return 0; } int fb_deferred_io_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct fb_info *info = file->private_data; struct inode *inode = file_inode(file); int err = file_write_and_wait_range(file, start, end); if (err) return err; /* Skip if deferred io is compiled-in but disabled on this fbdev */ if (!info->fbdefio) return 0; inode_lock(inode); flush_delayed_work(&info->deferred_work); inode_unlock(inode); return 0; } EXPORT_SYMBOL_GPL(fb_deferred_io_fsync); /* vm_ops->page_mkwrite handler */ static vm_fault_t fb_deferred_io_mkwrite(struct vm_fault *vmf) { struct page *page = vmf->page; struct fb_info *info = vmf->vma->vm_private_data; struct fb_deferred_io *fbdefio = info->fbdefio; struct fb_deferred_io_pageref *pageref; unsigned long offset; vm_fault_t ret; offset = (vmf->address - vmf->vma->vm_start); /* this is a callback we get when userspace first tries to write to the page. we schedule a workqueue. that workqueue will eventually mkclean the touched pages and execute the deferred framebuffer IO. then if userspace touches a page again, we repeat the same scheme */ file_update_time(vmf->vma->vm_file); /* protect against the workqueue changing the page list */ mutex_lock(&fbdefio->lock); /* first write in this cycle, notify the driver */ if (fbdefio->first_io && list_empty(&fbdefio->pagereflist)) fbdefio->first_io(info); pageref = fb_deferred_io_pageref_get(info, offset, page); if (WARN_ON_ONCE(!pageref)) { ret = VM_FAULT_OOM; goto err_mutex_unlock; } /* * We want the page to remain locked from ->page_mkwrite until * the PTE is marked dirty to avoid page_mkclean() being called * before the PTE is updated, which would leave the page ignored * by defio. * Do this by locking the page here and informing the caller * about it with VM_FAULT_LOCKED. */ lock_page(pageref->page); mutex_unlock(&fbdefio->lock); /* come back after delay to process the deferred IO */ schedule_delayed_work(&info->deferred_work, fbdefio->delay); return VM_FAULT_LOCKED; err_mutex_unlock: mutex_unlock(&fbdefio->lock); return ret; } static const struct vm_operations_struct fb_deferred_io_vm_ops = { .fault = fb_deferred_io_fault, .page_mkwrite = fb_deferred_io_mkwrite, }; static int fb_deferred_io_set_page_dirty(struct page *page) { if (!PageDirty(page)) SetPageDirty(page); return 0; } static const struct address_space_operations fb_deferred_io_aops = { .set_page_dirty = fb_deferred_io_set_page_dirty, }; int fb_deferred_io_mmap(struct fb_info *info, struct vm_area_struct *vma) { vma->vm_ops = &fb_deferred_io_vm_ops; vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; if (!(info->flags & FBINFO_VIRTFB)) vma->vm_flags |= VM_IO; vma->vm_private_data = info; return 0; } /* workqueue callback */ static void fb_deferred_io_work(struct work_struct *work) { struct fb_info *info = container_of(work, struct fb_info, deferred_work.work); struct fb_deferred_io_pageref *pageref, *next; struct fb_deferred_io *fbdefio = info->fbdefio; /* here we mkclean the pages, then do all deferred IO */ mutex_lock(&fbdefio->lock); list_for_each_entry(pageref, &fbdefio->pagereflist, list) { struct page *cur = pageref->page; lock_page(cur); page_mkclean(cur); unlock_page(cur); } /* driver's callback with pagereflist */ fbdefio->deferred_io(info, &fbdefio->pagereflist); /* clear the list */ list_for_each_entry_safe(pageref, next, &fbdefio->pagereflist, list) fb_deferred_io_pageref_put(pageref, info); mutex_unlock(&fbdefio->lock); } int fb_deferred_io_init(struct fb_info *info) { struct fb_deferred_io *fbdefio = info->fbdefio; struct fb_deferred_io_pageref *pagerefs; unsigned long npagerefs, i; int ret; BUG_ON(!fbdefio); if (WARN_ON(!info->fix.smem_len)) return -EINVAL; mutex_init(&fbdefio->lock); INIT_DELAYED_WORK(&info->deferred_work, fb_deferred_io_work); INIT_LIST_HEAD(&fbdefio->pagereflist); if (fbdefio->delay == 0) /* set a default of 1 s */ fbdefio->delay = HZ; npagerefs = DIV_ROUND_UP(info->fix.smem_len, PAGE_SIZE); /* alloc a page ref for each page of the display memory */ pagerefs = kvcalloc(npagerefs, sizeof(*pagerefs), GFP_KERNEL); if (!pagerefs) { ret = -ENOMEM; goto err; } for (i = 0; i < npagerefs; ++i) INIT_LIST_HEAD(&pagerefs[i].list); info->npagerefs = npagerefs; info->pagerefs = pagerefs; return 0; err: mutex_destroy(&fbdefio->lock); return ret; } EXPORT_SYMBOL_GPL(fb_deferred_io_init); void fb_deferred_io_open(struct fb_info *info, struct inode *inode, struct file *file) { struct fb_deferred_io *fbdefio = info->fbdefio; file->f_mapping->a_ops = &fb_deferred_io_aops; fbdefio->open_count++; } EXPORT_SYMBOL_GPL(fb_deferred_io_open); static void fb_deferred_io_lastclose(struct fb_info *info) { struct page *page; int i; flush_delayed_work(&info->deferred_work); /* clear out the mapping that we setup */ for (i = 0 ; i < info->fix.smem_len; i += PAGE_SIZE) { page = fb_deferred_io_page(info, i); page->mapping = NULL; } } void fb_deferred_io_release(struct fb_info *info) { struct fb_deferred_io *fbdefio = info->fbdefio; if (!--fbdefio->open_count) fb_deferred_io_lastclose(info); } EXPORT_SYMBOL_GPL(fb_deferred_io_release); void fb_deferred_io_cleanup(struct fb_info *info) { struct fb_deferred_io *fbdefio = info->fbdefio; fb_deferred_io_lastclose(info); kvfree(info->pagerefs); mutex_destroy(&fbdefio->lock); } EXPORT_SYMBOL_GPL(fb_deferred_io_cleanup);