// SPDX-License-Identifier: GPL-2.0 /* * FPU signal frame handling routines. */ #include #include #include #include #include #include #include #include #include static struct _fpx_sw_bytes fx_sw_reserved __ro_after_init; static struct _fpx_sw_bytes fx_sw_reserved_ia32 __ro_after_init; /* * Check for the presence of extended state information in the * user fpstate pointer in the sigcontext. */ static inline int check_xstate_in_sigframe(struct fxregs_state __user *fxbuf, struct _fpx_sw_bytes *fx_sw) { int min_xstate_size = sizeof(struct fxregs_state) + sizeof(struct xstate_header); void __user *fpstate = fxbuf; unsigned int magic2; if (__copy_from_user(fx_sw, &fxbuf->sw_reserved[0], sizeof(*fx_sw))) return -EFAULT; /* Check for the first magic field and other error scenarios. */ if (fx_sw->magic1 != FP_XSTATE_MAGIC1 || fx_sw->xstate_size < min_xstate_size || fx_sw->xstate_size > fpu_user_xstate_size || fx_sw->xstate_size > fx_sw->extended_size) goto setfx; /* * Check for the presence of second magic word at the end of memory * layout. This detects the case where the user just copied the legacy * fpstate layout with out copying the extended state information * in the memory layout. */ if (__get_user(magic2, (__u32 __user *)(fpstate + fx_sw->xstate_size))) return -EFAULT; if (likely(magic2 == FP_XSTATE_MAGIC2)) return 0; setfx: trace_x86_fpu_xstate_check_failed(¤t->thread.fpu); /* Set the parameters for fx only state */ fx_sw->magic1 = 0; fx_sw->xstate_size = sizeof(struct fxregs_state); fx_sw->xfeatures = XFEATURE_MASK_FPSSE; return 0; } /* * Signal frame handlers. */ static inline int save_fsave_header(struct task_struct *tsk, void __user *buf) { if (use_fxsr()) { struct xregs_state *xsave = &tsk->thread.fpu.state.xsave; struct user_i387_ia32_struct env; struct _fpstate_32 __user *fp = buf; fpregs_lock(); if (!test_thread_flag(TIF_NEED_FPU_LOAD)) fxsave(&tsk->thread.fpu.state.fxsave); fpregs_unlock(); convert_from_fxsr(&env, tsk); if (__copy_to_user(buf, &env, sizeof(env)) || __put_user(xsave->i387.swd, &fp->status) || __put_user(X86_FXSR_MAGIC, &fp->magic)) return -1; } else { struct fregs_state __user *fp = buf; u32 swd; if (__get_user(swd, &fp->swd) || __put_user(swd, &fp->status)) return -1; } return 0; } static inline int save_xstate_epilog(void __user *buf, int ia32_frame) { struct xregs_state __user *x = buf; struct _fpx_sw_bytes *sw_bytes; u32 xfeatures; int err; /* Setup the bytes not touched by the [f]xsave and reserved for SW. */ sw_bytes = ia32_frame ? &fx_sw_reserved_ia32 : &fx_sw_reserved; err = __copy_to_user(&x->i387.sw_reserved, sw_bytes, sizeof(*sw_bytes)); if (!use_xsave()) return err; err |= __put_user(FP_XSTATE_MAGIC2, (__u32 __user *)(buf + fpu_user_xstate_size)); /* * Read the xfeatures which we copied (directly from the cpu or * from the state in task struct) to the user buffers. */ err |= __get_user(xfeatures, (__u32 __user *)&x->header.xfeatures); /* * For legacy compatible, we always set FP/SSE bits in the bit * vector while saving the state to the user context. This will * enable us capturing any changes(during sigreturn) to * the FP/SSE bits by the legacy applications which don't touch * xfeatures in the xsave header. * * xsave aware apps can change the xfeatures in the xsave * header as well as change any contents in the memory layout. * xrestore as part of sigreturn will capture all the changes. */ xfeatures |= XFEATURE_MASK_FPSSE; err |= __put_user(xfeatures, (__u32 __user *)&x->header.xfeatures); return err; } static inline int copy_fpregs_to_sigframe(struct xregs_state __user *buf) { int err; if (use_xsave()) err = xsave_to_user_sigframe(buf); else if (use_fxsr()) err = fxsave_to_user_sigframe((struct fxregs_state __user *) buf); else err = fnsave_to_user_sigframe((struct fregs_state __user *) buf); if (unlikely(err) && __clear_user(buf, fpu_user_xstate_size)) err = -EFAULT; return err; } /* * Save the fpu, extended register state to the user signal frame. * * 'buf_fx' is the 64-byte aligned pointer at which the [f|fx|x]save * state is copied. * 'buf' points to the 'buf_fx' or to the fsave header followed by 'buf_fx'. * * buf == buf_fx for 64-bit frames and 32-bit fsave frame. * buf != buf_fx for 32-bit frames with fxstate. * * Try to save it directly to the user frame with disabled page fault handler. * If this fails then do the slow path where the FPU state is first saved to * task's fpu->state and then copy it to the user frame pointed to by the * aligned pointer 'buf_fx'. * * If this is a 32-bit frame with fxstate, put a fsave header before * the aligned state at 'buf_fx'. * * For [f]xsave state, update the SW reserved fields in the [f]xsave frame * indicating the absence/presence of the extended state to the user. */ int copy_fpstate_to_sigframe(void __user *buf, void __user *buf_fx, int size) { struct task_struct *tsk = current; int ia32_fxstate = (buf != buf_fx); int ret; ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) || IS_ENABLED(CONFIG_IA32_EMULATION)); if (!static_cpu_has(X86_FEATURE_FPU)) { struct user_i387_ia32_struct fp; fpregs_soft_get(current, NULL, (struct membuf){.p = &fp, .left = sizeof(fp)}); return copy_to_user(buf, &fp, sizeof(fp)) ? -EFAULT : 0; } if (!access_ok(buf, size)) return -EACCES; retry: /* * Load the FPU registers if they are not valid for the current task. * With a valid FPU state we can attempt to save the state directly to * userland's stack frame which will likely succeed. If it does not, * resolve the fault in the user memory and try again. */ fpregs_lock(); if (test_thread_flag(TIF_NEED_FPU_LOAD)) fpregs_restore_userregs(); pagefault_disable(); ret = copy_fpregs_to_sigframe(buf_fx); pagefault_enable(); fpregs_unlock(); if (ret) { if (!fault_in_writeable(buf_fx, fpu_user_xstate_size)) goto retry; return -EFAULT; } /* Save the fsave header for the 32-bit frames. */ if ((ia32_fxstate || !use_fxsr()) && save_fsave_header(tsk, buf)) return -1; if (use_fxsr() && save_xstate_epilog(buf_fx, ia32_fxstate)) return -1; return 0; } static int __restore_fpregs_from_user(void __user *buf, u64 xrestore, bool fx_only) { if (use_xsave()) { u64 init_bv = xfeatures_mask_uabi() & ~xrestore; int ret; if (likely(!fx_only)) ret = xrstor_from_user_sigframe(buf, xrestore); else ret = fxrstor_from_user_sigframe(buf); if (!ret && unlikely(init_bv)) os_xrstor(&init_fpstate.xsave, init_bv); return ret; } else if (use_fxsr()) { return fxrstor_from_user_sigframe(buf); } else { return frstor_from_user_sigframe(buf); } } /* * Attempt to restore the FPU registers directly from user memory. * Pagefaults are handled and any errors returned are fatal. */ static int restore_fpregs_from_user(void __user *buf, u64 xrestore, bool fx_only, unsigned int size) { struct fpu *fpu = ¤t->thread.fpu; int ret; retry: fpregs_lock(); pagefault_disable(); ret = __restore_fpregs_from_user(buf, xrestore, fx_only); pagefault_enable(); if (unlikely(ret)) { /* * The above did an FPU restore operation, restricted to * the user portion of the registers, and failed, but the * microcode might have modified the FPU registers * nevertheless. * * If the FPU registers do not belong to current, then * invalidate the FPU register state otherwise the task * might preempt current and return to user space with * corrupted FPU registers. */ if (test_thread_flag(TIF_NEED_FPU_LOAD)) __cpu_invalidate_fpregs_state(); fpregs_unlock(); /* Try to handle #PF, but anything else is fatal. */ if (ret != -EFAULT) return -EINVAL; if (!fault_in_readable(buf, size)) goto retry; return -EFAULT; } /* * Restore supervisor states: previous context switch etc has done * XSAVES and saved the supervisor states in the kernel buffer from * which they can be restored now. * * It would be optimal to handle this with a single XRSTORS, but * this does not work because the rest of the FPU registers have * been restored from a user buffer directly. */ if (test_thread_flag(TIF_NEED_FPU_LOAD) && xfeatures_mask_supervisor()) os_xrstor(&fpu->state.xsave, xfeatures_mask_supervisor()); fpregs_mark_activate(); fpregs_unlock(); return 0; } static int __fpu_restore_sig(void __user *buf, void __user *buf_fx, bool ia32_fxstate) { int state_size = fpu_kernel_xstate_size; struct task_struct *tsk = current; struct fpu *fpu = &tsk->thread.fpu; struct user_i387_ia32_struct env; u64 user_xfeatures = 0; bool fx_only = false; int ret; if (use_xsave()) { struct _fpx_sw_bytes fx_sw_user; ret = check_xstate_in_sigframe(buf_fx, &fx_sw_user); if (unlikely(ret)) return ret; fx_only = !fx_sw_user.magic1; state_size = fx_sw_user.xstate_size; user_xfeatures = fx_sw_user.xfeatures; } else { user_xfeatures = XFEATURE_MASK_FPSSE; } if (likely(!ia32_fxstate)) { /* * Attempt to restore the FPU registers directly from user * memory. For that to succeed, the user access cannot cause page * faults. If it does, fall back to the slow path below, going * through the kernel buffer with the enabled pagefault handler. */ return restore_fpregs_from_user(buf_fx, user_xfeatures, fx_only, state_size); } /* * Copy the legacy state because the FP portion of the FX frame has * to be ignored for histerical raisins. The legacy state is folded * in once the larger state has been copied. */ ret = __copy_from_user(&env, buf, sizeof(env)); if (ret) return ret; /* * By setting TIF_NEED_FPU_LOAD it is ensured that our xstate is * not modified on context switch and that the xstate is considered * to be loaded again on return to userland (overriding last_cpu avoids * the optimisation). */ fpregs_lock(); if (!test_thread_flag(TIF_NEED_FPU_LOAD)) { /* * If supervisor states are available then save the * hardware state in current's fpstate so that the * supervisor state is preserved. Save the full state for * simplicity. There is no point in optimizing this by only * saving the supervisor states and then shuffle them to * the right place in memory. It's ia32 mode. Shrug. */ if (xfeatures_mask_supervisor()) os_xsave(&fpu->state.xsave); set_thread_flag(TIF_NEED_FPU_LOAD); } __fpu_invalidate_fpregs_state(fpu); __cpu_invalidate_fpregs_state(); fpregs_unlock(); if (use_xsave() && !fx_only) { ret = copy_sigframe_from_user_to_xstate(tsk, buf_fx); if (ret) return ret; } else { if (__copy_from_user(&fpu->state.fxsave, buf_fx, sizeof(fpu->state.fxsave))) return -EFAULT; if (IS_ENABLED(CONFIG_X86_64)) { /* Reject invalid MXCSR values. */ if (fpu->state.fxsave.mxcsr & ~mxcsr_feature_mask) return -EINVAL; } else { /* Mask invalid bits out for historical reasons (broken hardware). */ fpu->state.fxsave.mxcsr &= mxcsr_feature_mask; } /* Enforce XFEATURE_MASK_FPSSE when XSAVE is enabled */ if (use_xsave()) fpu->state.xsave.header.xfeatures |= XFEATURE_MASK_FPSSE; } /* Fold the legacy FP storage */ convert_to_fxsr(&fpu->state.fxsave, &env); fpregs_lock(); if (use_xsave()) { /* * Remove all UABI feature bits not set in user_xfeatures * from the memory xstate header which makes the full * restore below bring them into init state. This works for * fx_only mode as well because that has only FP and SSE * set in user_xfeatures. * * Preserve supervisor states! */ u64 mask = user_xfeatures | xfeatures_mask_supervisor(); fpu->state.xsave.header.xfeatures &= mask; ret = os_xrstor_safe(&fpu->state.xsave, xfeatures_mask_all); } else { ret = fxrstor_safe(&fpu->state.fxsave); } if (likely(!ret)) fpregs_mark_activate(); fpregs_unlock(); return ret; } static inline int xstate_sigframe_size(void) { return use_xsave() ? fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE : fpu_user_xstate_size; } /* * Restore FPU state from a sigframe: */ int fpu__restore_sig(void __user *buf, int ia32_frame) { unsigned int size = xstate_sigframe_size(); struct fpu *fpu = ¤t->thread.fpu; void __user *buf_fx = buf; bool ia32_fxstate = false; int ret; if (unlikely(!buf)) { fpu__clear_user_states(fpu); return 0; } ia32_frame &= (IS_ENABLED(CONFIG_X86_32) || IS_ENABLED(CONFIG_IA32_EMULATION)); /* * Only FXSR enabled systems need the FX state quirk. * FRSTOR does not need it and can use the fast path. */ if (ia32_frame && use_fxsr()) { buf_fx = buf + sizeof(struct fregs_state); size += sizeof(struct fregs_state); ia32_fxstate = true; } if (!access_ok(buf, size)) { ret = -EACCES; goto out; } if (!IS_ENABLED(CONFIG_X86_64) && !cpu_feature_enabled(X86_FEATURE_FPU)) { ret = fpregs_soft_set(current, NULL, 0, sizeof(struct user_i387_ia32_struct), NULL, buf); } else { ret = __fpu_restore_sig(buf, buf_fx, ia32_fxstate); } out: if (unlikely(ret)) fpu__clear_user_states(fpu); return ret; } unsigned long fpu__alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx, unsigned long *size) { unsigned long frame_size = xstate_sigframe_size(); *buf_fx = sp = round_down(sp - frame_size, 64); if (ia32_frame && use_fxsr()) { frame_size += sizeof(struct fregs_state); sp -= sizeof(struct fregs_state); } *size = frame_size; return sp; } unsigned long fpu__get_fpstate_size(void) { unsigned long ret = xstate_sigframe_size(); /* * This space is needed on (most) 32-bit kernels, or when a 32-bit * app is running on a 64-bit kernel. To keep things simple, just * assume the worst case and always include space for 'freg_state', * even for 64-bit apps on 64-bit kernels. This wastes a bit of * space, but keeps the code simple. */ if ((IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) && use_fxsr()) ret += sizeof(struct fregs_state); return ret; } /* * Prepare the SW reserved portion of the fxsave memory layout, indicating * the presence of the extended state information in the memory layout * pointed by the fpstate pointer in the sigcontext. * This will be saved when ever the FP and extended state context is * saved on the user stack during the signal handler delivery to the user. */ void fpu__init_prepare_fx_sw_frame(void) { int size = fpu_user_xstate_size + FP_XSTATE_MAGIC2_SIZE; fx_sw_reserved.magic1 = FP_XSTATE_MAGIC1; fx_sw_reserved.extended_size = size; fx_sw_reserved.xfeatures = xfeatures_mask_uabi(); fx_sw_reserved.xstate_size = fpu_user_xstate_size; if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { int fsave_header_size = sizeof(struct fregs_state); fx_sw_reserved_ia32 = fx_sw_reserved; fx_sw_reserved_ia32.extended_size = size + fsave_header_size; } }