// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2020, The Linux Foundation. All rights reserved. */ #include #include #include "dp_reg.h" #include "dp_aux.h" enum msm_dp_aux_err { DP_AUX_ERR_NONE, DP_AUX_ERR_ADDR, DP_AUX_ERR_TOUT, DP_AUX_ERR_NACK, DP_AUX_ERR_DEFER, DP_AUX_ERR_NACK_DEFER, DP_AUX_ERR_PHY, }; struct dp_aux_private { struct device *dev; struct dp_catalog *catalog; struct mutex mutex; struct completion comp; enum msm_dp_aux_err aux_error_num; u32 retry_cnt; bool cmd_busy; bool native; bool read; bool no_send_addr; bool no_send_stop; bool initted; u32 offset; u32 segment; struct drm_dp_aux dp_aux; }; #define MAX_AUX_RETRIES 5 static ssize_t dp_aux_write(struct dp_aux_private *aux, struct drm_dp_aux_msg *msg) { u8 data[4]; u32 reg; ssize_t len; u8 *msgdata = msg->buffer; int const AUX_CMD_FIFO_LEN = 128; int i = 0; if (aux->read) len = 0; else len = msg->size; /* * cmd fifo only has depth of 144 bytes * limit buf length to 128 bytes here */ if (len > AUX_CMD_FIFO_LEN - 4) { DRM_ERROR("buf size greater than allowed size of 128 bytes\n"); return -EINVAL; } /* Pack cmd and write to HW */ data[0] = (msg->address >> 16) & 0xf; /* addr[19:16] */ if (aux->read) data[0] |= BIT(4); /* R/W */ data[1] = msg->address >> 8; /* addr[15:8] */ data[2] = msg->address; /* addr[7:0] */ data[3] = msg->size - 1; /* len[7:0] */ for (i = 0; i < len + 4; i++) { reg = (i < 4) ? data[i] : msgdata[i - 4]; reg <<= DP_AUX_DATA_OFFSET; reg &= DP_AUX_DATA_MASK; reg |= DP_AUX_DATA_WRITE; /* index = 0, write */ if (i == 0) reg |= DP_AUX_DATA_INDEX_WRITE; aux->catalog->aux_data = reg; dp_catalog_aux_write_data(aux->catalog); } dp_catalog_aux_clear_trans(aux->catalog, false); dp_catalog_aux_clear_hw_interrupts(aux->catalog); reg = 0; /* Transaction number == 1 */ if (!aux->native) { /* i2c */ reg |= DP_AUX_TRANS_CTRL_I2C; if (aux->no_send_addr) reg |= DP_AUX_TRANS_CTRL_NO_SEND_ADDR; if (aux->no_send_stop) reg |= DP_AUX_TRANS_CTRL_NO_SEND_STOP; } reg |= DP_AUX_TRANS_CTRL_GO; aux->catalog->aux_data = reg; dp_catalog_aux_write_trans(aux->catalog); return len; } static ssize_t dp_aux_cmd_fifo_tx(struct dp_aux_private *aux, struct drm_dp_aux_msg *msg) { ssize_t ret; unsigned long time_left; reinit_completion(&aux->comp); ret = dp_aux_write(aux, msg); if (ret < 0) return ret; time_left = wait_for_completion_timeout(&aux->comp, msecs_to_jiffies(250)); if (!time_left) return -ETIMEDOUT; return ret; } static ssize_t dp_aux_cmd_fifo_rx(struct dp_aux_private *aux, struct drm_dp_aux_msg *msg) { u32 data; u8 *dp; u32 i, actual_i; u32 len = msg->size; dp_catalog_aux_clear_trans(aux->catalog, true); data = DP_AUX_DATA_INDEX_WRITE; /* INDEX_WRITE */ data |= DP_AUX_DATA_READ; /* read */ aux->catalog->aux_data = data; dp_catalog_aux_write_data(aux->catalog); dp = msg->buffer; /* discard first byte */ data = dp_catalog_aux_read_data(aux->catalog); for (i = 0; i < len; i++) { data = dp_catalog_aux_read_data(aux->catalog); *dp++ = (u8)((data >> DP_AUX_DATA_OFFSET) & 0xff); actual_i = (data >> DP_AUX_DATA_INDEX_OFFSET) & 0xFF; if (i != actual_i) break; } return i; } static void dp_aux_native_handler(struct dp_aux_private *aux, u32 isr) { if (isr & DP_INTR_AUX_I2C_DONE) aux->aux_error_num = DP_AUX_ERR_NONE; else if (isr & DP_INTR_WRONG_ADDR) aux->aux_error_num = DP_AUX_ERR_ADDR; else if (isr & DP_INTR_TIMEOUT) aux->aux_error_num = DP_AUX_ERR_TOUT; if (isr & DP_INTR_NACK_DEFER) aux->aux_error_num = DP_AUX_ERR_NACK; if (isr & DP_INTR_AUX_ERROR) { aux->aux_error_num = DP_AUX_ERR_PHY; dp_catalog_aux_clear_hw_interrupts(aux->catalog); } } static void dp_aux_i2c_handler(struct dp_aux_private *aux, u32 isr) { if (isr & DP_INTR_AUX_I2C_DONE) { if (isr & (DP_INTR_I2C_NACK | DP_INTR_I2C_DEFER)) aux->aux_error_num = DP_AUX_ERR_NACK; else aux->aux_error_num = DP_AUX_ERR_NONE; } else { if (isr & DP_INTR_WRONG_ADDR) aux->aux_error_num = DP_AUX_ERR_ADDR; else if (isr & DP_INTR_TIMEOUT) aux->aux_error_num = DP_AUX_ERR_TOUT; if (isr & DP_INTR_NACK_DEFER) aux->aux_error_num = DP_AUX_ERR_NACK_DEFER; if (isr & DP_INTR_I2C_NACK) aux->aux_error_num = DP_AUX_ERR_NACK; if (isr & DP_INTR_I2C_DEFER) aux->aux_error_num = DP_AUX_ERR_DEFER; if (isr & DP_INTR_AUX_ERROR) { aux->aux_error_num = DP_AUX_ERR_PHY; dp_catalog_aux_clear_hw_interrupts(aux->catalog); } } } static void dp_aux_update_offset_and_segment(struct dp_aux_private *aux, struct drm_dp_aux_msg *input_msg) { u32 edid_address = 0x50; u32 segment_address = 0x30; bool i2c_read = input_msg->request & (DP_AUX_I2C_READ & DP_AUX_NATIVE_READ); u8 *data; if (aux->native || i2c_read || ((input_msg->address != edid_address) && (input_msg->address != segment_address))) return; data = input_msg->buffer; if (input_msg->address == segment_address) aux->segment = *data; else aux->offset = *data; } /** * dp_aux_transfer_helper() - helper function for EDID read transactions * * @aux: DP AUX private structure * @input_msg: input message from DRM upstream APIs * @send_seg: send the segment to sink * * return: void * * This helper function is used to fix EDID reads for non-compliant * sinks that do not handle the i2c middle-of-transaction flag correctly. */ static void dp_aux_transfer_helper(struct dp_aux_private *aux, struct drm_dp_aux_msg *input_msg, bool send_seg) { struct drm_dp_aux_msg helper_msg; u32 message_size = 0x10; u32 segment_address = 0x30; u32 const edid_block_length = 0x80; bool i2c_mot = input_msg->request & DP_AUX_I2C_MOT; bool i2c_read = input_msg->request & (DP_AUX_I2C_READ & DP_AUX_NATIVE_READ); if (!i2c_mot || !i2c_read || (input_msg->size == 0)) return; /* * Sending the segment value and EDID offset will be performed * from the DRM upstream EDID driver for each block. Avoid * duplicate AUX transactions related to this while reading the * first 16 bytes of each block. */ if (!(aux->offset % edid_block_length) || !send_seg) goto end; aux->read = false; aux->cmd_busy = true; aux->no_send_addr = true; aux->no_send_stop = true; /* * Send the segment address for every i2c read in which the * middle-of-tranaction flag is set. This is required to support EDID * reads of more than 2 blocks as the segment address is reset to 0 * since we are overriding the middle-of-transaction flag for read * transactions. */ if (aux->segment) { memset(&helper_msg, 0, sizeof(helper_msg)); helper_msg.address = segment_address; helper_msg.buffer = &aux->segment; helper_msg.size = 1; dp_aux_cmd_fifo_tx(aux, &helper_msg); } /* * Send the offset address for every i2c read in which the * middle-of-transaction flag is set. This will ensure that the sink * will update its read pointer and return the correct portion of the * EDID buffer in the subsequent i2c read trasntion triggered in the * native AUX transfer function. */ memset(&helper_msg, 0, sizeof(helper_msg)); helper_msg.address = input_msg->address; helper_msg.buffer = &aux->offset; helper_msg.size = 1; dp_aux_cmd_fifo_tx(aux, &helper_msg); end: aux->offset += message_size; if (aux->offset == 0x80 || aux->offset == 0x100) aux->segment = 0x0; /* reset segment at end of block */ } /* * This function does the real job to process an AUX transaction. * It will call aux_reset() function to reset the AUX channel, * if the waiting is timeout. */ static ssize_t dp_aux_transfer(struct drm_dp_aux *dp_aux, struct drm_dp_aux_msg *msg) { ssize_t ret; int const aux_cmd_native_max = 16; int const aux_cmd_i2c_max = 128; struct dp_aux_private *aux; aux = container_of(dp_aux, struct dp_aux_private, dp_aux); aux->native = msg->request & (DP_AUX_NATIVE_WRITE & DP_AUX_NATIVE_READ); /* Ignore address only message */ if (msg->size == 0 || !msg->buffer) { msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_ACK : DP_AUX_I2C_REPLY_ACK; return msg->size; } /* msg sanity check */ if ((aux->native && msg->size > aux_cmd_native_max) || msg->size > aux_cmd_i2c_max) { DRM_ERROR("%s: invalid msg: size(%zu), request(%x)\n", __func__, msg->size, msg->request); return -EINVAL; } mutex_lock(&aux->mutex); if (!aux->initted) { ret = -EIO; goto exit; } dp_aux_update_offset_and_segment(aux, msg); dp_aux_transfer_helper(aux, msg, true); aux->read = msg->request & (DP_AUX_I2C_READ & DP_AUX_NATIVE_READ); aux->cmd_busy = true; if (aux->read) { aux->no_send_addr = true; aux->no_send_stop = false; } else { aux->no_send_addr = true; aux->no_send_stop = true; } ret = dp_aux_cmd_fifo_tx(aux, msg); if (ret < 0) { if (aux->native) { aux->retry_cnt++; if (!(aux->retry_cnt % MAX_AUX_RETRIES)) dp_catalog_aux_update_cfg(aux->catalog); } /* reset aux if link is in connected state */ if (dp_catalog_link_is_connected(aux->catalog)) dp_catalog_aux_reset(aux->catalog); } else { aux->retry_cnt = 0; switch (aux->aux_error_num) { case DP_AUX_ERR_NONE: if (aux->read) ret = dp_aux_cmd_fifo_rx(aux, msg); msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_ACK : DP_AUX_I2C_REPLY_ACK; break; case DP_AUX_ERR_DEFER: msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_DEFER : DP_AUX_I2C_REPLY_DEFER; break; case DP_AUX_ERR_PHY: case DP_AUX_ERR_ADDR: case DP_AUX_ERR_NACK: case DP_AUX_ERR_NACK_DEFER: msg->reply = aux->native ? DP_AUX_NATIVE_REPLY_NACK : DP_AUX_I2C_REPLY_NACK; break; case DP_AUX_ERR_TOUT: ret = -ETIMEDOUT; break; } } aux->cmd_busy = false; exit: mutex_unlock(&aux->mutex); return ret; } void dp_aux_isr(struct drm_dp_aux *dp_aux) { u32 isr; struct dp_aux_private *aux; if (!dp_aux) { DRM_ERROR("invalid input\n"); return; } aux = container_of(dp_aux, struct dp_aux_private, dp_aux); isr = dp_catalog_aux_get_irq(aux->catalog); /* no interrupts pending, return immediately */ if (!isr) return; if (!aux->cmd_busy) return; if (aux->native) dp_aux_native_handler(aux, isr); else dp_aux_i2c_handler(aux, isr); complete(&aux->comp); } void dp_aux_reconfig(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; aux = container_of(dp_aux, struct dp_aux_private, dp_aux); dp_catalog_aux_update_cfg(aux->catalog); dp_catalog_aux_reset(aux->catalog); } void dp_aux_init(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; if (!dp_aux) { DRM_ERROR("invalid input\n"); return; } aux = container_of(dp_aux, struct dp_aux_private, dp_aux); mutex_lock(&aux->mutex); dp_catalog_aux_enable(aux->catalog, true); aux->retry_cnt = 0; aux->initted = true; mutex_unlock(&aux->mutex); } void dp_aux_deinit(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; aux = container_of(dp_aux, struct dp_aux_private, dp_aux); mutex_lock(&aux->mutex); aux->initted = false; dp_catalog_aux_enable(aux->catalog, false); mutex_unlock(&aux->mutex); } int dp_aux_register(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; int ret; if (!dp_aux) { DRM_ERROR("invalid input\n"); return -EINVAL; } aux = container_of(dp_aux, struct dp_aux_private, dp_aux); aux->dp_aux.name = "dpu_dp_aux"; aux->dp_aux.dev = aux->dev; aux->dp_aux.transfer = dp_aux_transfer; ret = drm_dp_aux_register(&aux->dp_aux); if (ret) { DRM_ERROR("%s: failed to register drm aux: %d\n", __func__, ret); return ret; } return 0; } void dp_aux_unregister(struct drm_dp_aux *dp_aux) { drm_dp_aux_unregister(dp_aux); } struct drm_dp_aux *dp_aux_get(struct device *dev, struct dp_catalog *catalog) { struct dp_aux_private *aux; if (!catalog) { DRM_ERROR("invalid input\n"); return ERR_PTR(-ENODEV); } aux = devm_kzalloc(dev, sizeof(*aux), GFP_KERNEL); if (!aux) return ERR_PTR(-ENOMEM); init_completion(&aux->comp); aux->cmd_busy = false; mutex_init(&aux->mutex); aux->dev = dev; aux->catalog = catalog; aux->retry_cnt = 0; return &aux->dp_aux; } void dp_aux_put(struct drm_dp_aux *dp_aux) { struct dp_aux_private *aux; if (!dp_aux) return; aux = container_of(dp_aux, struct dp_aux_private, dp_aux); mutex_destroy(&aux->mutex); devm_kfree(aux->dev, aux); }