// SPDX-License-Identifier: GPL-2.0-only /* * xfrm_state.c * * Changes: * Mitsuru KANDA @USAGI * Kazunori MIYAZAWA @USAGI * Kunihiro Ishiguro * IPv6 support * YOSHIFUJI Hideaki @USAGI * Split up af-specific functions * Derek Atkins * Add UDP Encapsulation * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xfrm_hash.h" #define xfrm_state_deref_prot(table, net) \ rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock)) static void xfrm_state_gc_task(struct work_struct *work); /* Each xfrm_state may be linked to two tables: 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl) 2. Hash table by (daddr,family,reqid) to find what SAs exist for given destination/tunnel endpoint. (output) */ static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024; static struct kmem_cache *xfrm_state_cache __ro_after_init; static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task); static HLIST_HEAD(xfrm_state_gc_list); static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x) { return refcount_inc_not_zero(&x->refcnt); } static inline unsigned int xfrm_dst_hash(struct net *net, const xfrm_address_t *daddr, const xfrm_address_t *saddr, u32 reqid, unsigned short family) { return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask); } static inline unsigned int xfrm_src_hash(struct net *net, const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family) { return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask); } static inline unsigned int xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family) { return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask); } static unsigned int xfrm_seq_hash(struct net *net, u32 seq) { return __xfrm_seq_hash(seq, net->xfrm.state_hmask); } static void xfrm_hash_transfer(struct hlist_head *list, struct hlist_head *ndsttable, struct hlist_head *nsrctable, struct hlist_head *nspitable, struct hlist_head *nseqtable, unsigned int nhashmask) { struct hlist_node *tmp; struct xfrm_state *x; hlist_for_each_entry_safe(x, tmp, list, bydst) { unsigned int h; h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr, x->props.reqid, x->props.family, nhashmask); hlist_add_head_rcu(&x->bydst, ndsttable + h); h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr, x->props.family, nhashmask); hlist_add_head_rcu(&x->bysrc, nsrctable + h); if (x->id.spi) { h = __xfrm_spi_hash(&x->id.daddr, x->id.spi, x->id.proto, x->props.family, nhashmask); hlist_add_head_rcu(&x->byspi, nspitable + h); } if (x->km.seq) { h = __xfrm_seq_hash(x->km.seq, nhashmask); hlist_add_head_rcu(&x->byseq, nseqtable + h); } } } static unsigned long xfrm_hash_new_size(unsigned int state_hmask) { return ((state_hmask + 1) << 1) * sizeof(struct hlist_head); } static void xfrm_hash_resize(struct work_struct *work) { struct net *net = container_of(work, struct net, xfrm.state_hash_work); struct hlist_head *ndst, *nsrc, *nspi, *nseq, *odst, *osrc, *ospi, *oseq; unsigned long nsize, osize; unsigned int nhashmask, ohashmask; int i; nsize = xfrm_hash_new_size(net->xfrm.state_hmask); ndst = xfrm_hash_alloc(nsize); if (!ndst) return; nsrc = xfrm_hash_alloc(nsize); if (!nsrc) { xfrm_hash_free(ndst, nsize); return; } nspi = xfrm_hash_alloc(nsize); if (!nspi) { xfrm_hash_free(ndst, nsize); xfrm_hash_free(nsrc, nsize); return; } nseq = xfrm_hash_alloc(nsize); if (!nseq) { xfrm_hash_free(ndst, nsize); xfrm_hash_free(nsrc, nsize); xfrm_hash_free(nspi, nsize); return; } spin_lock_bh(&net->xfrm.xfrm_state_lock); write_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); nhashmask = (nsize / sizeof(struct hlist_head)) - 1U; odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net); for (i = net->xfrm.state_hmask; i >= 0; i--) xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nseq, nhashmask); osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net); ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net); oseq = xfrm_state_deref_prot(net->xfrm.state_byseq, net); ohashmask = net->xfrm.state_hmask; rcu_assign_pointer(net->xfrm.state_bydst, ndst); rcu_assign_pointer(net->xfrm.state_bysrc, nsrc); rcu_assign_pointer(net->xfrm.state_byspi, nspi); rcu_assign_pointer(net->xfrm.state_byseq, nseq); net->xfrm.state_hmask = nhashmask; write_seqcount_end(&net->xfrm.xfrm_state_hash_generation); spin_unlock_bh(&net->xfrm.xfrm_state_lock); osize = (ohashmask + 1) * sizeof(struct hlist_head); synchronize_rcu(); xfrm_hash_free(odst, osize); xfrm_hash_free(osrc, osize); xfrm_hash_free(ospi, osize); xfrm_hash_free(oseq, osize); } static DEFINE_SPINLOCK(xfrm_state_afinfo_lock); static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO]; static DEFINE_SPINLOCK(xfrm_state_gc_lock); int __xfrm_state_delete(struct xfrm_state *x); int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol); static bool km_is_alive(const struct km_event *c); void km_state_expired(struct xfrm_state *x, int hard, u32 portid); int xfrm_register_type(const struct xfrm_type *type, unsigned short family) { struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); int err = 0; if (!afinfo) return -EAFNOSUPPORT; #define X(afi, T, name) do { \ WARN_ON((afi)->type_ ## name); \ (afi)->type_ ## name = (T); \ } while (0) switch (type->proto) { case IPPROTO_COMP: X(afinfo, type, comp); break; case IPPROTO_AH: X(afinfo, type, ah); break; case IPPROTO_ESP: X(afinfo, type, esp); break; case IPPROTO_IPIP: X(afinfo, type, ipip); break; case IPPROTO_DSTOPTS: X(afinfo, type, dstopts); break; case IPPROTO_ROUTING: X(afinfo, type, routing); break; case IPPROTO_IPV6: X(afinfo, type, ipip6); break; default: WARN_ON(1); err = -EPROTONOSUPPORT; break; } #undef X rcu_read_unlock(); return err; } EXPORT_SYMBOL(xfrm_register_type); void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family) { struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); if (unlikely(afinfo == NULL)) return; #define X(afi, T, name) do { \ WARN_ON((afi)->type_ ## name != (T)); \ (afi)->type_ ## name = NULL; \ } while (0) switch (type->proto) { case IPPROTO_COMP: X(afinfo, type, comp); break; case IPPROTO_AH: X(afinfo, type, ah); break; case IPPROTO_ESP: X(afinfo, type, esp); break; case IPPROTO_IPIP: X(afinfo, type, ipip); break; case IPPROTO_DSTOPTS: X(afinfo, type, dstopts); break; case IPPROTO_ROUTING: X(afinfo, type, routing); break; case IPPROTO_IPV6: X(afinfo, type, ipip6); break; default: WARN_ON(1); break; } #undef X rcu_read_unlock(); } EXPORT_SYMBOL(xfrm_unregister_type); static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family) { const struct xfrm_type *type = NULL; struct xfrm_state_afinfo *afinfo; int modload_attempted = 0; retry: afinfo = xfrm_state_get_afinfo(family); if (unlikely(afinfo == NULL)) return NULL; switch (proto) { case IPPROTO_COMP: type = afinfo->type_comp; break; case IPPROTO_AH: type = afinfo->type_ah; break; case IPPROTO_ESP: type = afinfo->type_esp; break; case IPPROTO_IPIP: type = afinfo->type_ipip; break; case IPPROTO_DSTOPTS: type = afinfo->type_dstopts; break; case IPPROTO_ROUTING: type = afinfo->type_routing; break; case IPPROTO_IPV6: type = afinfo->type_ipip6; break; default: break; } if (unlikely(type && !try_module_get(type->owner))) type = NULL; rcu_read_unlock(); if (!type && !modload_attempted) { request_module("xfrm-type-%d-%d", family, proto); modload_attempted = 1; goto retry; } return type; } static void xfrm_put_type(const struct xfrm_type *type) { module_put(type->owner); } int xfrm_register_type_offload(const struct xfrm_type_offload *type, unsigned short family) { struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); int err = 0; if (unlikely(afinfo == NULL)) return -EAFNOSUPPORT; switch (type->proto) { case IPPROTO_ESP: WARN_ON(afinfo->type_offload_esp); afinfo->type_offload_esp = type; break; default: WARN_ON(1); err = -EPROTONOSUPPORT; break; } rcu_read_unlock(); return err; } EXPORT_SYMBOL(xfrm_register_type_offload); void xfrm_unregister_type_offload(const struct xfrm_type_offload *type, unsigned short family) { struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family); if (unlikely(afinfo == NULL)) return; switch (type->proto) { case IPPROTO_ESP: WARN_ON(afinfo->type_offload_esp != type); afinfo->type_offload_esp = NULL; break; default: WARN_ON(1); break; } rcu_read_unlock(); } EXPORT_SYMBOL(xfrm_unregister_type_offload); static const struct xfrm_type_offload * xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load) { const struct xfrm_type_offload *type = NULL; struct xfrm_state_afinfo *afinfo; retry: afinfo = xfrm_state_get_afinfo(family); if (unlikely(afinfo == NULL)) return NULL; switch (proto) { case IPPROTO_ESP: type = afinfo->type_offload_esp; break; default: break; } if ((type && !try_module_get(type->owner))) type = NULL; rcu_read_unlock(); if (!type && try_load) { request_module("xfrm-offload-%d-%d", family, proto); try_load = false; goto retry; } return type; } static void xfrm_put_type_offload(const struct xfrm_type_offload *type) { module_put(type->owner); } static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = { [XFRM_MODE_BEET] = { .encap = XFRM_MODE_BEET, .flags = XFRM_MODE_FLAG_TUNNEL, .family = AF_INET, }, [XFRM_MODE_TRANSPORT] = { .encap = XFRM_MODE_TRANSPORT, .family = AF_INET, }, [XFRM_MODE_TUNNEL] = { .encap = XFRM_MODE_TUNNEL, .flags = XFRM_MODE_FLAG_TUNNEL, .family = AF_INET, }, }; static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = { [XFRM_MODE_BEET] = { .encap = XFRM_MODE_BEET, .flags = XFRM_MODE_FLAG_TUNNEL, .family = AF_INET6, }, [XFRM_MODE_ROUTEOPTIMIZATION] = { .encap = XFRM_MODE_ROUTEOPTIMIZATION, .family = AF_INET6, }, [XFRM_MODE_TRANSPORT] = { .encap = XFRM_MODE_TRANSPORT, .family = AF_INET6, }, [XFRM_MODE_TUNNEL] = { .encap = XFRM_MODE_TUNNEL, .flags = XFRM_MODE_FLAG_TUNNEL, .family = AF_INET6, }, }; static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family) { const struct xfrm_mode *mode; if (unlikely(encap >= XFRM_MODE_MAX)) return NULL; switch (family) { case AF_INET: mode = &xfrm4_mode_map[encap]; if (mode->family == family) return mode; break; case AF_INET6: mode = &xfrm6_mode_map[encap]; if (mode->family == family) return mode; break; default: break; } return NULL; } void xfrm_state_free(struct xfrm_state *x) { kmem_cache_free(xfrm_state_cache, x); } EXPORT_SYMBOL(xfrm_state_free); static void ___xfrm_state_destroy(struct xfrm_state *x) { hrtimer_cancel(&x->mtimer); del_timer_sync(&x->rtimer); kfree(x->aead); kfree(x->aalg); kfree(x->ealg); kfree(x->calg); kfree(x->encap); kfree(x->coaddr); kfree(x->replay_esn); kfree(x->preplay_esn); if (x->type_offload) xfrm_put_type_offload(x->type_offload); if (x->type) { x->type->destructor(x); xfrm_put_type(x->type); } if (x->xfrag.page) put_page(x->xfrag.page); xfrm_dev_state_free(x); security_xfrm_state_free(x); xfrm_state_free(x); } static void xfrm_state_gc_task(struct work_struct *work) { struct xfrm_state *x; struct hlist_node *tmp; struct hlist_head gc_list; spin_lock_bh(&xfrm_state_gc_lock); hlist_move_list(&xfrm_state_gc_list, &gc_list); spin_unlock_bh(&xfrm_state_gc_lock); synchronize_rcu(); hlist_for_each_entry_safe(x, tmp, &gc_list, gclist) ___xfrm_state_destroy(x); } static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me) { struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer); enum hrtimer_restart ret = HRTIMER_NORESTART; time64_t now = ktime_get_real_seconds(); time64_t next = TIME64_MAX; int warn = 0; int err = 0; spin_lock(&x->lock); if (x->km.state == XFRM_STATE_DEAD) goto out; if (x->km.state == XFRM_STATE_EXPIRED) goto expired; if (x->lft.hard_add_expires_seconds) { long tmo = x->lft.hard_add_expires_seconds + x->curlft.add_time - now; if (tmo <= 0) { if (x->xflags & XFRM_SOFT_EXPIRE) { /* enter hard expire without soft expire first?! * setting a new date could trigger this. * workaround: fix x->curflt.add_time by below: */ x->curlft.add_time = now - x->saved_tmo - 1; tmo = x->lft.hard_add_expires_seconds - x->saved_tmo; } else goto expired; } if (tmo < next) next = tmo; } if (x->lft.hard_use_expires_seconds) { long tmo = x->lft.hard_use_expires_seconds + (x->curlft.use_time ? : now) - now; if (tmo <= 0) goto expired; if (tmo < next) next = tmo; } if (x->km.dying) goto resched; if (x->lft.soft_add_expires_seconds) { long tmo = x->lft.soft_add_expires_seconds + x->curlft.add_time - now; if (tmo <= 0) { warn = 1; x->xflags &= ~XFRM_SOFT_EXPIRE; } else if (tmo < next) { next = tmo; x->xflags |= XFRM_SOFT_EXPIRE; x->saved_tmo = tmo; } } if (x->lft.soft_use_expires_seconds) { long tmo = x->lft.soft_use_expires_seconds + (x->curlft.use_time ? : now) - now; if (tmo <= 0) warn = 1; else if (tmo < next) next = tmo; } x->km.dying = warn; if (warn) km_state_expired(x, 0, 0); resched: if (next != TIME64_MAX) { hrtimer_forward_now(&x->mtimer, ktime_set(next, 0)); ret = HRTIMER_RESTART; } goto out; expired: if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) x->km.state = XFRM_STATE_EXPIRED; err = __xfrm_state_delete(x); if (!err) km_state_expired(x, 1, 0); xfrm_audit_state_delete(x, err ? 0 : 1, true); out: spin_unlock(&x->lock); return ret; } static void xfrm_replay_timer_handler(struct timer_list *t); struct xfrm_state *xfrm_state_alloc(struct net *net) { struct xfrm_state *x; x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC); if (x) { write_pnet(&x->xs_net, net); refcount_set(&x->refcnt, 1); atomic_set(&x->tunnel_users, 0); INIT_LIST_HEAD(&x->km.all); INIT_HLIST_NODE(&x->bydst); INIT_HLIST_NODE(&x->bysrc); INIT_HLIST_NODE(&x->byspi); INIT_HLIST_NODE(&x->byseq); hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT); x->mtimer.function = xfrm_timer_handler; timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0); x->curlft.add_time = ktime_get_real_seconds(); x->lft.soft_byte_limit = XFRM_INF; x->lft.soft_packet_limit = XFRM_INF; x->lft.hard_byte_limit = XFRM_INF; x->lft.hard_packet_limit = XFRM_INF; x->replay_maxage = 0; x->replay_maxdiff = 0; spin_lock_init(&x->lock); } return x; } EXPORT_SYMBOL(xfrm_state_alloc); void __xfrm_state_destroy(struct xfrm_state *x, bool sync) { WARN_ON(x->km.state != XFRM_STATE_DEAD); if (sync) { synchronize_rcu(); ___xfrm_state_destroy(x); } else { spin_lock_bh(&xfrm_state_gc_lock); hlist_add_head(&x->gclist, &xfrm_state_gc_list); spin_unlock_bh(&xfrm_state_gc_lock); schedule_work(&xfrm_state_gc_work); } } EXPORT_SYMBOL(__xfrm_state_destroy); int __xfrm_state_delete(struct xfrm_state *x) { struct net *net = xs_net(x); int err = -ESRCH; if (x->km.state != XFRM_STATE_DEAD) { x->km.state = XFRM_STATE_DEAD; spin_lock(&net->xfrm.xfrm_state_lock); list_del(&x->km.all); hlist_del_rcu(&x->bydst); hlist_del_rcu(&x->bysrc); if (x->km.seq) hlist_del_rcu(&x->byseq); if (x->id.spi) hlist_del_rcu(&x->byspi); net->xfrm.state_num--; spin_unlock(&net->xfrm.xfrm_state_lock); if (x->encap_sk) sock_put(rcu_dereference_raw(x->encap_sk)); xfrm_dev_state_delete(x); /* All xfrm_state objects are created by xfrm_state_alloc. * The xfrm_state_alloc call gives a reference, and that * is what we are dropping here. */ xfrm_state_put(x); err = 0; } return err; } EXPORT_SYMBOL(__xfrm_state_delete); int xfrm_state_delete(struct xfrm_state *x) { int err; spin_lock_bh(&x->lock); err = __xfrm_state_delete(x); spin_unlock_bh(&x->lock); return err; } EXPORT_SYMBOL(xfrm_state_delete); #ifdef CONFIG_SECURITY_NETWORK_XFRM static inline int xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) { int i, err = 0; for (i = 0; i <= net->xfrm.state_hmask; i++) { struct xfrm_state *x; hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { if (xfrm_id_proto_match(x->id.proto, proto) && (err = security_xfrm_state_delete(x)) != 0) { xfrm_audit_state_delete(x, 0, task_valid); return err; } } } return err; } static inline int xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) { int i, err = 0; for (i = 0; i <= net->xfrm.state_hmask; i++) { struct xfrm_state *x; struct xfrm_state_offload *xso; hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { xso = &x->xso; if (xso->dev == dev && (err = security_xfrm_state_delete(x)) != 0) { xfrm_audit_state_delete(x, 0, task_valid); return err; } } } return err; } #else static inline int xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid) { return 0; } static inline int xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid) { return 0; } #endif int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync) { int i, err = 0, cnt = 0; spin_lock_bh(&net->xfrm.xfrm_state_lock); err = xfrm_state_flush_secctx_check(net, proto, task_valid); if (err) goto out; err = -ESRCH; for (i = 0; i <= net->xfrm.state_hmask; i++) { struct xfrm_state *x; restart: hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { if (!xfrm_state_kern(x) && xfrm_id_proto_match(x->id.proto, proto)) { xfrm_state_hold(x); spin_unlock_bh(&net->xfrm.xfrm_state_lock); err = xfrm_state_delete(x); xfrm_audit_state_delete(x, err ? 0 : 1, task_valid); if (sync) xfrm_state_put_sync(x); else xfrm_state_put(x); if (!err) cnt++; spin_lock_bh(&net->xfrm.xfrm_state_lock); goto restart; } } } out: spin_unlock_bh(&net->xfrm.xfrm_state_lock); if (cnt) err = 0; return err; } EXPORT_SYMBOL(xfrm_state_flush); int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid) { int i, err = 0, cnt = 0; spin_lock_bh(&net->xfrm.xfrm_state_lock); err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid); if (err) goto out; err = -ESRCH; for (i = 0; i <= net->xfrm.state_hmask; i++) { struct xfrm_state *x; struct xfrm_state_offload *xso; restart: hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) { xso = &x->xso; if (!xfrm_state_kern(x) && xso->dev == dev) { xfrm_state_hold(x); spin_unlock_bh(&net->xfrm.xfrm_state_lock); err = xfrm_state_delete(x); xfrm_audit_state_delete(x, err ? 0 : 1, task_valid); xfrm_state_put(x); if (!err) cnt++; spin_lock_bh(&net->xfrm.xfrm_state_lock); goto restart; } } } if (cnt) err = 0; out: spin_unlock_bh(&net->xfrm.xfrm_state_lock); return err; } EXPORT_SYMBOL(xfrm_dev_state_flush); void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si) { spin_lock_bh(&net->xfrm.xfrm_state_lock); si->sadcnt = net->xfrm.state_num; si->sadhcnt = net->xfrm.state_hmask + 1; si->sadhmcnt = xfrm_state_hashmax; spin_unlock_bh(&net->xfrm.xfrm_state_lock); } EXPORT_SYMBOL(xfrm_sad_getinfo); static void __xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) { const struct flowi4 *fl4 = &fl->u.ip4; sel->daddr.a4 = fl4->daddr; sel->saddr.a4 = fl4->saddr; sel->dport = xfrm_flowi_dport(fl, &fl4->uli); sel->dport_mask = htons(0xffff); sel->sport = xfrm_flowi_sport(fl, &fl4->uli); sel->sport_mask = htons(0xffff); sel->family = AF_INET; sel->prefixlen_d = 32; sel->prefixlen_s = 32; sel->proto = fl4->flowi4_proto; sel->ifindex = fl4->flowi4_oif; } static void __xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl) { const struct flowi6 *fl6 = &fl->u.ip6; /* Initialize temporary selector matching only to current session. */ *(struct in6_addr *)&sel->daddr = fl6->daddr; *(struct in6_addr *)&sel->saddr = fl6->saddr; sel->dport = xfrm_flowi_dport(fl, &fl6->uli); sel->dport_mask = htons(0xffff); sel->sport = xfrm_flowi_sport(fl, &fl6->uli); sel->sport_mask = htons(0xffff); sel->family = AF_INET6; sel->prefixlen_d = 128; sel->prefixlen_s = 128; sel->proto = fl6->flowi6_proto; sel->ifindex = fl6->flowi6_oif; } static void xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl, const struct xfrm_tmpl *tmpl, const xfrm_address_t *daddr, const xfrm_address_t *saddr, unsigned short family) { switch (family) { case AF_INET: __xfrm4_init_tempsel(&x->sel, fl); break; case AF_INET6: __xfrm6_init_tempsel(&x->sel, fl); break; } x->id = tmpl->id; switch (tmpl->encap_family) { case AF_INET: if (x->id.daddr.a4 == 0) x->id.daddr.a4 = daddr->a4; x->props.saddr = tmpl->saddr; if (x->props.saddr.a4 == 0) x->props.saddr.a4 = saddr->a4; break; case AF_INET6: if (ipv6_addr_any((struct in6_addr *)&x->id.daddr)) memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr)); memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr)); if (ipv6_addr_any((struct in6_addr *)&x->props.saddr)) memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr)); break; } x->props.mode = tmpl->mode; x->props.reqid = tmpl->reqid; x->props.family = tmpl->encap_family; } static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family) { unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family); struct xfrm_state *x; hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) { if (x->props.family != family || x->id.spi != spi || x->id.proto != proto || !xfrm_addr_equal(&x->id.daddr, daddr, family)) continue; if ((mark & x->mark.m) != x->mark.v) continue; if (!xfrm_state_hold_rcu(x)) continue; return x; } return NULL; } static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark, const xfrm_address_t *daddr, const xfrm_address_t *saddr, u8 proto, unsigned short family) { unsigned int h = xfrm_src_hash(net, daddr, saddr, family); struct xfrm_state *x; hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) { if (x->props.family != family || x->id.proto != proto || !xfrm_addr_equal(&x->id.daddr, daddr, family) || !xfrm_addr_equal(&x->props.saddr, saddr, family)) continue; if ((mark & x->mark.m) != x->mark.v) continue; if (!xfrm_state_hold_rcu(x)) continue; return x; } return NULL; } static inline struct xfrm_state * __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family) { struct net *net = xs_net(x); u32 mark = x->mark.v & x->mark.m; if (use_spi) return __xfrm_state_lookup(net, mark, &x->id.daddr, x->id.spi, x->id.proto, family); else return __xfrm_state_lookup_byaddr(net, mark, &x->id.daddr, &x->props.saddr, x->id.proto, family); } static void xfrm_hash_grow_check(struct net *net, int have_hash_collision) { if (have_hash_collision && (net->xfrm.state_hmask + 1) < xfrm_state_hashmax && net->xfrm.state_num > net->xfrm.state_hmask) schedule_work(&net->xfrm.state_hash_work); } static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x, const struct flowi *fl, unsigned short family, struct xfrm_state **best, int *acq_in_progress, int *error) { /* Resolution logic: * 1. There is a valid state with matching selector. Done. * 2. Valid state with inappropriate selector. Skip. * * Entering area of "sysdeps". * * 3. If state is not valid, selector is temporary, it selects * only session which triggered previous resolution. Key * manager will do something to install a state with proper * selector. */ if (x->km.state == XFRM_STATE_VALID) { if ((x->sel.family && (x->sel.family != family || !xfrm_selector_match(&x->sel, fl, family))) || !security_xfrm_state_pol_flow_match(x, pol, &fl->u.__fl_common)) return; if (!*best || (*best)->km.dying > x->km.dying || ((*best)->km.dying == x->km.dying && (*best)->curlft.add_time < x->curlft.add_time)) *best = x; } else if (x->km.state == XFRM_STATE_ACQ) { *acq_in_progress = 1; } else if (x->km.state == XFRM_STATE_ERROR || x->km.state == XFRM_STATE_EXPIRED) { if ((!x->sel.family || (x->sel.family == family && xfrm_selector_match(&x->sel, fl, family))) && security_xfrm_state_pol_flow_match(x, pol, &fl->u.__fl_common)) *error = -ESRCH; } } struct xfrm_state * xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr, const struct flowi *fl, struct xfrm_tmpl *tmpl, struct xfrm_policy *pol, int *err, unsigned short family, u32 if_id) { static xfrm_address_t saddr_wildcard = { }; struct net *net = xp_net(pol); unsigned int h, h_wildcard; struct xfrm_state *x, *x0, *to_put; int acquire_in_progress = 0; int error = 0; struct xfrm_state *best = NULL; u32 mark = pol->mark.v & pol->mark.m; unsigned short encap_family = tmpl->encap_family; unsigned int sequence; struct km_event c; to_put = NULL; sequence = read_seqcount_begin(&net->xfrm.xfrm_state_hash_generation); rcu_read_lock(); h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { if (x->props.family == encap_family && x->props.reqid == tmpl->reqid && (mark & x->mark.m) == x->mark.v && x->if_id == if_id && !(x->props.flags & XFRM_STATE_WILDRECV) && xfrm_state_addr_check(x, daddr, saddr, encap_family) && tmpl->mode == x->props.mode && tmpl->id.proto == x->id.proto && (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) xfrm_state_look_at(pol, x, fl, family, &best, &acquire_in_progress, &error); } if (best || acquire_in_progress) goto found; h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family); hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) { if (x->props.family == encap_family && x->props.reqid == tmpl->reqid && (mark & x->mark.m) == x->mark.v && x->if_id == if_id && !(x->props.flags & XFRM_STATE_WILDRECV) && xfrm_addr_equal(&x->id.daddr, daddr, encap_family) && tmpl->mode == x->props.mode && tmpl->id.proto == x->id.proto && (tmpl->id.spi == x->id.spi || !tmpl->id.spi)) xfrm_state_look_at(pol, x, fl, family, &best, &acquire_in_progress, &error); } found: x = best; if (!x && !error && !acquire_in_progress) { if (tmpl->id.spi && (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi, tmpl->id.proto, encap_family)) != NULL) { to_put = x0; error = -EEXIST; goto out; } c.net = net; /* If the KMs have no listeners (yet...), avoid allocating an SA * for each and every packet - garbage collection might not * handle the flood. */ if (!km_is_alive(&c)) { error = -ESRCH; goto out; } x = xfrm_state_alloc(net); if (x == NULL) { error = -ENOMEM; goto out; } /* Initialize temporary state matching only * to current session. */ xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family); memcpy(&x->mark, &pol->mark, sizeof(x->mark)); x->if_id = if_id; error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid); if (error) { x->km.state = XFRM_STATE_DEAD; to_put = x; x = NULL; goto out; } if (km_query(x, tmpl, pol) == 0) { spin_lock_bh(&net->xfrm.xfrm_state_lock); x->km.state = XFRM_STATE_ACQ; list_add(&x->km.all, &net->xfrm.state_all); hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); h = xfrm_src_hash(net, daddr, saddr, encap_family); hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); if (x->id.spi) { h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family); hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); } if (x->km.seq) { h = xfrm_seq_hash(net, x->km.seq); hlist_add_head_rcu(&x->byseq, net->xfrm.state_byseq + h); } x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL_SOFT); net->xfrm.state_num++; xfrm_hash_grow_check(net, x->bydst.next != NULL); spin_unlock_bh(&net->xfrm.xfrm_state_lock); } else { x->km.state = XFRM_STATE_DEAD; to_put = x; x = NULL; error = -ESRCH; } } out: if (x) { if (!xfrm_state_hold_rcu(x)) { *err = -EAGAIN; x = NULL; } } else { *err = acquire_in_progress ? -EAGAIN : error; } rcu_read_unlock(); if (to_put) xfrm_state_put(to_put); if (read_seqcount_retry(&net->xfrm.xfrm_state_hash_generation, sequence)) { *err = -EAGAIN; if (x) { xfrm_state_put(x); x = NULL; } } return x; } struct xfrm_state * xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id, xfrm_address_t *daddr, xfrm_address_t *saddr, unsigned short family, u8 mode, u8 proto, u32 reqid) { unsigned int h; struct xfrm_state *rx = NULL, *x = NULL; spin_lock_bh(&net->xfrm.xfrm_state_lock); h = xfrm_dst_hash(net, daddr, saddr, reqid, family); hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { if (x->props.family == family && x->props.reqid == reqid && (mark & x->mark.m) == x->mark.v && x->if_id == if_id && !(x->props.flags & XFRM_STATE_WILDRECV) && xfrm_state_addr_check(x, daddr, saddr, family) && mode == x->props.mode && proto == x->id.proto && x->km.state == XFRM_STATE_VALID) { rx = x; break; } } if (rx) xfrm_state_hold(rx); spin_unlock_bh(&net->xfrm.xfrm_state_lock); return rx; } EXPORT_SYMBOL(xfrm_stateonly_find); struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, unsigned short family) { struct xfrm_state *x; struct xfrm_state_walk *w; spin_lock_bh(&net->xfrm.xfrm_state_lock); list_for_each_entry(w, &net->xfrm.state_all, all) { x = container_of(w, struct xfrm_state, km); if (x->props.family != family || x->id.spi != spi) continue; xfrm_state_hold(x); spin_unlock_bh(&net->xfrm.xfrm_state_lock); return x; } spin_unlock_bh(&net->xfrm.xfrm_state_lock); return NULL; } EXPORT_SYMBOL(xfrm_state_lookup_byspi); static void __xfrm_state_insert(struct xfrm_state *x) { struct net *net = xs_net(x); unsigned int h; list_add(&x->km.all, &net->xfrm.state_all); h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr, x->props.reqid, x->props.family); hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family); hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); if (x->id.spi) { h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); } if (x->km.seq) { h = xfrm_seq_hash(net, x->km.seq); hlist_add_head_rcu(&x->byseq, net->xfrm.state_byseq + h); } hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT); if (x->replay_maxage) mod_timer(&x->rtimer, jiffies + x->replay_maxage); net->xfrm.state_num++; xfrm_hash_grow_check(net, x->bydst.next != NULL); } /* net->xfrm.xfrm_state_lock is held */ static void __xfrm_state_bump_genids(struct xfrm_state *xnew) { struct net *net = xs_net(xnew); unsigned short family = xnew->props.family; u32 reqid = xnew->props.reqid; struct xfrm_state *x; unsigned int h; u32 mark = xnew->mark.v & xnew->mark.m; u32 if_id = xnew->if_id; h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family); hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { if (x->props.family == family && x->props.reqid == reqid && x->if_id == if_id && (mark & x->mark.m) == x->mark.v && xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) && xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family)) x->genid++; } } void xfrm_state_insert(struct xfrm_state *x) { struct net *net = xs_net(x); spin_lock_bh(&net->xfrm.xfrm_state_lock); __xfrm_state_bump_genids(x); __xfrm_state_insert(x); spin_unlock_bh(&net->xfrm.xfrm_state_lock); } EXPORT_SYMBOL(xfrm_state_insert); /* net->xfrm.xfrm_state_lock is held */ static struct xfrm_state *__find_acq_core(struct net *net, const struct xfrm_mark *m, unsigned short family, u8 mode, u32 reqid, u32 if_id, u8 proto, const xfrm_address_t *daddr, const xfrm_address_t *saddr, int create) { unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family); struct xfrm_state *x; u32 mark = m->v & m->m; hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { if (x->props.reqid != reqid || x->props.mode != mode || x->props.family != family || x->km.state != XFRM_STATE_ACQ || x->id.spi != 0 || x->id.proto != proto || (mark & x->mark.m) != x->mark.v || !xfrm_addr_equal(&x->id.daddr, daddr, family) || !xfrm_addr_equal(&x->props.saddr, saddr, family)) continue; xfrm_state_hold(x); return x; } if (!create) return NULL; x = xfrm_state_alloc(net); if (likely(x)) { switch (family) { case AF_INET: x->sel.daddr.a4 = daddr->a4; x->sel.saddr.a4 = saddr->a4; x->sel.prefixlen_d = 32; x->sel.prefixlen_s = 32; x->props.saddr.a4 = saddr->a4; x->id.daddr.a4 = daddr->a4; break; case AF_INET6: x->sel.daddr.in6 = daddr->in6; x->sel.saddr.in6 = saddr->in6; x->sel.prefixlen_d = 128; x->sel.prefixlen_s = 128; x->props.saddr.in6 = saddr->in6; x->id.daddr.in6 = daddr->in6; break; } x->km.state = XFRM_STATE_ACQ; x->id.proto = proto; x->props.family = family; x->props.mode = mode; x->props.reqid = reqid; x->if_id = if_id; x->mark.v = m->v; x->mark.m = m->m; x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires; xfrm_state_hold(x); hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL_SOFT); list_add(&x->km.all, &net->xfrm.state_all); hlist_add_head_rcu(&x->bydst, net->xfrm.state_bydst + h); h = xfrm_src_hash(net, daddr, saddr, family); hlist_add_head_rcu(&x->bysrc, net->xfrm.state_bysrc + h); net->xfrm.state_num++; xfrm_hash_grow_check(net, x->bydst.next != NULL); } return x; } static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); int xfrm_state_add(struct xfrm_state *x) { struct net *net = xs_net(x); struct xfrm_state *x1, *to_put; int family; int err; u32 mark = x->mark.v & x->mark.m; int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); family = x->props.family; to_put = NULL; spin_lock_bh(&net->xfrm.xfrm_state_lock); x1 = __xfrm_state_locate(x, use_spi, family); if (x1) { to_put = x1; x1 = NULL; err = -EEXIST; goto out; } if (use_spi && x->km.seq) { x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq); if (x1 && ((x1->id.proto != x->id.proto) || !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) { to_put = x1; x1 = NULL; } } if (use_spi && !x1) x1 = __find_acq_core(net, &x->mark, family, x->props.mode, x->props.reqid, x->if_id, x->id.proto, &x->id.daddr, &x->props.saddr, 0); __xfrm_state_bump_genids(x); __xfrm_state_insert(x); err = 0; out: spin_unlock_bh(&net->xfrm.xfrm_state_lock); if (x1) { xfrm_state_delete(x1); xfrm_state_put(x1); } if (to_put) xfrm_state_put(to_put); return err; } EXPORT_SYMBOL(xfrm_state_add); #ifdef CONFIG_XFRM_MIGRATE static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security) { struct xfrm_user_sec_ctx *uctx; int size = sizeof(*uctx) + security->ctx_len; int err; uctx = kmalloc(size, GFP_KERNEL); if (!uctx) return -ENOMEM; uctx->exttype = XFRMA_SEC_CTX; uctx->len = size; uctx->ctx_doi = security->ctx_doi; uctx->ctx_alg = security->ctx_alg; uctx->ctx_len = security->ctx_len; memcpy(uctx + 1, security->ctx_str, security->ctx_len); err = security_xfrm_state_alloc(x, uctx); kfree(uctx); if (err) return err; return 0; } static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, struct xfrm_encap_tmpl *encap) { struct net *net = xs_net(orig); struct xfrm_state *x = xfrm_state_alloc(net); if (!x) goto out; memcpy(&x->id, &orig->id, sizeof(x->id)); memcpy(&x->sel, &orig->sel, sizeof(x->sel)); memcpy(&x->lft, &orig->lft, sizeof(x->lft)); x->props.mode = orig->props.mode; x->props.replay_window = orig->props.replay_window; x->props.reqid = orig->props.reqid; x->props.family = orig->props.family; x->props.saddr = orig->props.saddr; if (orig->aalg) { x->aalg = xfrm_algo_auth_clone(orig->aalg); if (!x->aalg) goto error; } x->props.aalgo = orig->props.aalgo; if (orig->aead) { x->aead = xfrm_algo_aead_clone(orig->aead); x->geniv = orig->geniv; if (!x->aead) goto error; } if (orig->ealg) { x->ealg = xfrm_algo_clone(orig->ealg); if (!x->ealg) goto error; } x->props.ealgo = orig->props.ealgo; if (orig->calg) { x->calg = xfrm_algo_clone(orig->calg); if (!x->calg) goto error; } x->props.calgo = orig->props.calgo; if (encap || orig->encap) { if (encap) x->encap = kmemdup(encap, sizeof(*x->encap), GFP_KERNEL); else x->encap = kmemdup(orig->encap, sizeof(*x->encap), GFP_KERNEL); if (!x->encap) goto error; } if (orig->security) if (clone_security(x, orig->security)) goto error; if (orig->coaddr) { x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr), GFP_KERNEL); if (!x->coaddr) goto error; } if (orig->replay_esn) { if (xfrm_replay_clone(x, orig)) goto error; } memcpy(&x->mark, &orig->mark, sizeof(x->mark)); memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark)); x->props.flags = orig->props.flags; x->props.extra_flags = orig->props.extra_flags; x->if_id = orig->if_id; x->tfcpad = orig->tfcpad; x->replay_maxdiff = orig->replay_maxdiff; x->replay_maxage = orig->replay_maxage; memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft)); x->km.state = orig->km.state; x->km.seq = orig->km.seq; x->replay = orig->replay; x->preplay = orig->preplay; x->mapping_maxage = orig->mapping_maxage; x->lastused = orig->lastused; x->new_mapping = 0; x->new_mapping_sport = 0; return x; error: xfrm_state_put(x); out: return NULL; } struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net, u32 if_id) { unsigned int h; struct xfrm_state *x = NULL; spin_lock_bh(&net->xfrm.xfrm_state_lock); if (m->reqid) { h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr, m->reqid, m->old_family); hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) { if (x->props.mode != m->mode || x->id.proto != m->proto) continue; if (m->reqid && x->props.reqid != m->reqid) continue; if (if_id != 0 && x->if_id != if_id) continue; if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, m->old_family) || !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, m->old_family)) continue; xfrm_state_hold(x); break; } } else { h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr, m->old_family); hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) { if (x->props.mode != m->mode || x->id.proto != m->proto) continue; if (if_id != 0 && x->if_id != if_id) continue; if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr, m->old_family) || !xfrm_addr_equal(&x->props.saddr, &m->old_saddr, m->old_family)) continue; xfrm_state_hold(x); break; } } spin_unlock_bh(&net->xfrm.xfrm_state_lock); return x; } EXPORT_SYMBOL(xfrm_migrate_state_find); struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, struct xfrm_migrate *m, struct xfrm_encap_tmpl *encap) { struct xfrm_state *xc; xc = xfrm_state_clone(x, encap); if (!xc) return NULL; xc->props.family = m->new_family; if (xfrm_init_state(xc) < 0) goto error; memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr)); memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr)); /* add state */ if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) { /* a care is needed when the destination address of the state is to be updated as it is a part of triplet */ xfrm_state_insert(xc); } else { if (xfrm_state_add(xc) < 0) goto error; } return xc; error: xfrm_state_put(xc); return NULL; } EXPORT_SYMBOL(xfrm_state_migrate); #endif int xfrm_state_update(struct xfrm_state *x) { struct xfrm_state *x1, *to_put; int err; int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY); struct net *net = xs_net(x); to_put = NULL; spin_lock_bh(&net->xfrm.xfrm_state_lock); x1 = __xfrm_state_locate(x, use_spi, x->props.family); err = -ESRCH; if (!x1) goto out; if (xfrm_state_kern(x1)) { to_put = x1; err = -EEXIST; goto out; } if (x1->km.state == XFRM_STATE_ACQ) { __xfrm_state_insert(x); x = NULL; } err = 0; out: spin_unlock_bh(&net->xfrm.xfrm_state_lock); if (to_put) xfrm_state_put(to_put); if (err) return err; if (!x) { xfrm_state_delete(x1); xfrm_state_put(x1); return 0; } err = -EINVAL; spin_lock_bh(&x1->lock); if (likely(x1->km.state == XFRM_STATE_VALID)) { if (x->encap && x1->encap && x->encap->encap_type == x1->encap->encap_type) memcpy(x1->encap, x->encap, sizeof(*x1->encap)); else if (x->encap || x1->encap) goto fail; if (x->coaddr && x1->coaddr) { memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr)); } if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel))) memcpy(&x1->sel, &x->sel, sizeof(x1->sel)); memcpy(&x1->lft, &x->lft, sizeof(x1->lft)); x1->km.dying = 0; hrtimer_start(&x1->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT); if (x1->curlft.use_time) xfrm_state_check_expire(x1); if (x->props.smark.m || x->props.smark.v || x->if_id) { spin_lock_bh(&net->xfrm.xfrm_state_lock); if (x->props.smark.m || x->props.smark.v) x1->props.smark = x->props.smark; if (x->if_id) x1->if_id = x->if_id; __xfrm_state_bump_genids(x1); spin_unlock_bh(&net->xfrm.xfrm_state_lock); } err = 0; x->km.state = XFRM_STATE_DEAD; __xfrm_state_put(x); } fail: spin_unlock_bh(&x1->lock); xfrm_state_put(x1); return err; } EXPORT_SYMBOL(xfrm_state_update); int xfrm_state_check_expire(struct xfrm_state *x) { if (!x->curlft.use_time) x->curlft.use_time = ktime_get_real_seconds(); if (x->curlft.bytes >= x->lft.hard_byte_limit || x->curlft.packets >= x->lft.hard_packet_limit) { x->km.state = XFRM_STATE_EXPIRED; hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT); return -EINVAL; } if (!x->km.dying && (x->curlft.bytes >= x->lft.soft_byte_limit || x->curlft.packets >= x->lft.soft_packet_limit)) { x->km.dying = 1; km_state_expired(x, 0, 0); } return 0; } EXPORT_SYMBOL(xfrm_state_check_expire); struct xfrm_state * xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi, u8 proto, unsigned short family) { struct xfrm_state *x; rcu_read_lock(); x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family); rcu_read_unlock(); return x; } EXPORT_SYMBOL(xfrm_state_lookup); struct xfrm_state * xfrm_state_lookup_byaddr(struct net *net, u32 mark, const xfrm_address_t *daddr, const xfrm_address_t *saddr, u8 proto, unsigned short family) { struct xfrm_state *x; spin_lock_bh(&net->xfrm.xfrm_state_lock); x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family); spin_unlock_bh(&net->xfrm.xfrm_state_lock); return x; } EXPORT_SYMBOL(xfrm_state_lookup_byaddr); struct xfrm_state * xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid, u32 if_id, u8 proto, const xfrm_address_t *daddr, const xfrm_address_t *saddr, int create, unsigned short family) { struct xfrm_state *x; spin_lock_bh(&net->xfrm.xfrm_state_lock); x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create); spin_unlock_bh(&net->xfrm.xfrm_state_lock); return x; } EXPORT_SYMBOL(xfrm_find_acq); #ifdef CONFIG_XFRM_SUB_POLICY #if IS_ENABLED(CONFIG_IPV6) /* distribution counting sort function for xfrm_state and xfrm_tmpl */ static void __xfrm6_sort(void **dst, void **src, int n, int (*cmp)(const void *p), int maxclass) { int count[XFRM_MAX_DEPTH] = { }; int class[XFRM_MAX_DEPTH]; int i; for (i = 0; i < n; i++) { int c = cmp(src[i]); class[i] = c; count[c]++; } for (i = 2; i < maxclass; i++) count[i] += count[i - 1]; for (i = 0; i < n; i++) { dst[count[class[i] - 1]++] = src[i]; src[i] = NULL; } } /* Rule for xfrm_state: * * rule 1: select IPsec transport except AH * rule 2: select MIPv6 RO or inbound trigger * rule 3: select IPsec transport AH * rule 4: select IPsec tunnel * rule 5: others */ static int __xfrm6_state_sort_cmp(const void *p) { const struct xfrm_state *v = p; switch (v->props.mode) { case XFRM_MODE_TRANSPORT: if (v->id.proto != IPPROTO_AH) return 1; else return 3; #if IS_ENABLED(CONFIG_IPV6_MIP6) case XFRM_MODE_ROUTEOPTIMIZATION: case XFRM_MODE_IN_TRIGGER: return 2; #endif case XFRM_MODE_TUNNEL: case XFRM_MODE_BEET: return 4; } return 5; } /* Rule for xfrm_tmpl: * * rule 1: select IPsec transport * rule 2: select MIPv6 RO or inbound trigger * rule 3: select IPsec tunnel * rule 4: others */ static int __xfrm6_tmpl_sort_cmp(const void *p) { const struct xfrm_tmpl *v = p; switch (v->mode) { case XFRM_MODE_TRANSPORT: return 1; #if IS_ENABLED(CONFIG_IPV6_MIP6) case XFRM_MODE_ROUTEOPTIMIZATION: case XFRM_MODE_IN_TRIGGER: return 2; #endif case XFRM_MODE_TUNNEL: case XFRM_MODE_BEET: return 3; } return 4; } #else static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; } static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; } static inline void __xfrm6_sort(void **dst, void **src, int n, int (*cmp)(const void *p), int maxclass) { int i; for (i = 0; i < n; i++) dst[i] = src[i]; } #endif /* CONFIG_IPV6 */ void xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, unsigned short family) { int i; if (family == AF_INET6) __xfrm6_sort((void **)dst, (void **)src, n, __xfrm6_tmpl_sort_cmp, 5); else for (i = 0; i < n; i++) dst[i] = src[i]; } void xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, unsigned short family) { int i; if (family == AF_INET6) __xfrm6_sort((void **)dst, (void **)src, n, __xfrm6_state_sort_cmp, 6); else for (i = 0; i < n; i++) dst[i] = src[i]; } #endif /* Silly enough, but I'm lazy to build resolution list */ static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) { unsigned int h = xfrm_seq_hash(net, seq); struct xfrm_state *x; hlist_for_each_entry_rcu(x, net->xfrm.state_byseq + h, byseq) { if (x->km.seq == seq && (mark & x->mark.m) == x->mark.v && x->km.state == XFRM_STATE_ACQ) { xfrm_state_hold(x); return x; } } return NULL; } struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq) { struct xfrm_state *x; spin_lock_bh(&net->xfrm.xfrm_state_lock); x = __xfrm_find_acq_byseq(net, mark, seq); spin_unlock_bh(&net->xfrm.xfrm_state_lock); return x; } EXPORT_SYMBOL(xfrm_find_acq_byseq); u32 xfrm_get_acqseq(void) { u32 res; static atomic_t acqseq; do { res = atomic_inc_return(&acqseq); } while (!res); return res; } EXPORT_SYMBOL(xfrm_get_acqseq); int verify_spi_info(u8 proto, u32 min, u32 max) { switch (proto) { case IPPROTO_AH: case IPPROTO_ESP: break; case IPPROTO_COMP: /* IPCOMP spi is 16-bits. */ if (max >= 0x10000) return -EINVAL; break; default: return -EINVAL; } if (min > max) return -EINVAL; return 0; } EXPORT_SYMBOL(verify_spi_info); int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high) { struct net *net = xs_net(x); unsigned int h; struct xfrm_state *x0; int err = -ENOENT; __be32 minspi = htonl(low); __be32 maxspi = htonl(high); __be32 newspi = 0; u32 mark = x->mark.v & x->mark.m; spin_lock_bh(&x->lock); if (x->km.state == XFRM_STATE_DEAD) goto unlock; err = 0; if (x->id.spi) goto unlock; err = -ENOENT; if (minspi == maxspi) { x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family); if (x0) { xfrm_state_put(x0); goto unlock; } newspi = minspi; } else { u32 spi = 0; for (h = 0; h < high-low+1; h++) { spi = low + prandom_u32()%(high-low+1); x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family); if (x0 == NULL) { newspi = htonl(spi); break; } xfrm_state_put(x0); } } if (newspi) { spin_lock_bh(&net->xfrm.xfrm_state_lock); x->id.spi = newspi; h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family); hlist_add_head_rcu(&x->byspi, net->xfrm.state_byspi + h); spin_unlock_bh(&net->xfrm.xfrm_state_lock); err = 0; } unlock: spin_unlock_bh(&x->lock); return err; } EXPORT_SYMBOL(xfrm_alloc_spi); static bool __xfrm_state_filter_match(struct xfrm_state *x, struct xfrm_address_filter *filter) { if (filter) { if ((filter->family == AF_INET || filter->family == AF_INET6) && x->props.family != filter->family) return false; return addr_match(&x->props.saddr, &filter->saddr, filter->splen) && addr_match(&x->id.daddr, &filter->daddr, filter->dplen); } return true; } int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, int (*func)(struct xfrm_state *, int, void*), void *data) { struct xfrm_state *state; struct xfrm_state_walk *x; int err = 0; if (walk->seq != 0 && list_empty(&walk->all)) return 0; spin_lock_bh(&net->xfrm.xfrm_state_lock); if (list_empty(&walk->all)) x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all); else x = list_first_entry(&walk->all, struct xfrm_state_walk, all); list_for_each_entry_from(x, &net->xfrm.state_all, all) { if (x->state == XFRM_STATE_DEAD) continue; state = container_of(x, struct xfrm_state, km); if (!xfrm_id_proto_match(state->id.proto, walk->proto)) continue; if (!__xfrm_state_filter_match(state, walk->filter)) continue; err = func(state, walk->seq, data); if (err) { list_move_tail(&walk->all, &x->all); goto out; } walk->seq++; } if (walk->seq == 0) { err = -ENOENT; goto out; } list_del_init(&walk->all); out: spin_unlock_bh(&net->xfrm.xfrm_state_lock); return err; } EXPORT_SYMBOL(xfrm_state_walk); void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, struct xfrm_address_filter *filter) { INIT_LIST_HEAD(&walk->all); walk->proto = proto; walk->state = XFRM_STATE_DEAD; walk->seq = 0; walk->filter = filter; } EXPORT_SYMBOL(xfrm_state_walk_init); void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net) { kfree(walk->filter); if (list_empty(&walk->all)) return; spin_lock_bh(&net->xfrm.xfrm_state_lock); list_del(&walk->all); spin_unlock_bh(&net->xfrm.xfrm_state_lock); } EXPORT_SYMBOL(xfrm_state_walk_done); static void xfrm_replay_timer_handler(struct timer_list *t) { struct xfrm_state *x = from_timer(x, t, rtimer); spin_lock(&x->lock); if (x->km.state == XFRM_STATE_VALID) { if (xfrm_aevent_is_on(xs_net(x))) xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT); else x->xflags |= XFRM_TIME_DEFER; } spin_unlock(&x->lock); } static LIST_HEAD(xfrm_km_list); void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c) { struct xfrm_mgr *km; rcu_read_lock(); list_for_each_entry_rcu(km, &xfrm_km_list, list) if (km->notify_policy) km->notify_policy(xp, dir, c); rcu_read_unlock(); } void km_state_notify(struct xfrm_state *x, const struct km_event *c) { struct xfrm_mgr *km; rcu_read_lock(); list_for_each_entry_rcu(km, &xfrm_km_list, list) if (km->notify) km->notify(x, c); rcu_read_unlock(); } EXPORT_SYMBOL(km_policy_notify); EXPORT_SYMBOL(km_state_notify); void km_state_expired(struct xfrm_state *x, int hard, u32 portid) { struct km_event c; c.data.hard = hard; c.portid = portid; c.event = XFRM_MSG_EXPIRE; km_state_notify(x, &c); } EXPORT_SYMBOL(km_state_expired); /* * We send to all registered managers regardless of failure * We are happy with one success */ int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol) { int err = -EINVAL, acqret; struct xfrm_mgr *km; rcu_read_lock(); list_for_each_entry_rcu(km, &xfrm_km_list, list) { acqret = km->acquire(x, t, pol); if (!acqret) err = acqret; } rcu_read_unlock(); return err; } EXPORT_SYMBOL(km_query); static int __km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) { int err = -EINVAL; struct xfrm_mgr *km; rcu_read_lock(); list_for_each_entry_rcu(km, &xfrm_km_list, list) { if (km->new_mapping) err = km->new_mapping(x, ipaddr, sport); if (!err) break; } rcu_read_unlock(); return err; } int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) { int ret = 0; if (x->mapping_maxage) { if ((jiffies / HZ - x->new_mapping) > x->mapping_maxage || x->new_mapping_sport != sport) { x->new_mapping_sport = sport; x->new_mapping = jiffies / HZ; ret = __km_new_mapping(x, ipaddr, sport); } } else { ret = __km_new_mapping(x, ipaddr, sport); } return ret; } EXPORT_SYMBOL(km_new_mapping); void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid) { struct km_event c; c.data.hard = hard; c.portid = portid; c.event = XFRM_MSG_POLEXPIRE; km_policy_notify(pol, dir, &c); } EXPORT_SYMBOL(km_policy_expired); #ifdef CONFIG_XFRM_MIGRATE int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, const struct xfrm_migrate *m, int num_migrate, const struct xfrm_kmaddress *k, const struct xfrm_encap_tmpl *encap) { int err = -EINVAL; int ret; struct xfrm_mgr *km; rcu_read_lock(); list_for_each_entry_rcu(km, &xfrm_km_list, list) { if (km->migrate) { ret = km->migrate(sel, dir, type, m, num_migrate, k, encap); if (!ret) err = ret; } } rcu_read_unlock(); return err; } EXPORT_SYMBOL(km_migrate); #endif int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr) { int err = -EINVAL; int ret; struct xfrm_mgr *km; rcu_read_lock(); list_for_each_entry_rcu(km, &xfrm_km_list, list) { if (km->report) { ret = km->report(net, proto, sel, addr); if (!ret) err = ret; } } rcu_read_unlock(); return err; } EXPORT_SYMBOL(km_report); static bool km_is_alive(const struct km_event *c) { struct xfrm_mgr *km; bool is_alive = false; rcu_read_lock(); list_for_each_entry_rcu(km, &xfrm_km_list, list) { if (km->is_alive && km->is_alive(c)) { is_alive = true; break; } } rcu_read_unlock(); return is_alive; } #if IS_ENABLED(CONFIG_XFRM_USER_COMPAT) static DEFINE_SPINLOCK(xfrm_translator_lock); static struct xfrm_translator __rcu *xfrm_translator; struct xfrm_translator *xfrm_get_translator(void) { struct xfrm_translator *xtr; rcu_read_lock(); xtr = rcu_dereference(xfrm_translator); if (unlikely(!xtr)) goto out; if (!try_module_get(xtr->owner)) xtr = NULL; out: rcu_read_unlock(); return xtr; } EXPORT_SYMBOL_GPL(xfrm_get_translator); void xfrm_put_translator(struct xfrm_translator *xtr) { module_put(xtr->owner); } EXPORT_SYMBOL_GPL(xfrm_put_translator); int xfrm_register_translator(struct xfrm_translator *xtr) { int err = 0; spin_lock_bh(&xfrm_translator_lock); if (unlikely(xfrm_translator != NULL)) err = -EEXIST; else rcu_assign_pointer(xfrm_translator, xtr); spin_unlock_bh(&xfrm_translator_lock); return err; } EXPORT_SYMBOL_GPL(xfrm_register_translator); int xfrm_unregister_translator(struct xfrm_translator *xtr) { int err = 0; spin_lock_bh(&xfrm_translator_lock); if (likely(xfrm_translator != NULL)) { if (rcu_access_pointer(xfrm_translator) != xtr) err = -EINVAL; else RCU_INIT_POINTER(xfrm_translator, NULL); } spin_unlock_bh(&xfrm_translator_lock); synchronize_rcu(); return err; } EXPORT_SYMBOL_GPL(xfrm_unregister_translator); #endif int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen) { int err; u8 *data; struct xfrm_mgr *km; struct xfrm_policy *pol = NULL; if (sockptr_is_null(optval) && !optlen) { xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL); xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL); __sk_dst_reset(sk); return 0; } if (optlen <= 0 || optlen > PAGE_SIZE) return -EMSGSIZE; data = memdup_sockptr(optval, optlen); if (IS_ERR(data)) return PTR_ERR(data); if (in_compat_syscall()) { struct xfrm_translator *xtr = xfrm_get_translator(); if (!xtr) { kfree(data); return -EOPNOTSUPP; } err = xtr->xlate_user_policy_sockptr(&data, optlen); xfrm_put_translator(xtr); if (err) { kfree(data); return err; } } err = -EINVAL; rcu_read_lock(); list_for_each_entry_rcu(km, &xfrm_km_list, list) { pol = km->compile_policy(sk, optname, data, optlen, &err); if (err >= 0) break; } rcu_read_unlock(); if (err >= 0) { xfrm_sk_policy_insert(sk, err, pol); xfrm_pol_put(pol); __sk_dst_reset(sk); err = 0; } kfree(data); return err; } EXPORT_SYMBOL(xfrm_user_policy); static DEFINE_SPINLOCK(xfrm_km_lock); int xfrm_register_km(struct xfrm_mgr *km) { spin_lock_bh(&xfrm_km_lock); list_add_tail_rcu(&km->list, &xfrm_km_list); spin_unlock_bh(&xfrm_km_lock); return 0; } EXPORT_SYMBOL(xfrm_register_km); int xfrm_unregister_km(struct xfrm_mgr *km) { spin_lock_bh(&xfrm_km_lock); list_del_rcu(&km->list); spin_unlock_bh(&xfrm_km_lock); synchronize_rcu(); return 0; } EXPORT_SYMBOL(xfrm_unregister_km); int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo) { int err = 0; if (WARN_ON(afinfo->family >= NPROTO)) return -EAFNOSUPPORT; spin_lock_bh(&xfrm_state_afinfo_lock); if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL)) err = -EEXIST; else rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo); spin_unlock_bh(&xfrm_state_afinfo_lock); return err; } EXPORT_SYMBOL(xfrm_state_register_afinfo); int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo) { int err = 0, family = afinfo->family; if (WARN_ON(family >= NPROTO)) return -EAFNOSUPPORT; spin_lock_bh(&xfrm_state_afinfo_lock); if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) { if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo) err = -EINVAL; else RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL); } spin_unlock_bh(&xfrm_state_afinfo_lock); synchronize_rcu(); return err; } EXPORT_SYMBOL(xfrm_state_unregister_afinfo); struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family) { if (unlikely(family >= NPROTO)) return NULL; return rcu_dereference(xfrm_state_afinfo[family]); } EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu); struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family) { struct xfrm_state_afinfo *afinfo; if (unlikely(family >= NPROTO)) return NULL; rcu_read_lock(); afinfo = rcu_dereference(xfrm_state_afinfo[family]); if (unlikely(!afinfo)) rcu_read_unlock(); return afinfo; } void xfrm_flush_gc(void) { flush_work(&xfrm_state_gc_work); } EXPORT_SYMBOL(xfrm_flush_gc); /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */ void xfrm_state_delete_tunnel(struct xfrm_state *x) { if (x->tunnel) { struct xfrm_state *t = x->tunnel; if (atomic_read(&t->tunnel_users) == 2) xfrm_state_delete(t); atomic_dec(&t->tunnel_users); xfrm_state_put_sync(t); x->tunnel = NULL; } } EXPORT_SYMBOL(xfrm_state_delete_tunnel); u32 xfrm_state_mtu(struct xfrm_state *x, int mtu) { const struct xfrm_type *type = READ_ONCE(x->type); struct crypto_aead *aead; u32 blksize, net_adj = 0; if (x->km.state != XFRM_STATE_VALID || !type || type->proto != IPPROTO_ESP) return mtu - x->props.header_len; aead = x->data; blksize = ALIGN(crypto_aead_blocksize(aead), 4); switch (x->props.mode) { case XFRM_MODE_TRANSPORT: case XFRM_MODE_BEET: if (x->props.family == AF_INET) net_adj = sizeof(struct iphdr); else if (x->props.family == AF_INET6) net_adj = sizeof(struct ipv6hdr); break; case XFRM_MODE_TUNNEL: break; default: WARN_ON_ONCE(1); break; } return ((mtu - x->props.header_len - crypto_aead_authsize(aead) - net_adj) & ~(blksize - 1)) + net_adj - 2; } EXPORT_SYMBOL_GPL(xfrm_state_mtu); int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload) { const struct xfrm_mode *inner_mode; const struct xfrm_mode *outer_mode; int family = x->props.family; int err; if (family == AF_INET && READ_ONCE(xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc)) x->props.flags |= XFRM_STATE_NOPMTUDISC; err = -EPROTONOSUPPORT; if (x->sel.family != AF_UNSPEC) { inner_mode = xfrm_get_mode(x->props.mode, x->sel.family); if (inner_mode == NULL) goto error; if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) && family != x->sel.family) goto error; x->inner_mode = *inner_mode; } else { const struct xfrm_mode *inner_mode_iaf; int iafamily = AF_INET; inner_mode = xfrm_get_mode(x->props.mode, x->props.family); if (inner_mode == NULL) goto error; x->inner_mode = *inner_mode; if (x->props.family == AF_INET) iafamily = AF_INET6; inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily); if (inner_mode_iaf) { if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL) x->inner_mode_iaf = *inner_mode_iaf; } } x->type = xfrm_get_type(x->id.proto, family); if (x->type == NULL) goto error; x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload); err = x->type->init_state(x); if (err) goto error; outer_mode = xfrm_get_mode(x->props.mode, family); if (!outer_mode) { err = -EPROTONOSUPPORT; goto error; } x->outer_mode = *outer_mode; if (init_replay) { err = xfrm_init_replay(x); if (err) goto error; } error: return err; } EXPORT_SYMBOL(__xfrm_init_state); int xfrm_init_state(struct xfrm_state *x) { int err; err = __xfrm_init_state(x, true, false); if (!err) x->km.state = XFRM_STATE_VALID; return err; } EXPORT_SYMBOL(xfrm_init_state); int __net_init xfrm_state_init(struct net *net) { unsigned int sz; if (net_eq(net, &init_net)) xfrm_state_cache = KMEM_CACHE(xfrm_state, SLAB_HWCACHE_ALIGN | SLAB_PANIC); INIT_LIST_HEAD(&net->xfrm.state_all); sz = sizeof(struct hlist_head) * 8; net->xfrm.state_bydst = xfrm_hash_alloc(sz); if (!net->xfrm.state_bydst) goto out_bydst; net->xfrm.state_bysrc = xfrm_hash_alloc(sz); if (!net->xfrm.state_bysrc) goto out_bysrc; net->xfrm.state_byspi = xfrm_hash_alloc(sz); if (!net->xfrm.state_byspi) goto out_byspi; net->xfrm.state_byseq = xfrm_hash_alloc(sz); if (!net->xfrm.state_byseq) goto out_byseq; net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1); net->xfrm.state_num = 0; INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize); spin_lock_init(&net->xfrm.xfrm_state_lock); seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation, &net->xfrm.xfrm_state_lock); return 0; out_byseq: xfrm_hash_free(net->xfrm.state_byspi, sz); out_byspi: xfrm_hash_free(net->xfrm.state_bysrc, sz); out_bysrc: xfrm_hash_free(net->xfrm.state_bydst, sz); out_bydst: return -ENOMEM; } void xfrm_state_fini(struct net *net) { unsigned int sz; flush_work(&net->xfrm.state_hash_work); flush_work(&xfrm_state_gc_work); xfrm_state_flush(net, 0, false, true); WARN_ON(!list_empty(&net->xfrm.state_all)); sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head); WARN_ON(!hlist_empty(net->xfrm.state_byseq)); xfrm_hash_free(net->xfrm.state_byseq, sz); WARN_ON(!hlist_empty(net->xfrm.state_byspi)); xfrm_hash_free(net->xfrm.state_byspi, sz); WARN_ON(!hlist_empty(net->xfrm.state_bysrc)); xfrm_hash_free(net->xfrm.state_bysrc, sz); WARN_ON(!hlist_empty(net->xfrm.state_bydst)); xfrm_hash_free(net->xfrm.state_bydst, sz); } #ifdef CONFIG_AUDITSYSCALL static void xfrm_audit_helper_sainfo(struct xfrm_state *x, struct audit_buffer *audit_buf) { struct xfrm_sec_ctx *ctx = x->security; u32 spi = ntohl(x->id.spi); if (ctx) audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s", ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str); switch (x->props.family) { case AF_INET: audit_log_format(audit_buf, " src=%pI4 dst=%pI4", &x->props.saddr.a4, &x->id.daddr.a4); break; case AF_INET6: audit_log_format(audit_buf, " src=%pI6 dst=%pI6", x->props.saddr.a6, x->id.daddr.a6); break; } audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); } static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family, struct audit_buffer *audit_buf) { const struct iphdr *iph4; const struct ipv6hdr *iph6; switch (family) { case AF_INET: iph4 = ip_hdr(skb); audit_log_format(audit_buf, " src=%pI4 dst=%pI4", &iph4->saddr, &iph4->daddr); break; case AF_INET6: iph6 = ipv6_hdr(skb); audit_log_format(audit_buf, " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x", &iph6->saddr, &iph6->daddr, iph6->flow_lbl[0] & 0x0f, iph6->flow_lbl[1], iph6->flow_lbl[2]); break; } } void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid) { struct audit_buffer *audit_buf; audit_buf = xfrm_audit_start("SAD-add"); if (audit_buf == NULL) return; xfrm_audit_helper_usrinfo(task_valid, audit_buf); xfrm_audit_helper_sainfo(x, audit_buf); audit_log_format(audit_buf, " res=%u", result); audit_log_end(audit_buf); } EXPORT_SYMBOL_GPL(xfrm_audit_state_add); void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid) { struct audit_buffer *audit_buf; audit_buf = xfrm_audit_start("SAD-delete"); if (audit_buf == NULL) return; xfrm_audit_helper_usrinfo(task_valid, audit_buf); xfrm_audit_helper_sainfo(x, audit_buf); audit_log_format(audit_buf, " res=%u", result); audit_log_end(audit_buf); } EXPORT_SYMBOL_GPL(xfrm_audit_state_delete); void xfrm_audit_state_replay_overflow(struct xfrm_state *x, struct sk_buff *skb) { struct audit_buffer *audit_buf; u32 spi; audit_buf = xfrm_audit_start("SA-replay-overflow"); if (audit_buf == NULL) return; xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); /* don't record the sequence number because it's inherent in this kind * of audit message */ spi = ntohl(x->id.spi); audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi); audit_log_end(audit_buf); } EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow); void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, __be32 net_seq) { struct audit_buffer *audit_buf; u32 spi; audit_buf = xfrm_audit_start("SA-replayed-pkt"); if (audit_buf == NULL) return; xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); spi = ntohl(x->id.spi); audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", spi, spi, ntohl(net_seq)); audit_log_end(audit_buf); } EXPORT_SYMBOL_GPL(xfrm_audit_state_replay); void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family) { struct audit_buffer *audit_buf; audit_buf = xfrm_audit_start("SA-notfound"); if (audit_buf == NULL) return; xfrm_audit_helper_pktinfo(skb, family, audit_buf); audit_log_end(audit_buf); } EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple); void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, __be32 net_seq) { struct audit_buffer *audit_buf; u32 spi; audit_buf = xfrm_audit_start("SA-notfound"); if (audit_buf == NULL) return; xfrm_audit_helper_pktinfo(skb, family, audit_buf); spi = ntohl(net_spi); audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", spi, spi, ntohl(net_seq)); audit_log_end(audit_buf); } EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound); void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, u8 proto) { struct audit_buffer *audit_buf; __be32 net_spi; __be32 net_seq; audit_buf = xfrm_audit_start("SA-icv-failure"); if (audit_buf == NULL) return; xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf); if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) { u32 spi = ntohl(net_spi); audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u", spi, spi, ntohl(net_seq)); } audit_log_end(audit_buf); } EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail); #endif /* CONFIG_AUDITSYSCALL */