// SPDX-License-Identifier: GPL-2.0-or-later /* * AMCC SoC PPC4xx Crypto Driver * * Copyright (c) 2008 Applied Micro Circuits Corporation. * All rights reserved. James Hsiao <jhsiao@amcc.com> * * This file implements AMCC crypto offload Linux device driver for use with * Linux CryptoAPI. */ #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/spinlock_types.h> #include <linux/random.h> #include <linux/scatterlist.h> #include <linux/crypto.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/init.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/slab.h> #include <asm/dcr.h> #include <asm/dcr-regs.h> #include <asm/cacheflush.h> #include <crypto/aead.h> #include <crypto/aes.h> #include <crypto/ctr.h> #include <crypto/gcm.h> #include <crypto/sha1.h> #include <crypto/rng.h> #include <crypto/scatterwalk.h> #include <crypto/skcipher.h> #include <crypto/internal/aead.h> #include <crypto/internal/rng.h> #include <crypto/internal/skcipher.h> #include "crypto4xx_reg_def.h" #include "crypto4xx_core.h" #include "crypto4xx_sa.h" #include "crypto4xx_trng.h" #define PPC4XX_SEC_VERSION_STR "0.5" /* * PPC4xx Crypto Engine Initialization Routine */ static void crypto4xx_hw_init(struct crypto4xx_device *dev) { union ce_ring_size ring_size; union ce_ring_control ring_ctrl; union ce_part_ring_size part_ring_size; union ce_io_threshold io_threshold; u32 rand_num; union ce_pe_dma_cfg pe_dma_cfg; u32 device_ctrl; writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG); /* setup pe dma, include reset sg, pdr and pe, then release reset */ pe_dma_cfg.w = 0; pe_dma_cfg.bf.bo_sgpd_en = 1; pe_dma_cfg.bf.bo_data_en = 0; pe_dma_cfg.bf.bo_sa_en = 1; pe_dma_cfg.bf.bo_pd_en = 1; pe_dma_cfg.bf.dynamic_sa_en = 1; pe_dma_cfg.bf.reset_sg = 1; pe_dma_cfg.bf.reset_pdr = 1; pe_dma_cfg.bf.reset_pe = 1; writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); /* un reset pe,sg and pdr */ pe_dma_cfg.bf.pe_mode = 0; pe_dma_cfg.bf.reset_sg = 0; pe_dma_cfg.bf.reset_pdr = 0; pe_dma_cfg.bf.reset_pe = 0; pe_dma_cfg.bf.bo_td_en = 0; writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE); writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE); writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL); get_random_bytes(&rand_num, sizeof(rand_num)); writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L); get_random_bytes(&rand_num, sizeof(rand_num)); writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H); ring_size.w = 0; ring_size.bf.ring_offset = PPC4XX_PD_SIZE; ring_size.bf.ring_size = PPC4XX_NUM_PD; writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE); ring_ctrl.w = 0; writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL); device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL); device_ctrl |= PPC4XX_DC_3DES_EN; writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL); writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE); writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE); part_ring_size.w = 0; part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE; part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE; writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE); writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG); io_threshold.w = 0; io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD; io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD; writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD); writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR); writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR); writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR); writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR); writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR); writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR); writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR); /* un reset pe,sg and pdr */ pe_dma_cfg.bf.pe_mode = 1; pe_dma_cfg.bf.reset_sg = 0; pe_dma_cfg.bf.reset_pdr = 0; pe_dma_cfg.bf.reset_pe = 0; pe_dma_cfg.bf.bo_td_en = 0; writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); /*clear all pending interrupt*/ writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR); writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG); if (dev->is_revb) { writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10, dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT); writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT, dev->ce_base + CRYPTO4XX_INT_EN); } else { writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN); } } int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size) { ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC); if (ctx->sa_in == NULL) return -ENOMEM; ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC); if (ctx->sa_out == NULL) { kfree(ctx->sa_in); ctx->sa_in = NULL; return -ENOMEM; } ctx->sa_len = size; return 0; } void crypto4xx_free_sa(struct crypto4xx_ctx *ctx) { kfree(ctx->sa_in); ctx->sa_in = NULL; kfree(ctx->sa_out); ctx->sa_out = NULL; ctx->sa_len = 0; } /* * alloc memory for the gather ring * no need to alloc buf for the ring * gdr_tail, gdr_head and gdr_count are initialized by this function */ static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev) { int i; dev->pdr = dma_alloc_coherent(dev->core_dev->device, sizeof(struct ce_pd) * PPC4XX_NUM_PD, &dev->pdr_pa, GFP_KERNEL); if (!dev->pdr) return -ENOMEM; dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo), GFP_KERNEL); if (!dev->pdr_uinfo) { dma_free_coherent(dev->core_dev->device, sizeof(struct ce_pd) * PPC4XX_NUM_PD, dev->pdr, dev->pdr_pa); return -ENOMEM; } dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device, sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD, &dev->shadow_sa_pool_pa, GFP_KERNEL); if (!dev->shadow_sa_pool) return -ENOMEM; dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device, sizeof(struct sa_state_record) * PPC4XX_NUM_PD, &dev->shadow_sr_pool_pa, GFP_KERNEL); if (!dev->shadow_sr_pool) return -ENOMEM; for (i = 0; i < PPC4XX_NUM_PD; i++) { struct ce_pd *pd = &dev->pdr[i]; struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i]; pd->sa = dev->shadow_sa_pool_pa + sizeof(union shadow_sa_buf) * i; /* alloc 256 bytes which is enough for any kind of dynamic sa */ pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa; /* alloc state record */ pd_uinfo->sr_va = &dev->shadow_sr_pool[i]; pd_uinfo->sr_pa = dev->shadow_sr_pool_pa + sizeof(struct sa_state_record) * i; } return 0; } static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev) { if (dev->pdr) dma_free_coherent(dev->core_dev->device, sizeof(struct ce_pd) * PPC4XX_NUM_PD, dev->pdr, dev->pdr_pa); if (dev->shadow_sa_pool) dma_free_coherent(dev->core_dev->device, sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD, dev->shadow_sa_pool, dev->shadow_sa_pool_pa); if (dev->shadow_sr_pool) dma_free_coherent(dev->core_dev->device, sizeof(struct sa_state_record) * PPC4XX_NUM_PD, dev->shadow_sr_pool, dev->shadow_sr_pool_pa); kfree(dev->pdr_uinfo); } static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev) { u32 retval; u32 tmp; retval = dev->pdr_head; tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD; if (tmp == dev->pdr_tail) return ERING_WAS_FULL; dev->pdr_head = tmp; return retval; } static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx) { struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx]; u32 tail; unsigned long flags; spin_lock_irqsave(&dev->core_dev->lock, flags); pd_uinfo->state = PD_ENTRY_FREE; if (dev->pdr_tail != PPC4XX_LAST_PD) dev->pdr_tail++; else dev->pdr_tail = 0; tail = dev->pdr_tail; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return tail; } /* * alloc memory for the gather ring * no need to alloc buf for the ring * gdr_tail, gdr_head and gdr_count are initialized by this function */ static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev) { dev->gdr = dma_alloc_coherent(dev->core_dev->device, sizeof(struct ce_gd) * PPC4XX_NUM_GD, &dev->gdr_pa, GFP_KERNEL); if (!dev->gdr) return -ENOMEM; return 0; } static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev) { if (dev->gdr) dma_free_coherent(dev->core_dev->device, sizeof(struct ce_gd) * PPC4XX_NUM_GD, dev->gdr, dev->gdr_pa); } /* * when this function is called. * preemption or interrupt must be disabled */ static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n) { u32 retval; u32 tmp; if (n >= PPC4XX_NUM_GD) return ERING_WAS_FULL; retval = dev->gdr_head; tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD; if (dev->gdr_head > dev->gdr_tail) { if (tmp < dev->gdr_head && tmp >= dev->gdr_tail) return ERING_WAS_FULL; } else if (dev->gdr_head < dev->gdr_tail) { if (tmp < dev->gdr_head || tmp >= dev->gdr_tail) return ERING_WAS_FULL; } dev->gdr_head = tmp; return retval; } static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev) { unsigned long flags; spin_lock_irqsave(&dev->core_dev->lock, flags); if (dev->gdr_tail == dev->gdr_head) { spin_unlock_irqrestore(&dev->core_dev->lock, flags); return 0; } if (dev->gdr_tail != PPC4XX_LAST_GD) dev->gdr_tail++; else dev->gdr_tail = 0; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return 0; } static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev, dma_addr_t *gd_dma, u32 idx) { *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx; return &dev->gdr[idx]; } /* * alloc memory for the scatter ring * need to alloc buf for the ring * sdr_tail, sdr_head and sdr_count are initialized by this function */ static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev) { int i; dev->scatter_buffer_va = dma_alloc_coherent(dev->core_dev->device, PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD, &dev->scatter_buffer_pa, GFP_KERNEL); if (!dev->scatter_buffer_va) return -ENOMEM; /* alloc memory for scatter descriptor ring */ dev->sdr = dma_alloc_coherent(dev->core_dev->device, sizeof(struct ce_sd) * PPC4XX_NUM_SD, &dev->sdr_pa, GFP_KERNEL); if (!dev->sdr) return -ENOMEM; for (i = 0; i < PPC4XX_NUM_SD; i++) { dev->sdr[i].ptr = dev->scatter_buffer_pa + PPC4XX_SD_BUFFER_SIZE * i; } return 0; } static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev) { if (dev->sdr) dma_free_coherent(dev->core_dev->device, sizeof(struct ce_sd) * PPC4XX_NUM_SD, dev->sdr, dev->sdr_pa); if (dev->scatter_buffer_va) dma_free_coherent(dev->core_dev->device, PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD, dev->scatter_buffer_va, dev->scatter_buffer_pa); } /* * when this function is called. * preemption or interrupt must be disabled */ static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n) { u32 retval; u32 tmp; if (n >= PPC4XX_NUM_SD) return ERING_WAS_FULL; retval = dev->sdr_head; tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD; if (dev->sdr_head > dev->gdr_tail) { if (tmp < dev->sdr_head && tmp >= dev->sdr_tail) return ERING_WAS_FULL; } else if (dev->sdr_head < dev->sdr_tail) { if (tmp < dev->sdr_head || tmp >= dev->sdr_tail) return ERING_WAS_FULL; } /* the head = tail, or empty case is already take cared */ dev->sdr_head = tmp; return retval; } static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev) { unsigned long flags; spin_lock_irqsave(&dev->core_dev->lock, flags); if (dev->sdr_tail == dev->sdr_head) { spin_unlock_irqrestore(&dev->core_dev->lock, flags); return 0; } if (dev->sdr_tail != PPC4XX_LAST_SD) dev->sdr_tail++; else dev->sdr_tail = 0; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return 0; } static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev, dma_addr_t *sd_dma, u32 idx) { *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx; return &dev->sdr[idx]; } static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev, struct ce_pd *pd, struct pd_uinfo *pd_uinfo, u32 nbytes, struct scatterlist *dst) { unsigned int first_sd = pd_uinfo->first_sd; unsigned int last_sd; unsigned int overflow = 0; unsigned int to_copy; unsigned int dst_start = 0; /* * Because the scatter buffers are all neatly organized in one * big continuous ringbuffer; scatterwalk_map_and_copy() can * be instructed to copy a range of buffers in one go. */ last_sd = (first_sd + pd_uinfo->num_sd); if (last_sd > PPC4XX_LAST_SD) { last_sd = PPC4XX_LAST_SD; overflow = last_sd % PPC4XX_NUM_SD; } while (nbytes) { void *buf = dev->scatter_buffer_va + first_sd * PPC4XX_SD_BUFFER_SIZE; to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE * (1 + last_sd - first_sd)); scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1); nbytes -= to_copy; if (overflow) { first_sd = 0; last_sd = overflow; dst_start += to_copy; overflow = 0; } } } static void crypto4xx_copy_digest_to_dst(void *dst, struct pd_uinfo *pd_uinfo, struct crypto4xx_ctx *ctx) { struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in; if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) { memcpy(dst, pd_uinfo->sr_va->save_digest, SA_HASH_ALG_SHA1_DIGEST_SIZE); } } static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev, struct pd_uinfo *pd_uinfo) { int i; if (pd_uinfo->num_gd) { for (i = 0; i < pd_uinfo->num_gd; i++) crypto4xx_put_gd_to_gdr(dev); pd_uinfo->first_gd = 0xffffffff; pd_uinfo->num_gd = 0; } if (pd_uinfo->num_sd) { for (i = 0; i < pd_uinfo->num_sd; i++) crypto4xx_put_sd_to_sdr(dev); pd_uinfo->first_sd = 0xffffffff; pd_uinfo->num_sd = 0; } } static void crypto4xx_cipher_done(struct crypto4xx_device *dev, struct pd_uinfo *pd_uinfo, struct ce_pd *pd) { struct skcipher_request *req; struct scatterlist *dst; req = skcipher_request_cast(pd_uinfo->async_req); if (pd_uinfo->sa_va->sa_command_0.bf.scatter) { crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, req->cryptlen, req->dst); } else { dst = pd_uinfo->dest_va; dma_unmap_page(dev->core_dev->device, pd->dest, dst->length, DMA_FROM_DEVICE); } if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); crypto4xx_memcpy_from_le32((u32 *)req->iv, pd_uinfo->sr_va->save_iv, crypto_skcipher_ivsize(skcipher)); } crypto4xx_ret_sg_desc(dev, pd_uinfo); if (pd_uinfo->state & PD_ENTRY_BUSY) skcipher_request_complete(req, -EINPROGRESS); skcipher_request_complete(req, 0); } static void crypto4xx_ahash_done(struct crypto4xx_device *dev, struct pd_uinfo *pd_uinfo) { struct crypto4xx_ctx *ctx; struct ahash_request *ahash_req; ahash_req = ahash_request_cast(pd_uinfo->async_req); ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req)); crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx); crypto4xx_ret_sg_desc(dev, pd_uinfo); if (pd_uinfo->state & PD_ENTRY_BUSY) ahash_request_complete(ahash_req, -EINPROGRESS); ahash_request_complete(ahash_req, 0); } static void crypto4xx_aead_done(struct crypto4xx_device *dev, struct pd_uinfo *pd_uinfo, struct ce_pd *pd) { struct aead_request *aead_req = container_of(pd_uinfo->async_req, struct aead_request, base); struct scatterlist *dst = pd_uinfo->dest_va; size_t cp_len = crypto_aead_authsize( crypto_aead_reqtfm(aead_req)); u32 icv[AES_BLOCK_SIZE]; int err = 0; if (pd_uinfo->sa_va->sa_command_0.bf.scatter) { crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, pd->pd_ctl_len.bf.pkt_len, dst); } else { dma_unmap_page(dev->core_dev->device, pd->dest, dst->length, DMA_FROM_DEVICE); } if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) { /* append icv at the end */ crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest, sizeof(icv)); scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen, cp_len, 1); } else { /* check icv at the end */ scatterwalk_map_and_copy(icv, aead_req->src, aead_req->assoclen + aead_req->cryptlen - cp_len, cp_len, 0); crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv)); if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len)) err = -EBADMSG; } crypto4xx_ret_sg_desc(dev, pd_uinfo); if (pd->pd_ctl.bf.status & 0xff) { if (!__ratelimit(&dev->aead_ratelimit)) { if (pd->pd_ctl.bf.status & 2) pr_err("pad fail error\n"); if (pd->pd_ctl.bf.status & 4) pr_err("seqnum fail\n"); if (pd->pd_ctl.bf.status & 8) pr_err("error _notify\n"); pr_err("aead return err status = 0x%02x\n", pd->pd_ctl.bf.status & 0xff); pr_err("pd pad_ctl = 0x%08x\n", pd->pd_ctl.bf.pd_pad_ctl); } err = -EINVAL; } if (pd_uinfo->state & PD_ENTRY_BUSY) aead_request_complete(aead_req, -EINPROGRESS); aead_request_complete(aead_req, err); } static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx) { struct ce_pd *pd = &dev->pdr[idx]; struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx]; switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) { case CRYPTO_ALG_TYPE_SKCIPHER: crypto4xx_cipher_done(dev, pd_uinfo, pd); break; case CRYPTO_ALG_TYPE_AEAD: crypto4xx_aead_done(dev, pd_uinfo, pd); break; case CRYPTO_ALG_TYPE_AHASH: crypto4xx_ahash_done(dev, pd_uinfo); break; } } static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev) { crypto4xx_destroy_pdr(core_dev->dev); crypto4xx_destroy_gdr(core_dev->dev); crypto4xx_destroy_sdr(core_dev->dev); iounmap(core_dev->dev->ce_base); kfree(core_dev->dev); kfree(core_dev); } static u32 get_next_gd(u32 current) { if (current != PPC4XX_LAST_GD) return current + 1; else return 0; } static u32 get_next_sd(u32 current) { if (current != PPC4XX_LAST_SD) return current + 1; else return 0; } int crypto4xx_build_pd(struct crypto_async_request *req, struct crypto4xx_ctx *ctx, struct scatterlist *src, struct scatterlist *dst, const unsigned int datalen, const __le32 *iv, const u32 iv_len, const struct dynamic_sa_ctl *req_sa, const unsigned int sa_len, const unsigned int assoclen, struct scatterlist *_dst) { struct crypto4xx_device *dev = ctx->dev; struct dynamic_sa_ctl *sa; struct ce_gd *gd; struct ce_pd *pd; u32 num_gd, num_sd; u32 fst_gd = 0xffffffff; u32 fst_sd = 0xffffffff; u32 pd_entry; unsigned long flags; struct pd_uinfo *pd_uinfo; unsigned int nbytes = datalen; size_t offset_to_sr_ptr; u32 gd_idx = 0; int tmp; bool is_busy, force_sd; /* * There's a very subtile/disguised "bug" in the hardware that * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption * of the hardware spec: * *drum roll* the AES/(T)DES OFB and CFB modes are listed as * operation modes for >>> "Block ciphers" <<<. * * To workaround this issue and stop the hardware from causing * "overran dst buffer" on crypttexts that are not a multiple * of 16 (AES_BLOCK_SIZE), we force the driver to use the * scatter buffers. */ force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB) && (datalen % AES_BLOCK_SIZE); /* figure how many gd are needed */ tmp = sg_nents_for_len(src, assoclen + datalen); if (tmp < 0) { dev_err(dev->core_dev->device, "Invalid number of src SG.\n"); return tmp; } if (tmp == 1) tmp = 0; num_gd = tmp; if (assoclen) { nbytes += assoclen; dst = scatterwalk_ffwd(_dst, dst, assoclen); } /* figure how many sd are needed */ if (sg_is_last(dst) && force_sd == false) { num_sd = 0; } else { if (datalen > PPC4XX_SD_BUFFER_SIZE) { num_sd = datalen / PPC4XX_SD_BUFFER_SIZE; if (datalen % PPC4XX_SD_BUFFER_SIZE) num_sd++; } else { num_sd = 1; } } /* * The follow section of code needs to be protected * The gather ring and scatter ring needs to be consecutive * In case of run out of any kind of descriptor, the descriptor * already got must be return the original place. */ spin_lock_irqsave(&dev->core_dev->lock, flags); /* * Let the caller know to slow down, once more than 13/16ths = 81% * of the available data contexts are being used simultaneously. * * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for * 31 more contexts. Before new requests have to be rejected. */ if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) { is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >= ((PPC4XX_NUM_PD * 13) / 16); } else { /* * To fix contention issues between ipsec (no blacklog) and * dm-crypto (backlog) reserve 32 entries for "no backlog" * data contexts. */ is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >= ((PPC4XX_NUM_PD * 15) / 16); if (is_busy) { spin_unlock_irqrestore(&dev->core_dev->lock, flags); return -EBUSY; } } if (num_gd) { fst_gd = crypto4xx_get_n_gd(dev, num_gd); if (fst_gd == ERING_WAS_FULL) { spin_unlock_irqrestore(&dev->core_dev->lock, flags); return -EAGAIN; } } if (num_sd) { fst_sd = crypto4xx_get_n_sd(dev, num_sd); if (fst_sd == ERING_WAS_FULL) { if (num_gd) dev->gdr_head = fst_gd; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return -EAGAIN; } } pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev); if (pd_entry == ERING_WAS_FULL) { if (num_gd) dev->gdr_head = fst_gd; if (num_sd) dev->sdr_head = fst_sd; spin_unlock_irqrestore(&dev->core_dev->lock, flags); return -EAGAIN; } spin_unlock_irqrestore(&dev->core_dev->lock, flags); pd = &dev->pdr[pd_entry]; pd->sa_len = sa_len; pd_uinfo = &dev->pdr_uinfo[pd_entry]; pd_uinfo->num_gd = num_gd; pd_uinfo->num_sd = num_sd; pd_uinfo->dest_va = dst; pd_uinfo->async_req = req; if (iv_len) memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len); sa = pd_uinfo->sa_va; memcpy(sa, req_sa, sa_len * 4); sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2); offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa); *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa; if (num_gd) { dma_addr_t gd_dma; struct scatterlist *sg; /* get first gd we are going to use */ gd_idx = fst_gd; pd_uinfo->first_gd = fst_gd; gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); pd->src = gd_dma; /* enable gather */ sa->sa_command_0.bf.gather = 1; /* walk the sg, and setup gather array */ sg = src; while (nbytes) { size_t len; len = min(sg->length, nbytes); gd->ptr = dma_map_page(dev->core_dev->device, sg_page(sg), sg->offset, len, DMA_TO_DEVICE); gd->ctl_len.len = len; gd->ctl_len.done = 0; gd->ctl_len.ready = 1; if (len >= nbytes) break; nbytes -= sg->length; gd_idx = get_next_gd(gd_idx); gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); sg = sg_next(sg); } } else { pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src), src->offset, min(nbytes, src->length), DMA_TO_DEVICE); /* * Disable gather in sa command */ sa->sa_command_0.bf.gather = 0; /* * Indicate gather array is not used */ pd_uinfo->first_gd = 0xffffffff; } if (!num_sd) { /* * we know application give us dst a whole piece of memory * no need to use scatter ring. */ pd_uinfo->first_sd = 0xffffffff; sa->sa_command_0.bf.scatter = 0; pd->dest = (u32)dma_map_page(dev->core_dev->device, sg_page(dst), dst->offset, min(datalen, dst->length), DMA_TO_DEVICE); } else { dma_addr_t sd_dma; struct ce_sd *sd = NULL; u32 sd_idx = fst_sd; nbytes = datalen; sa->sa_command_0.bf.scatter = 1; pd_uinfo->first_sd = fst_sd; sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx); pd->dest = sd_dma; /* setup scatter descriptor */ sd->ctl.done = 0; sd->ctl.rdy = 1; /* sd->ptr should be setup by sd_init routine*/ if (nbytes >= PPC4XX_SD_BUFFER_SIZE) nbytes -= PPC4XX_SD_BUFFER_SIZE; else nbytes = 0; while (nbytes) { sd_idx = get_next_sd(sd_idx); sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx); /* setup scatter descriptor */ sd->ctl.done = 0; sd->ctl.rdy = 1; if (nbytes >= PPC4XX_SD_BUFFER_SIZE) { nbytes -= PPC4XX_SD_BUFFER_SIZE; } else { /* * SD entry can hold PPC4XX_SD_BUFFER_SIZE, * which is more than nbytes, so done. */ nbytes = 0; } } } pd->pd_ctl.w = PD_CTL_HOST_READY | ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) || (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ? PD_CTL_HASH_FINAL : 0); pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen); pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0); wmb(); /* write any value to push engine to read a pd */ writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); return is_busy ? -EBUSY : -EINPROGRESS; } /* * Algorithm Registration Functions */ static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg, struct crypto4xx_ctx *ctx) { ctx->dev = amcc_alg->dev; ctx->sa_in = NULL; ctx->sa_out = NULL; ctx->sa_len = 0; } static int crypto4xx_sk_init(struct crypto_skcipher *sk) { struct skcipher_alg *alg = crypto_skcipher_alg(sk); struct crypto4xx_alg *amcc_alg; struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk); if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) { ctx->sw_cipher.cipher = crypto_alloc_sync_skcipher(alg->base.cra_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->sw_cipher.cipher)) return PTR_ERR(ctx->sw_cipher.cipher); } amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher); crypto4xx_ctx_init(amcc_alg, ctx); return 0; } static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx) { crypto4xx_free_sa(ctx); } static void crypto4xx_sk_exit(struct crypto_skcipher *sk) { struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk); crypto4xx_common_exit(ctx); if (ctx->sw_cipher.cipher) crypto_free_sync_skcipher(ctx->sw_cipher.cipher); } static int crypto4xx_aead_init(struct crypto_aead *tfm) { struct aead_alg *alg = crypto_aead_alg(tfm); struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm); struct crypto4xx_alg *amcc_alg; ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); if (IS_ERR(ctx->sw_cipher.aead)) return PTR_ERR(ctx->sw_cipher.aead); amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead); crypto4xx_ctx_init(amcc_alg, ctx); crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 + crypto_aead_reqsize(ctx->sw_cipher.aead), sizeof(struct crypto4xx_aead_reqctx))); return 0; } static void crypto4xx_aead_exit(struct crypto_aead *tfm) { struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm); crypto4xx_common_exit(ctx); crypto_free_aead(ctx->sw_cipher.aead); } static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev, struct crypto4xx_alg_common *crypto_alg, int array_size) { struct crypto4xx_alg *alg; int i; int rc = 0; for (i = 0; i < array_size; i++) { alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL); if (!alg) return -ENOMEM; alg->alg = crypto_alg[i]; alg->dev = sec_dev; switch (alg->alg.type) { case CRYPTO_ALG_TYPE_AEAD: rc = crypto_register_aead(&alg->alg.u.aead); break; case CRYPTO_ALG_TYPE_AHASH: rc = crypto_register_ahash(&alg->alg.u.hash); break; case CRYPTO_ALG_TYPE_RNG: rc = crypto_register_rng(&alg->alg.u.rng); break; default: rc = crypto_register_skcipher(&alg->alg.u.cipher); break; } if (rc) kfree(alg); else list_add_tail(&alg->entry, &sec_dev->alg_list); } return 0; } static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev) { struct crypto4xx_alg *alg, *tmp; list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) { list_del(&alg->entry); switch (alg->alg.type) { case CRYPTO_ALG_TYPE_AHASH: crypto_unregister_ahash(&alg->alg.u.hash); break; case CRYPTO_ALG_TYPE_AEAD: crypto_unregister_aead(&alg->alg.u.aead); break; case CRYPTO_ALG_TYPE_RNG: crypto_unregister_rng(&alg->alg.u.rng); break; default: crypto_unregister_skcipher(&alg->alg.u.cipher); } kfree(alg); } } static void crypto4xx_bh_tasklet_cb(unsigned long data) { struct device *dev = (struct device *)data; struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); struct pd_uinfo *pd_uinfo; struct ce_pd *pd; u32 tail = core_dev->dev->pdr_tail; u32 head = core_dev->dev->pdr_head; do { pd_uinfo = &core_dev->dev->pdr_uinfo[tail]; pd = &core_dev->dev->pdr[tail]; if ((pd_uinfo->state & PD_ENTRY_INUSE) && ((READ_ONCE(pd->pd_ctl.w) & (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) == PD_CTL_PE_DONE)) { crypto4xx_pd_done(core_dev->dev, tail); tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail); } else { /* if tail not done, break */ break; } } while (head != tail); } /* * Top Half of isr. */ static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data, u32 clr_val) { struct device *dev = (struct device *)data; struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR); tasklet_schedule(&core_dev->tasklet); return IRQ_HANDLED; } static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data) { return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR); } static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data) { return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR | PPC4XX_TMO_ERR_INT); } static int ppc4xx_prng_data_read(struct crypto4xx_device *dev, u8 *data, unsigned int max) { unsigned int i, curr = 0; u32 val[2]; do { /* trigger PRN generation */ writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL); for (i = 0; i < 1024; i++) { /* usually 19 iterations are enough */ if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) & CRYPTO4XX_PRNG_STAT_BUSY)) continue; val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0); val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1); break; } if (i == 1024) return -ETIMEDOUT; if ((max - curr) >= 8) { memcpy(data, &val, 8); data += 8; curr += 8; } else { /* copy only remaining bytes */ memcpy(data, &val, max - curr); break; } } while (curr < max); return curr; } static int crypto4xx_prng_generate(struct crypto_rng *tfm, const u8 *src, unsigned int slen, u8 *dstn, unsigned int dlen) { struct rng_alg *alg = crypto_rng_alg(tfm); struct crypto4xx_alg *amcc_alg; struct crypto4xx_device *dev; int ret; amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng); dev = amcc_alg->dev; mutex_lock(&dev->core_dev->rng_lock); ret = ppc4xx_prng_data_read(dev, dstn, dlen); mutex_unlock(&dev->core_dev->rng_lock); return ret; } static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed, unsigned int slen) { return 0; } /* * Supported Crypto Algorithms */ static struct crypto4xx_alg_common crypto4xx_alg[] = { /* Crypto AES modes */ { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_IV_SIZE, .setkey = crypto4xx_setkey_aes_cbc, .encrypt = crypto4xx_encrypt_iv_block, .decrypt = crypto4xx_decrypt_iv_block, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "cfb(aes)", .cra_driver_name = "cfb-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_IV_SIZE, .setkey = crypto4xx_setkey_aes_cfb, .encrypt = crypto4xx_encrypt_iv_stream, .decrypt = crypto4xx_decrypt_iv_stream, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "ctr(aes)", .cra_driver_name = "ctr-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_IV_SIZE, .setkey = crypto4xx_setkey_aes_ctr, .encrypt = crypto4xx_encrypt_ctr, .decrypt = crypto4xx_decrypt_ctr, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "rfc3686(ctr(aes))", .cra_driver_name = "rfc3686-ctr-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .ivsize = CTR_RFC3686_IV_SIZE, .setkey = crypto4xx_setkey_rfc3686, .encrypt = crypto4xx_rfc3686_encrypt, .decrypt = crypto4xx_rfc3686_decrypt, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = crypto4xx_setkey_aes_ecb, .encrypt = crypto4xx_encrypt_noiv_block, .decrypt = crypto4xx_decrypt_noiv_block, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { .base = { .cra_name = "ofb(aes)", .cra_driver_name = "ofb-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_IV_SIZE, .setkey = crypto4xx_setkey_aes_ofb, .encrypt = crypto4xx_encrypt_iv_stream, .decrypt = crypto4xx_decrypt_iv_stream, .init = crypto4xx_sk_init, .exit = crypto4xx_sk_exit, } }, /* AEAD */ { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = { .setkey = crypto4xx_setkey_aes_ccm, .setauthsize = crypto4xx_setauthsize_aead, .encrypt = crypto4xx_encrypt_aes_ccm, .decrypt = crypto4xx_decrypt_aes_ccm, .init = crypto4xx_aead_init, .exit = crypto4xx_aead_exit, .ivsize = AES_BLOCK_SIZE, .maxauthsize = 16, .base = { .cra_name = "ccm(aes)", .cra_driver_name = "ccm-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, } }, { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = { .setkey = crypto4xx_setkey_aes_gcm, .setauthsize = crypto4xx_setauthsize_aead, .encrypt = crypto4xx_encrypt_aes_gcm, .decrypt = crypto4xx_decrypt_aes_gcm, .init = crypto4xx_aead_init, .exit = crypto4xx_aead_exit, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = 16, .base = { .cra_name = "gcm(aes)", .cra_driver_name = "gcm-aes-ppc4xx", .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct crypto4xx_ctx), .cra_module = THIS_MODULE, }, } }, { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = { .base = { .cra_name = "stdrng", .cra_driver_name = "crypto4xx_rng", .cra_priority = 300, .cra_ctxsize = 0, .cra_module = THIS_MODULE, }, .generate = crypto4xx_prng_generate, .seed = crypto4xx_prng_seed, .seedsize = 0, } }, }; /* * Module Initialization Routine */ static int crypto4xx_probe(struct platform_device *ofdev) { int rc; struct resource res; struct device *dev = &ofdev->dev; struct crypto4xx_core_device *core_dev; u32 pvr; bool is_revb = true; rc = of_address_to_resource(ofdev->dev.of_node, 0, &res); if (rc) return -ENODEV; if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) { mtdcri(SDR0, PPC460EX_SDR0_SRST, mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET); mtdcri(SDR0, PPC460EX_SDR0_SRST, mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET); } else if (of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto")) { mtdcri(SDR0, PPC405EX_SDR0_SRST, mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET); mtdcri(SDR0, PPC405EX_SDR0_SRST, mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET); is_revb = false; } else if (of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto")) { mtdcri(SDR0, PPC460SX_SDR0_SRST, mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET); mtdcri(SDR0, PPC460SX_SDR0_SRST, mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET); } else { printk(KERN_ERR "Crypto Function Not supported!\n"); return -EINVAL; } core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL); if (!core_dev) return -ENOMEM; dev_set_drvdata(dev, core_dev); core_dev->ofdev = ofdev; core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL); rc = -ENOMEM; if (!core_dev->dev) goto err_alloc_dev; /* * Older version of 460EX/GT have a hardware bug. * Hence they do not support H/W based security intr coalescing */ pvr = mfspr(SPRN_PVR); if (is_revb && ((pvr >> 4) == 0x130218A)) { u32 min = PVR_MIN(pvr); if (min < 4) { dev_info(dev, "RevA detected - disable interrupt coalescing\n"); is_revb = false; } } core_dev->dev->core_dev = core_dev; core_dev->dev->is_revb = is_revb; core_dev->device = dev; mutex_init(&core_dev->rng_lock); spin_lock_init(&core_dev->lock); INIT_LIST_HEAD(&core_dev->dev->alg_list); ratelimit_default_init(&core_dev->dev->aead_ratelimit); rc = crypto4xx_build_sdr(core_dev->dev); if (rc) goto err_build_sdr; rc = crypto4xx_build_pdr(core_dev->dev); if (rc) goto err_build_sdr; rc = crypto4xx_build_gdr(core_dev->dev); if (rc) goto err_build_sdr; /* Init tasklet for bottom half processing */ tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb, (unsigned long) dev); core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0); if (!core_dev->dev->ce_base) { dev_err(dev, "failed to of_iomap\n"); rc = -ENOMEM; goto err_iomap; } /* Register for Crypto isr, Crypto Engine IRQ */ core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0); rc = request_irq(core_dev->irq, is_revb ? crypto4xx_ce_interrupt_handler_revb : crypto4xx_ce_interrupt_handler, 0, KBUILD_MODNAME, dev); if (rc) goto err_request_irq; /* need to setup pdr, rdr, gdr and sdr before this */ crypto4xx_hw_init(core_dev->dev); /* Register security algorithms with Linux CryptoAPI */ rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg, ARRAY_SIZE(crypto4xx_alg)); if (rc) goto err_start_dev; ppc4xx_trng_probe(core_dev); return 0; err_start_dev: free_irq(core_dev->irq, dev); err_request_irq: irq_dispose_mapping(core_dev->irq); iounmap(core_dev->dev->ce_base); err_iomap: tasklet_kill(&core_dev->tasklet); err_build_sdr: crypto4xx_destroy_sdr(core_dev->dev); crypto4xx_destroy_gdr(core_dev->dev); crypto4xx_destroy_pdr(core_dev->dev); kfree(core_dev->dev); err_alloc_dev: kfree(core_dev); return rc; } static int crypto4xx_remove(struct platform_device *ofdev) { struct device *dev = &ofdev->dev; struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); ppc4xx_trng_remove(core_dev); free_irq(core_dev->irq, dev); irq_dispose_mapping(core_dev->irq); tasklet_kill(&core_dev->tasklet); /* Un-register with Linux CryptoAPI */ crypto4xx_unregister_alg(core_dev->dev); mutex_destroy(&core_dev->rng_lock); /* Free all allocated memory */ crypto4xx_stop_all(core_dev); return 0; } static const struct of_device_id crypto4xx_match[] = { { .compatible = "amcc,ppc4xx-crypto",}, { }, }; MODULE_DEVICE_TABLE(of, crypto4xx_match); static struct platform_driver crypto4xx_driver = { .driver = { .name = KBUILD_MODNAME, .of_match_table = crypto4xx_match, }, .probe = crypto4xx_probe, .remove = crypto4xx_remove, }; module_platform_driver(crypto4xx_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>"); MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");