// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2010-2011 Picochip Ltd., Jamie Iles * https://www.picochip.com * * This file implements a driver for the Synopsys DesignWare watchdog device * in the many subsystems. The watchdog has 16 different timeout periods * and these are a function of the input clock frequency. * * The DesignWare watchdog cannot be stopped once it has been started so we * do not implement a stop function. The watchdog core will continue to send * heartbeat requests after the watchdog device has been closed. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define WDOG_CONTROL_REG_OFFSET 0x00 #define WDOG_CONTROL_REG_WDT_EN_MASK 0x01 #define WDOG_CONTROL_REG_RESP_MODE_MASK 0x02 #define WDOG_TIMEOUT_RANGE_REG_OFFSET 0x04 #define WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT 4 #define WDOG_CURRENT_COUNT_REG_OFFSET 0x08 #define WDOG_COUNTER_RESTART_REG_OFFSET 0x0c #define WDOG_COUNTER_RESTART_KICK_VALUE 0x76 #define WDOG_INTERRUPT_STATUS_REG_OFFSET 0x10 #define WDOG_INTERRUPT_CLEAR_REG_OFFSET 0x14 #define WDOG_COMP_PARAMS_5_REG_OFFSET 0xe4 #define WDOG_COMP_PARAMS_4_REG_OFFSET 0xe8 #define WDOG_COMP_PARAMS_3_REG_OFFSET 0xec #define WDOG_COMP_PARAMS_2_REG_OFFSET 0xf0 #define WDOG_COMP_PARAMS_1_REG_OFFSET 0xf4 #define WDOG_COMP_PARAMS_1_USE_FIX_TOP BIT(6) #define WDOG_COMP_VERSION_REG_OFFSET 0xf8 #define WDOG_COMP_TYPE_REG_OFFSET 0xfc /* There are sixteen TOPs (timeout periods) that can be set in the watchdog. */ #define DW_WDT_NUM_TOPS 16 #define DW_WDT_FIX_TOP(_idx) (1U << (16 + _idx)) #define DW_WDT_DEFAULT_SECONDS 30 static const u32 dw_wdt_fix_tops[DW_WDT_NUM_TOPS] = { DW_WDT_FIX_TOP(0), DW_WDT_FIX_TOP(1), DW_WDT_FIX_TOP(2), DW_WDT_FIX_TOP(3), DW_WDT_FIX_TOP(4), DW_WDT_FIX_TOP(5), DW_WDT_FIX_TOP(6), DW_WDT_FIX_TOP(7), DW_WDT_FIX_TOP(8), DW_WDT_FIX_TOP(9), DW_WDT_FIX_TOP(10), DW_WDT_FIX_TOP(11), DW_WDT_FIX_TOP(12), DW_WDT_FIX_TOP(13), DW_WDT_FIX_TOP(14), DW_WDT_FIX_TOP(15) }; static bool nowayout = WATCHDOG_NOWAYOUT; module_param(nowayout, bool, 0); MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started " "(default=" __MODULE_STRING(WATCHDOG_NOWAYOUT) ")"); enum dw_wdt_rmod { DW_WDT_RMOD_RESET = 1, DW_WDT_RMOD_IRQ = 2 }; struct dw_wdt_timeout { u32 top_val; unsigned int sec; unsigned int msec; }; struct dw_wdt { void __iomem *regs; struct clk *clk; struct clk *pclk; unsigned long rate; enum dw_wdt_rmod rmod; struct dw_wdt_timeout timeouts[DW_WDT_NUM_TOPS]; struct watchdog_device wdd; struct reset_control *rst; /* Save/restore */ u32 control; u32 timeout; #ifdef CONFIG_DEBUG_FS struct dentry *dbgfs_dir; #endif }; #define to_dw_wdt(wdd) container_of(wdd, struct dw_wdt, wdd) static inline int dw_wdt_is_enabled(struct dw_wdt *dw_wdt) { return readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET) & WDOG_CONTROL_REG_WDT_EN_MASK; } static void dw_wdt_update_mode(struct dw_wdt *dw_wdt, enum dw_wdt_rmod rmod) { u32 val; val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); if (rmod == DW_WDT_RMOD_IRQ) val |= WDOG_CONTROL_REG_RESP_MODE_MASK; else val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK; writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); dw_wdt->rmod = rmod; } static unsigned int dw_wdt_find_best_top(struct dw_wdt *dw_wdt, unsigned int timeout, u32 *top_val) { int idx; /* * Find a TOP with timeout greater or equal to the requested number. * Note we'll select a TOP with maximum timeout if the requested * timeout couldn't be reached. */ for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) { if (dw_wdt->timeouts[idx].sec >= timeout) break; } if (idx == DW_WDT_NUM_TOPS) --idx; *top_val = dw_wdt->timeouts[idx].top_val; return dw_wdt->timeouts[idx].sec; } static unsigned int dw_wdt_get_min_timeout(struct dw_wdt *dw_wdt) { int idx; /* * We'll find a timeout greater or equal to one second anyway because * the driver probe would have failed if there was none. */ for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) { if (dw_wdt->timeouts[idx].sec) break; } return dw_wdt->timeouts[idx].sec; } static unsigned int dw_wdt_get_max_timeout_ms(struct dw_wdt *dw_wdt) { struct dw_wdt_timeout *timeout = &dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1]; u64 msec; msec = (u64)timeout->sec * MSEC_PER_SEC + timeout->msec; return msec < UINT_MAX ? msec : UINT_MAX; } static unsigned int dw_wdt_get_timeout(struct dw_wdt *dw_wdt) { int top_val = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET) & 0xF; int idx; for (idx = 0; idx < DW_WDT_NUM_TOPS; ++idx) { if (dw_wdt->timeouts[idx].top_val == top_val) break; } /* * In IRQ mode due to the two stages counter, the actual timeout is * twice greater than the TOP setting. */ return dw_wdt->timeouts[idx].sec * dw_wdt->rmod; } static int dw_wdt_ping(struct watchdog_device *wdd) { struct dw_wdt *dw_wdt = to_dw_wdt(wdd); writel(WDOG_COUNTER_RESTART_KICK_VALUE, dw_wdt->regs + WDOG_COUNTER_RESTART_REG_OFFSET); return 0; } static int dw_wdt_set_timeout(struct watchdog_device *wdd, unsigned int top_s) { struct dw_wdt *dw_wdt = to_dw_wdt(wdd); unsigned int timeout; u32 top_val; /* * Note IRQ mode being enabled means having a non-zero pre-timeout * setup. In this case we try to find a TOP as close to the half of the * requested timeout as possible since DW Watchdog IRQ mode is designed * in two stages way - first timeout rises the pre-timeout interrupt, * second timeout performs the system reset. So basically the effective * watchdog-caused reset happens after two watchdog TOPs elapsed. */ timeout = dw_wdt_find_best_top(dw_wdt, DIV_ROUND_UP(top_s, dw_wdt->rmod), &top_val); if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) wdd->pretimeout = timeout; else wdd->pretimeout = 0; /* * Set the new value in the watchdog. Some versions of dw_wdt * have have TOPINIT in the TIMEOUT_RANGE register (as per * CP_WDT_DUAL_TOP in WDT_COMP_PARAMS_1). On those we * effectively get a pat of the watchdog right here. */ writel(top_val | top_val << WDOG_TIMEOUT_RANGE_TOPINIT_SHIFT, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); /* Kick new TOP value into the watchdog counter if activated. */ if (watchdog_active(wdd)) dw_wdt_ping(wdd); /* * In case users set bigger timeout value than HW can support, * kernel(watchdog_dev.c) helps to feed watchdog before * wdd->max_hw_heartbeat_ms */ if (top_s * 1000 <= wdd->max_hw_heartbeat_ms) wdd->timeout = timeout * dw_wdt->rmod; else wdd->timeout = top_s; return 0; } static int dw_wdt_set_pretimeout(struct watchdog_device *wdd, unsigned int req) { struct dw_wdt *dw_wdt = to_dw_wdt(wdd); /* * We ignore actual value of the timeout passed from user-space * using it as a flag whether the pretimeout functionality is intended * to be activated. */ dw_wdt_update_mode(dw_wdt, req ? DW_WDT_RMOD_IRQ : DW_WDT_RMOD_RESET); dw_wdt_set_timeout(wdd, wdd->timeout); return 0; } static void dw_wdt_arm_system_reset(struct dw_wdt *dw_wdt) { u32 val = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); /* Disable/enable interrupt mode depending on the RMOD flag. */ if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) val |= WDOG_CONTROL_REG_RESP_MODE_MASK; else val &= ~WDOG_CONTROL_REG_RESP_MODE_MASK; /* Enable watchdog. */ val |= WDOG_CONTROL_REG_WDT_EN_MASK; writel(val, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); } static int dw_wdt_start(struct watchdog_device *wdd) { struct dw_wdt *dw_wdt = to_dw_wdt(wdd); dw_wdt_set_timeout(wdd, wdd->timeout); dw_wdt_ping(&dw_wdt->wdd); dw_wdt_arm_system_reset(dw_wdt); return 0; } static int dw_wdt_stop(struct watchdog_device *wdd) { struct dw_wdt *dw_wdt = to_dw_wdt(wdd); if (!dw_wdt->rst) { set_bit(WDOG_HW_RUNNING, &wdd->status); return 0; } reset_control_assert(dw_wdt->rst); reset_control_deassert(dw_wdt->rst); return 0; } static int dw_wdt_restart(struct watchdog_device *wdd, unsigned long action, void *data) { struct dw_wdt *dw_wdt = to_dw_wdt(wdd); writel(0, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET); if (dw_wdt_is_enabled(dw_wdt)) writel(WDOG_COUNTER_RESTART_KICK_VALUE, dw_wdt->regs + WDOG_COUNTER_RESTART_REG_OFFSET); else dw_wdt_arm_system_reset(dw_wdt); /* wait for reset to assert... */ mdelay(500); return 0; } static unsigned int dw_wdt_get_timeleft(struct watchdog_device *wdd) { struct dw_wdt *dw_wdt = to_dw_wdt(wdd); unsigned int sec; u32 val; val = readl(dw_wdt->regs + WDOG_CURRENT_COUNT_REG_OFFSET); sec = val / dw_wdt->rate; if (dw_wdt->rmod == DW_WDT_RMOD_IRQ) { val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET); if (!val) sec += wdd->pretimeout; } return sec; } static const struct watchdog_info dw_wdt_ident = { .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE, .identity = "Synopsys DesignWare Watchdog", }; static const struct watchdog_info dw_wdt_pt_ident = { .options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | WDIOF_PRETIMEOUT | WDIOF_MAGICCLOSE, .identity = "Synopsys DesignWare Watchdog", }; static const struct watchdog_ops dw_wdt_ops = { .owner = THIS_MODULE, .start = dw_wdt_start, .stop = dw_wdt_stop, .ping = dw_wdt_ping, .set_timeout = dw_wdt_set_timeout, .set_pretimeout = dw_wdt_set_pretimeout, .get_timeleft = dw_wdt_get_timeleft, .restart = dw_wdt_restart, }; static irqreturn_t dw_wdt_irq(int irq, void *devid) { struct dw_wdt *dw_wdt = devid; u32 val; /* * We don't clear the IRQ status. It's supposed to be done by the * following ping operations. */ val = readl(dw_wdt->regs + WDOG_INTERRUPT_STATUS_REG_OFFSET); if (!val) return IRQ_NONE; watchdog_notify_pretimeout(&dw_wdt->wdd); return IRQ_HANDLED; } #ifdef CONFIG_PM_SLEEP static int dw_wdt_suspend(struct device *dev) { struct dw_wdt *dw_wdt = dev_get_drvdata(dev); dw_wdt->control = readl(dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); dw_wdt->timeout = readl(dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); clk_disable_unprepare(dw_wdt->pclk); clk_disable_unprepare(dw_wdt->clk); return 0; } static int dw_wdt_resume(struct device *dev) { struct dw_wdt *dw_wdt = dev_get_drvdata(dev); int err = clk_prepare_enable(dw_wdt->clk); if (err) return err; err = clk_prepare_enable(dw_wdt->pclk); if (err) { clk_disable_unprepare(dw_wdt->clk); return err; } writel(dw_wdt->timeout, dw_wdt->regs + WDOG_TIMEOUT_RANGE_REG_OFFSET); writel(dw_wdt->control, dw_wdt->regs + WDOG_CONTROL_REG_OFFSET); dw_wdt_ping(&dw_wdt->wdd); return 0; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(dw_wdt_pm_ops, dw_wdt_suspend, dw_wdt_resume); /* * In case if DW WDT IP core is synthesized with fixed TOP feature disabled the * TOPs array can be arbitrary ordered with nearly any sixteen uint numbers * depending on the system engineer imagination. The next method handles the * passed TOPs array to pre-calculate the effective timeouts and to sort the * TOP items out in the ascending order with respect to the timeouts. */ static void dw_wdt_handle_tops(struct dw_wdt *dw_wdt, const u32 *tops) { struct dw_wdt_timeout tout, *dst; int val, tidx; u64 msec; /* * We walk over the passed TOPs array and calculate corresponding * timeouts in seconds and milliseconds. The milliseconds granularity * is needed to distinguish the TOPs with very close timeouts and to * set the watchdog max heartbeat setting further. */ for (val = 0; val < DW_WDT_NUM_TOPS; ++val) { tout.top_val = val; tout.sec = tops[val] / dw_wdt->rate; msec = (u64)tops[val] * MSEC_PER_SEC; do_div(msec, dw_wdt->rate); tout.msec = msec - ((u64)tout.sec * MSEC_PER_SEC); /* * Find a suitable place for the current TOP in the timeouts * array so that the list is remained in the ascending order. */ for (tidx = 0; tidx < val; ++tidx) { dst = &dw_wdt->timeouts[tidx]; if (tout.sec > dst->sec || (tout.sec == dst->sec && tout.msec >= dst->msec)) continue; else swap(*dst, tout); } dw_wdt->timeouts[val] = tout; } } static int dw_wdt_init_timeouts(struct dw_wdt *dw_wdt, struct device *dev) { u32 data, of_tops[DW_WDT_NUM_TOPS]; const u32 *tops; int ret; /* * Retrieve custom or fixed counter values depending on the * WDT_USE_FIX_TOP flag found in the component specific parameters * #1 register. */ data = readl(dw_wdt->regs + WDOG_COMP_PARAMS_1_REG_OFFSET); if (data & WDOG_COMP_PARAMS_1_USE_FIX_TOP) { tops = dw_wdt_fix_tops; } else { ret = of_property_read_variable_u32_array(dev_of_node(dev), "snps,watchdog-tops", of_tops, DW_WDT_NUM_TOPS, DW_WDT_NUM_TOPS); if (ret < 0) { dev_warn(dev, "No valid TOPs array specified\n"); tops = dw_wdt_fix_tops; } else { tops = of_tops; } } /* Convert the specified TOPs into an array of watchdog timeouts. */ dw_wdt_handle_tops(dw_wdt, tops); if (!dw_wdt->timeouts[DW_WDT_NUM_TOPS - 1].sec) { dev_err(dev, "No any valid TOP detected\n"); return -EINVAL; } return 0; } #ifdef CONFIG_DEBUG_FS #define DW_WDT_DBGFS_REG(_name, _off) \ { \ .name = _name, \ .offset = _off \ } static const struct debugfs_reg32 dw_wdt_dbgfs_regs[] = { DW_WDT_DBGFS_REG("cr", WDOG_CONTROL_REG_OFFSET), DW_WDT_DBGFS_REG("torr", WDOG_TIMEOUT_RANGE_REG_OFFSET), DW_WDT_DBGFS_REG("ccvr", WDOG_CURRENT_COUNT_REG_OFFSET), DW_WDT_DBGFS_REG("crr", WDOG_COUNTER_RESTART_REG_OFFSET), DW_WDT_DBGFS_REG("stat", WDOG_INTERRUPT_STATUS_REG_OFFSET), DW_WDT_DBGFS_REG("param5", WDOG_COMP_PARAMS_5_REG_OFFSET), DW_WDT_DBGFS_REG("param4", WDOG_COMP_PARAMS_4_REG_OFFSET), DW_WDT_DBGFS_REG("param3", WDOG_COMP_PARAMS_3_REG_OFFSET), DW_WDT_DBGFS_REG("param2", WDOG_COMP_PARAMS_2_REG_OFFSET), DW_WDT_DBGFS_REG("param1", WDOG_COMP_PARAMS_1_REG_OFFSET), DW_WDT_DBGFS_REG("version", WDOG_COMP_VERSION_REG_OFFSET), DW_WDT_DBGFS_REG("type", WDOG_COMP_TYPE_REG_OFFSET) }; static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) { struct device *dev = dw_wdt->wdd.parent; struct debugfs_regset32 *regset; regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL); if (!regset) return; regset->regs = dw_wdt_dbgfs_regs; regset->nregs = ARRAY_SIZE(dw_wdt_dbgfs_regs); regset->base = dw_wdt->regs; dw_wdt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL); debugfs_create_regset32("registers", 0444, dw_wdt->dbgfs_dir, regset); } static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) { debugfs_remove_recursive(dw_wdt->dbgfs_dir); } #else /* !CONFIG_DEBUG_FS */ static void dw_wdt_dbgfs_init(struct dw_wdt *dw_wdt) {} static void dw_wdt_dbgfs_clear(struct dw_wdt *dw_wdt) {} #endif /* !CONFIG_DEBUG_FS */ static int dw_wdt_drv_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct watchdog_device *wdd; struct dw_wdt *dw_wdt; int ret; dw_wdt = devm_kzalloc(dev, sizeof(*dw_wdt), GFP_KERNEL); if (!dw_wdt) return -ENOMEM; dw_wdt->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dw_wdt->regs)) return PTR_ERR(dw_wdt->regs); /* * Try to request the watchdog dedicated timer clock source. It must * be supplied if asynchronous mode is enabled. Otherwise fallback * to the common timer/bus clocks configuration, in which the very * first found clock supply both timer and APB signals. */ dw_wdt->clk = devm_clk_get(dev, "tclk"); if (IS_ERR(dw_wdt->clk)) { dw_wdt->clk = devm_clk_get(dev, NULL); if (IS_ERR(dw_wdt->clk)) return PTR_ERR(dw_wdt->clk); } ret = clk_prepare_enable(dw_wdt->clk); if (ret) return ret; dw_wdt->rate = clk_get_rate(dw_wdt->clk); if (dw_wdt->rate == 0) { ret = -EINVAL; goto out_disable_clk; } /* * Request APB clock if device is configured with async clocks mode. * In this case both tclk and pclk clocks are supposed to be specified. * Alas we can't know for sure whether async mode was really activated, * so the pclk phandle reference is left optional. If it couldn't be * found we consider the device configured in synchronous clocks mode. */ dw_wdt->pclk = devm_clk_get_optional(dev, "pclk"); if (IS_ERR(dw_wdt->pclk)) { ret = PTR_ERR(dw_wdt->pclk); goto out_disable_clk; } ret = clk_prepare_enable(dw_wdt->pclk); if (ret) goto out_disable_clk; dw_wdt->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL); if (IS_ERR(dw_wdt->rst)) { ret = PTR_ERR(dw_wdt->rst); goto out_disable_pclk; } /* Enable normal reset without pre-timeout by default. */ dw_wdt_update_mode(dw_wdt, DW_WDT_RMOD_RESET); /* * Pre-timeout IRQ is optional, since some hardware may lack support * of it. Note we must request rising-edge IRQ, since the lane is left * pending either until the next watchdog kick event or up to the * system reset. */ ret = platform_get_irq_optional(pdev, 0); if (ret > 0) { ret = devm_request_irq(dev, ret, dw_wdt_irq, IRQF_SHARED | IRQF_TRIGGER_RISING, pdev->name, dw_wdt); if (ret) goto out_disable_pclk; dw_wdt->wdd.info = &dw_wdt_pt_ident; } else { if (ret == -EPROBE_DEFER) goto out_disable_pclk; dw_wdt->wdd.info = &dw_wdt_ident; } reset_control_deassert(dw_wdt->rst); ret = dw_wdt_init_timeouts(dw_wdt, dev); if (ret) goto out_assert_rst; wdd = &dw_wdt->wdd; wdd->ops = &dw_wdt_ops; wdd->min_timeout = dw_wdt_get_min_timeout(dw_wdt); wdd->max_hw_heartbeat_ms = dw_wdt_get_max_timeout_ms(dw_wdt); wdd->parent = dev; watchdog_set_drvdata(wdd, dw_wdt); watchdog_set_nowayout(wdd, nowayout); watchdog_init_timeout(wdd, 0, dev); /* * If the watchdog is already running, use its already configured * timeout. Otherwise use the default or the value provided through * devicetree. */ if (dw_wdt_is_enabled(dw_wdt)) { wdd->timeout = dw_wdt_get_timeout(dw_wdt); set_bit(WDOG_HW_RUNNING, &wdd->status); } else { wdd->timeout = DW_WDT_DEFAULT_SECONDS; watchdog_init_timeout(wdd, 0, dev); } platform_set_drvdata(pdev, dw_wdt); watchdog_set_restart_priority(wdd, 128); ret = watchdog_register_device(wdd); if (ret) goto out_assert_rst; dw_wdt_dbgfs_init(dw_wdt); return 0; out_assert_rst: reset_control_assert(dw_wdt->rst); out_disable_pclk: clk_disable_unprepare(dw_wdt->pclk); out_disable_clk: clk_disable_unprepare(dw_wdt->clk); return ret; } static int dw_wdt_drv_remove(struct platform_device *pdev) { struct dw_wdt *dw_wdt = platform_get_drvdata(pdev); dw_wdt_dbgfs_clear(dw_wdt); watchdog_unregister_device(&dw_wdt->wdd); reset_control_assert(dw_wdt->rst); clk_disable_unprepare(dw_wdt->pclk); clk_disable_unprepare(dw_wdt->clk); return 0; } #ifdef CONFIG_OF static const struct of_device_id dw_wdt_of_match[] = { { .compatible = "snps,dw-wdt", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, dw_wdt_of_match); #endif static struct platform_driver dw_wdt_driver = { .probe = dw_wdt_drv_probe, .remove = dw_wdt_drv_remove, .driver = { .name = "dw_wdt", .of_match_table = of_match_ptr(dw_wdt_of_match), .pm = &dw_wdt_pm_ops, }, }; module_platform_driver(dw_wdt_driver); MODULE_AUTHOR("Jamie Iles"); MODULE_DESCRIPTION("Synopsys DesignWare Watchdog Driver"); MODULE_LICENSE("GPL");