// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause /* Authors: Bernard Metzler */ /* Copyright (c) 2008-2019, IBM Corporation */ #include #include #include #include #include #include #include #include #include #include "siw.h" #include "siw_verbs.h" #include "siw_mem.h" static int ib_qp_state_to_siw_qp_state[IB_QPS_ERR + 1] = { [IB_QPS_RESET] = SIW_QP_STATE_IDLE, [IB_QPS_INIT] = SIW_QP_STATE_IDLE, [IB_QPS_RTR] = SIW_QP_STATE_RTR, [IB_QPS_RTS] = SIW_QP_STATE_RTS, [IB_QPS_SQD] = SIW_QP_STATE_CLOSING, [IB_QPS_SQE] = SIW_QP_STATE_TERMINATE, [IB_QPS_ERR] = SIW_QP_STATE_ERROR }; static char ib_qp_state_to_string[IB_QPS_ERR + 1][sizeof("RESET")] = { [IB_QPS_RESET] = "RESET", [IB_QPS_INIT] = "INIT", [IB_QPS_RTR] = "RTR", [IB_QPS_RTS] = "RTS", [IB_QPS_SQD] = "SQD", [IB_QPS_SQE] = "SQE", [IB_QPS_ERR] = "ERR" }; void siw_mmap_free(struct rdma_user_mmap_entry *rdma_entry) { struct siw_user_mmap_entry *entry = to_siw_mmap_entry(rdma_entry); kfree(entry); } int siw_mmap(struct ib_ucontext *ctx, struct vm_area_struct *vma) { struct siw_ucontext *uctx = to_siw_ctx(ctx); size_t size = vma->vm_end - vma->vm_start; struct rdma_user_mmap_entry *rdma_entry; struct siw_user_mmap_entry *entry; int rv = -EINVAL; /* * Must be page aligned */ if (vma->vm_start & (PAGE_SIZE - 1)) { pr_warn("siw: mmap not page aligned\n"); return -EINVAL; } rdma_entry = rdma_user_mmap_entry_get(&uctx->base_ucontext, vma); if (!rdma_entry) { siw_dbg(&uctx->sdev->base_dev, "mmap lookup failed: %lu, %#zx\n", vma->vm_pgoff, size); return -EINVAL; } entry = to_siw_mmap_entry(rdma_entry); rv = remap_vmalloc_range(vma, entry->address, 0); if (rv) { pr_warn("remap_vmalloc_range failed: %lu, %zu\n", vma->vm_pgoff, size); goto out; } out: rdma_user_mmap_entry_put(rdma_entry); return rv; } int siw_alloc_ucontext(struct ib_ucontext *base_ctx, struct ib_udata *udata) { struct siw_device *sdev = to_siw_dev(base_ctx->device); struct siw_ucontext *ctx = to_siw_ctx(base_ctx); struct siw_uresp_alloc_ctx uresp = {}; int rv; if (atomic_inc_return(&sdev->num_ctx) > SIW_MAX_CONTEXT) { rv = -ENOMEM; goto err_out; } ctx->sdev = sdev; uresp.dev_id = sdev->vendor_part_id; if (udata->outlen < sizeof(uresp)) { rv = -EINVAL; goto err_out; } rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); if (rv) goto err_out; siw_dbg(base_ctx->device, "success. now %d context(s)\n", atomic_read(&sdev->num_ctx)); return 0; err_out: atomic_dec(&sdev->num_ctx); siw_dbg(base_ctx->device, "failure %d. now %d context(s)\n", rv, atomic_read(&sdev->num_ctx)); return rv; } void siw_dealloc_ucontext(struct ib_ucontext *base_ctx) { struct siw_ucontext *uctx = to_siw_ctx(base_ctx); atomic_dec(&uctx->sdev->num_ctx); } int siw_query_device(struct ib_device *base_dev, struct ib_device_attr *attr, struct ib_udata *udata) { struct siw_device *sdev = to_siw_dev(base_dev); if (udata->inlen || udata->outlen) return -EINVAL; memset(attr, 0, sizeof(*attr)); /* Revisit atomic caps if RFC 7306 gets supported */ attr->atomic_cap = 0; attr->device_cap_flags = IB_DEVICE_MEM_MGT_EXTENSIONS | IB_DEVICE_ALLOW_USER_UNREG; attr->max_cq = sdev->attrs.max_cq; attr->max_cqe = sdev->attrs.max_cqe; attr->max_fast_reg_page_list_len = SIW_MAX_SGE_PBL; attr->max_mr = sdev->attrs.max_mr; attr->max_mw = sdev->attrs.max_mw; attr->max_mr_size = ~0ull; attr->max_pd = sdev->attrs.max_pd; attr->max_qp = sdev->attrs.max_qp; attr->max_qp_init_rd_atom = sdev->attrs.max_ird; attr->max_qp_rd_atom = sdev->attrs.max_ord; attr->max_qp_wr = sdev->attrs.max_qp_wr; attr->max_recv_sge = sdev->attrs.max_sge; attr->max_res_rd_atom = sdev->attrs.max_qp * sdev->attrs.max_ird; attr->max_send_sge = sdev->attrs.max_sge; attr->max_sge_rd = sdev->attrs.max_sge_rd; attr->max_srq = sdev->attrs.max_srq; attr->max_srq_sge = sdev->attrs.max_srq_sge; attr->max_srq_wr = sdev->attrs.max_srq_wr; attr->page_size_cap = PAGE_SIZE; attr->vendor_id = SIW_VENDOR_ID; attr->vendor_part_id = sdev->vendor_part_id; memcpy(&attr->sys_image_guid, sdev->netdev->dev_addr, 6); return 0; } int siw_query_port(struct ib_device *base_dev, u32 port, struct ib_port_attr *attr) { struct siw_device *sdev = to_siw_dev(base_dev); int rv; memset(attr, 0, sizeof(*attr)); rv = ib_get_eth_speed(base_dev, port, &attr->active_speed, &attr->active_width); attr->gid_tbl_len = 1; attr->max_msg_sz = -1; attr->max_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu); attr->active_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu); attr->phys_state = sdev->state == IB_PORT_ACTIVE ? IB_PORT_PHYS_STATE_LINK_UP : IB_PORT_PHYS_STATE_DISABLED; attr->port_cap_flags = IB_PORT_CM_SUP | IB_PORT_DEVICE_MGMT_SUP; attr->state = sdev->state; /* * All zero * * attr->lid = 0; * attr->bad_pkey_cntr = 0; * attr->qkey_viol_cntr = 0; * attr->sm_lid = 0; * attr->lmc = 0; * attr->max_vl_num = 0; * attr->sm_sl = 0; * attr->subnet_timeout = 0; * attr->init_type_repy = 0; */ return rv; } int siw_get_port_immutable(struct ib_device *base_dev, u32 port, struct ib_port_immutable *port_immutable) { struct ib_port_attr attr; int rv = siw_query_port(base_dev, port, &attr); if (rv) return rv; port_immutable->gid_tbl_len = attr.gid_tbl_len; port_immutable->core_cap_flags = RDMA_CORE_PORT_IWARP; return 0; } int siw_query_gid(struct ib_device *base_dev, u32 port, int idx, union ib_gid *gid) { struct siw_device *sdev = to_siw_dev(base_dev); /* subnet_prefix == interface_id == 0; */ memset(gid, 0, sizeof(*gid)); memcpy(&gid->raw[0], sdev->netdev->dev_addr, 6); return 0; } int siw_alloc_pd(struct ib_pd *pd, struct ib_udata *udata) { struct siw_device *sdev = to_siw_dev(pd->device); if (atomic_inc_return(&sdev->num_pd) > SIW_MAX_PD) { atomic_dec(&sdev->num_pd); return -ENOMEM; } siw_dbg_pd(pd, "now %d PD's(s)\n", atomic_read(&sdev->num_pd)); return 0; } int siw_dealloc_pd(struct ib_pd *pd, struct ib_udata *udata) { struct siw_device *sdev = to_siw_dev(pd->device); siw_dbg_pd(pd, "free PD\n"); atomic_dec(&sdev->num_pd); return 0; } void siw_qp_get_ref(struct ib_qp *base_qp) { siw_qp_get(to_siw_qp(base_qp)); } void siw_qp_put_ref(struct ib_qp *base_qp) { siw_qp_put(to_siw_qp(base_qp)); } static struct rdma_user_mmap_entry * siw_mmap_entry_insert(struct siw_ucontext *uctx, void *address, size_t length, u64 *offset) { struct siw_user_mmap_entry *entry = kzalloc(sizeof(*entry), GFP_KERNEL); int rv; *offset = SIW_INVAL_UOBJ_KEY; if (!entry) return NULL; entry->address = address; rv = rdma_user_mmap_entry_insert(&uctx->base_ucontext, &entry->rdma_entry, length); if (rv) { kfree(entry); return NULL; } *offset = rdma_user_mmap_get_offset(&entry->rdma_entry); return &entry->rdma_entry; } /* * siw_create_qp() * * Create QP of requested size on given device. * * @qp: Queue pait * @attrs: Initial QP attributes. * @udata: used to provide QP ID, SQ and RQ size back to user. */ int siw_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *attrs, struct ib_udata *udata) { struct ib_pd *pd = ibqp->pd; struct siw_qp *qp = to_siw_qp(ibqp); struct ib_device *base_dev = pd->device; struct siw_device *sdev = to_siw_dev(base_dev); struct siw_ucontext *uctx = rdma_udata_to_drv_context(udata, struct siw_ucontext, base_ucontext); unsigned long flags; int num_sqe, num_rqe, rv = 0; size_t length; siw_dbg(base_dev, "create new QP\n"); if (attrs->create_flags) return -EOPNOTSUPP; if (atomic_inc_return(&sdev->num_qp) > SIW_MAX_QP) { siw_dbg(base_dev, "too many QP's\n"); rv = -ENOMEM; goto err_atomic; } if (attrs->qp_type != IB_QPT_RC) { siw_dbg(base_dev, "only RC QP's supported\n"); rv = -EOPNOTSUPP; goto err_atomic; } if ((attrs->cap.max_send_wr > SIW_MAX_QP_WR) || (attrs->cap.max_recv_wr > SIW_MAX_QP_WR) || (attrs->cap.max_send_sge > SIW_MAX_SGE) || (attrs->cap.max_recv_sge > SIW_MAX_SGE)) { siw_dbg(base_dev, "QP size error\n"); rv = -EINVAL; goto err_atomic; } if (attrs->cap.max_inline_data > SIW_MAX_INLINE) { siw_dbg(base_dev, "max inline send: %d > %d\n", attrs->cap.max_inline_data, (int)SIW_MAX_INLINE); rv = -EINVAL; goto err_atomic; } /* * NOTE: we allow for zero element SQ and RQ WQE's SGL's * but not for a QP unable to hold any WQE (SQ + RQ) */ if (attrs->cap.max_send_wr + attrs->cap.max_recv_wr == 0) { siw_dbg(base_dev, "QP must have send or receive queue\n"); rv = -EINVAL; goto err_atomic; } if (!attrs->send_cq || (!attrs->recv_cq && !attrs->srq)) { siw_dbg(base_dev, "send CQ or receive CQ invalid\n"); rv = -EINVAL; goto err_atomic; } init_rwsem(&qp->state_lock); spin_lock_init(&qp->sq_lock); spin_lock_init(&qp->rq_lock); spin_lock_init(&qp->orq_lock); rv = siw_qp_add(sdev, qp); if (rv) goto err_atomic; num_sqe = attrs->cap.max_send_wr; num_rqe = attrs->cap.max_recv_wr; /* All queue indices are derived from modulo operations * on a free running 'get' (consumer) and 'put' (producer) * unsigned counter. Having queue sizes at power of two * avoids handling counter wrap around. */ if (num_sqe) num_sqe = roundup_pow_of_two(num_sqe); else { /* Zero sized SQ is not supported */ rv = -EINVAL; goto err_out_xa; } if (num_rqe) num_rqe = roundup_pow_of_two(num_rqe); if (udata) qp->sendq = vmalloc_user(num_sqe * sizeof(struct siw_sqe)); else qp->sendq = vzalloc(num_sqe * sizeof(struct siw_sqe)); if (qp->sendq == NULL) { rv = -ENOMEM; goto err_out_xa; } if (attrs->sq_sig_type != IB_SIGNAL_REQ_WR) { if (attrs->sq_sig_type == IB_SIGNAL_ALL_WR) qp->attrs.flags |= SIW_SIGNAL_ALL_WR; else { rv = -EINVAL; goto err_out_xa; } } qp->pd = pd; qp->scq = to_siw_cq(attrs->send_cq); qp->rcq = to_siw_cq(attrs->recv_cq); if (attrs->srq) { /* * SRQ support. * Verbs 6.3.7: ignore RQ size, if SRQ present * Verbs 6.3.5: do not check PD of SRQ against PD of QP */ qp->srq = to_siw_srq(attrs->srq); qp->attrs.rq_size = 0; siw_dbg(base_dev, "QP [%u]: SRQ attached\n", qp->base_qp.qp_num); } else if (num_rqe) { if (udata) qp->recvq = vmalloc_user(num_rqe * sizeof(struct siw_rqe)); else qp->recvq = vzalloc(num_rqe * sizeof(struct siw_rqe)); if (qp->recvq == NULL) { rv = -ENOMEM; goto err_out_xa; } qp->attrs.rq_size = num_rqe; } qp->attrs.sq_size = num_sqe; qp->attrs.sq_max_sges = attrs->cap.max_send_sge; qp->attrs.rq_max_sges = attrs->cap.max_recv_sge; /* Make those two tunables fixed for now. */ qp->tx_ctx.gso_seg_limit = 1; qp->tx_ctx.zcopy_tx = zcopy_tx; qp->attrs.state = SIW_QP_STATE_IDLE; if (udata) { struct siw_uresp_create_qp uresp = {}; uresp.num_sqe = num_sqe; uresp.num_rqe = num_rqe; uresp.qp_id = qp_id(qp); if (qp->sendq) { length = num_sqe * sizeof(struct siw_sqe); qp->sq_entry = siw_mmap_entry_insert(uctx, qp->sendq, length, &uresp.sq_key); if (!qp->sq_entry) { rv = -ENOMEM; goto err_out_xa; } } if (qp->recvq) { length = num_rqe * sizeof(struct siw_rqe); qp->rq_entry = siw_mmap_entry_insert(uctx, qp->recvq, length, &uresp.rq_key); if (!qp->rq_entry) { uresp.sq_key = SIW_INVAL_UOBJ_KEY; rv = -ENOMEM; goto err_out_xa; } } if (udata->outlen < sizeof(uresp)) { rv = -EINVAL; goto err_out_xa; } rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); if (rv) goto err_out_xa; } qp->tx_cpu = siw_get_tx_cpu(sdev); if (qp->tx_cpu < 0) { rv = -EINVAL; goto err_out_xa; } INIT_LIST_HEAD(&qp->devq); spin_lock_irqsave(&sdev->lock, flags); list_add_tail(&qp->devq, &sdev->qp_list); spin_unlock_irqrestore(&sdev->lock, flags); init_completion(&qp->qp_free); return 0; err_out_xa: xa_erase(&sdev->qp_xa, qp_id(qp)); if (uctx) { rdma_user_mmap_entry_remove(qp->sq_entry); rdma_user_mmap_entry_remove(qp->rq_entry); } vfree(qp->sendq); vfree(qp->recvq); err_atomic: atomic_dec(&sdev->num_qp); return rv; } /* * Minimum siw_query_qp() verb interface. * * @qp_attr_mask is not used but all available information is provided */ int siw_query_qp(struct ib_qp *base_qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr) { struct siw_qp *qp; struct siw_device *sdev; if (base_qp && qp_attr && qp_init_attr) { qp = to_siw_qp(base_qp); sdev = to_siw_dev(base_qp->device); } else { return -EINVAL; } qp_attr->cap.max_inline_data = SIW_MAX_INLINE; qp_attr->cap.max_send_wr = qp->attrs.sq_size; qp_attr->cap.max_send_sge = qp->attrs.sq_max_sges; qp_attr->cap.max_recv_wr = qp->attrs.rq_size; qp_attr->cap.max_recv_sge = qp->attrs.rq_max_sges; qp_attr->path_mtu = ib_mtu_int_to_enum(sdev->netdev->mtu); qp_attr->max_rd_atomic = qp->attrs.irq_size; qp_attr->max_dest_rd_atomic = qp->attrs.orq_size; qp_attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ; qp_init_attr->qp_type = base_qp->qp_type; qp_init_attr->send_cq = base_qp->send_cq; qp_init_attr->recv_cq = base_qp->recv_cq; qp_init_attr->srq = base_qp->srq; qp_init_attr->cap = qp_attr->cap; return 0; } int siw_verbs_modify_qp(struct ib_qp *base_qp, struct ib_qp_attr *attr, int attr_mask, struct ib_udata *udata) { struct siw_qp_attrs new_attrs; enum siw_qp_attr_mask siw_attr_mask = 0; struct siw_qp *qp = to_siw_qp(base_qp); int rv = 0; if (!attr_mask) return 0; if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS) return -EOPNOTSUPP; memset(&new_attrs, 0, sizeof(new_attrs)); if (attr_mask & IB_QP_ACCESS_FLAGS) { siw_attr_mask = SIW_QP_ATTR_ACCESS_FLAGS; if (attr->qp_access_flags & IB_ACCESS_REMOTE_READ) new_attrs.flags |= SIW_RDMA_READ_ENABLED; if (attr->qp_access_flags & IB_ACCESS_REMOTE_WRITE) new_attrs.flags |= SIW_RDMA_WRITE_ENABLED; if (attr->qp_access_flags & IB_ACCESS_MW_BIND) new_attrs.flags |= SIW_RDMA_BIND_ENABLED; } if (attr_mask & IB_QP_STATE) { siw_dbg_qp(qp, "desired IB QP state: %s\n", ib_qp_state_to_string[attr->qp_state]); new_attrs.state = ib_qp_state_to_siw_qp_state[attr->qp_state]; if (new_attrs.state > SIW_QP_STATE_RTS) qp->tx_ctx.tx_suspend = 1; siw_attr_mask |= SIW_QP_ATTR_STATE; } if (!siw_attr_mask) goto out; down_write(&qp->state_lock); rv = siw_qp_modify(qp, &new_attrs, siw_attr_mask); up_write(&qp->state_lock); out: return rv; } int siw_destroy_qp(struct ib_qp *base_qp, struct ib_udata *udata) { struct siw_qp *qp = to_siw_qp(base_qp); struct siw_ucontext *uctx = rdma_udata_to_drv_context(udata, struct siw_ucontext, base_ucontext); struct siw_qp_attrs qp_attrs; siw_dbg_qp(qp, "state %d\n", qp->attrs.state); /* * Mark QP as in process of destruction to prevent from * any async callbacks to RDMA core */ qp->attrs.flags |= SIW_QP_IN_DESTROY; qp->rx_stream.rx_suspend = 1; if (uctx) { rdma_user_mmap_entry_remove(qp->sq_entry); rdma_user_mmap_entry_remove(qp->rq_entry); } down_write(&qp->state_lock); qp_attrs.state = SIW_QP_STATE_ERROR; siw_qp_modify(qp, &qp_attrs, SIW_QP_ATTR_STATE); if (qp->cep) { siw_cep_put(qp->cep); qp->cep = NULL; } up_write(&qp->state_lock); kfree(qp->tx_ctx.mpa_crc_hd); kfree(qp->rx_stream.mpa_crc_hd); qp->scq = qp->rcq = NULL; siw_qp_put(qp); wait_for_completion(&qp->qp_free); return 0; } /* * siw_copy_inline_sgl() * * Prepare sgl of inlined data for sending. For userland callers * function checks if given buffer addresses and len's are within * process context bounds. * Data from all provided sge's are copied together into the wqe, * referenced by a single sge. */ static int siw_copy_inline_sgl(const struct ib_send_wr *core_wr, struct siw_sqe *sqe) { struct ib_sge *core_sge = core_wr->sg_list; void *kbuf = &sqe->sge[1]; int num_sge = core_wr->num_sge, bytes = 0; sqe->sge[0].laddr = (uintptr_t)kbuf; sqe->sge[0].lkey = 0; while (num_sge--) { if (!core_sge->length) { core_sge++; continue; } bytes += core_sge->length; if (bytes > SIW_MAX_INLINE) { bytes = -EINVAL; break; } memcpy(kbuf, (void *)(uintptr_t)core_sge->addr, core_sge->length); kbuf += core_sge->length; core_sge++; } sqe->sge[0].length = bytes > 0 ? bytes : 0; sqe->num_sge = bytes > 0 ? 1 : 0; return bytes; } /* Complete SQ WR's without processing */ static int siw_sq_flush_wr(struct siw_qp *qp, const struct ib_send_wr *wr, const struct ib_send_wr **bad_wr) { int rv = 0; while (wr) { struct siw_sqe sqe = {}; switch (wr->opcode) { case IB_WR_RDMA_WRITE: sqe.opcode = SIW_OP_WRITE; break; case IB_WR_RDMA_READ: sqe.opcode = SIW_OP_READ; break; case IB_WR_RDMA_READ_WITH_INV: sqe.opcode = SIW_OP_READ_LOCAL_INV; break; case IB_WR_SEND: sqe.opcode = SIW_OP_SEND; break; case IB_WR_SEND_WITH_IMM: sqe.opcode = SIW_OP_SEND_WITH_IMM; break; case IB_WR_SEND_WITH_INV: sqe.opcode = SIW_OP_SEND_REMOTE_INV; break; case IB_WR_LOCAL_INV: sqe.opcode = SIW_OP_INVAL_STAG; break; case IB_WR_REG_MR: sqe.opcode = SIW_OP_REG_MR; break; default: rv = -EINVAL; break; } if (!rv) { sqe.id = wr->wr_id; rv = siw_sqe_complete(qp, &sqe, 0, SIW_WC_WR_FLUSH_ERR); } if (rv) { if (bad_wr) *bad_wr = wr; break; } wr = wr->next; } return rv; } /* Complete RQ WR's without processing */ static int siw_rq_flush_wr(struct siw_qp *qp, const struct ib_recv_wr *wr, const struct ib_recv_wr **bad_wr) { struct siw_rqe rqe = {}; int rv = 0; while (wr) { rqe.id = wr->wr_id; rv = siw_rqe_complete(qp, &rqe, 0, 0, SIW_WC_WR_FLUSH_ERR); if (rv) { if (bad_wr) *bad_wr = wr; break; } wr = wr->next; } return rv; } /* * siw_post_send() * * Post a list of S-WR's to a SQ. * * @base_qp: Base QP contained in siw QP * @wr: Null terminated list of user WR's * @bad_wr: Points to failing WR in case of synchronous failure. */ int siw_post_send(struct ib_qp *base_qp, const struct ib_send_wr *wr, const struct ib_send_wr **bad_wr) { struct siw_qp *qp = to_siw_qp(base_qp); struct siw_wqe *wqe = tx_wqe(qp); unsigned long flags; int rv = 0; if (wr && !rdma_is_kernel_res(&qp->base_qp.res)) { siw_dbg_qp(qp, "wr must be empty for user mapped sq\n"); *bad_wr = wr; return -EINVAL; } /* * Try to acquire QP state lock. Must be non-blocking * to accommodate kernel clients needs. */ if (!down_read_trylock(&qp->state_lock)) { if (qp->attrs.state == SIW_QP_STATE_ERROR) { /* * ERROR state is final, so we can be sure * this state will not change as long as the QP * exists. * * This handles an ib_drain_sq() call with * a concurrent request to set the QP state * to ERROR. */ rv = siw_sq_flush_wr(qp, wr, bad_wr); } else { siw_dbg_qp(qp, "QP locked, state %d\n", qp->attrs.state); *bad_wr = wr; rv = -ENOTCONN; } return rv; } if (unlikely(qp->attrs.state != SIW_QP_STATE_RTS)) { if (qp->attrs.state == SIW_QP_STATE_ERROR) { /* * Immediately flush this WR to CQ, if QP * is in ERROR state. SQ is guaranteed to * be empty, so WR complets in-order. * * Typically triggered by ib_drain_sq(). */ rv = siw_sq_flush_wr(qp, wr, bad_wr); } else { siw_dbg_qp(qp, "QP out of state %d\n", qp->attrs.state); *bad_wr = wr; rv = -ENOTCONN; } up_read(&qp->state_lock); return rv; } spin_lock_irqsave(&qp->sq_lock, flags); while (wr) { u32 idx = qp->sq_put % qp->attrs.sq_size; struct siw_sqe *sqe = &qp->sendq[idx]; if (sqe->flags) { siw_dbg_qp(qp, "sq full\n"); rv = -ENOMEM; break; } if (wr->num_sge > qp->attrs.sq_max_sges) { siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge); rv = -EINVAL; break; } sqe->id = wr->wr_id; if ((wr->send_flags & IB_SEND_SIGNALED) || (qp->attrs.flags & SIW_SIGNAL_ALL_WR)) sqe->flags |= SIW_WQE_SIGNALLED; if (wr->send_flags & IB_SEND_FENCE) sqe->flags |= SIW_WQE_READ_FENCE; switch (wr->opcode) { case IB_WR_SEND: case IB_WR_SEND_WITH_INV: if (wr->send_flags & IB_SEND_SOLICITED) sqe->flags |= SIW_WQE_SOLICITED; if (!(wr->send_flags & IB_SEND_INLINE)) { siw_copy_sgl(wr->sg_list, sqe->sge, wr->num_sge); sqe->num_sge = wr->num_sge; } else { rv = siw_copy_inline_sgl(wr, sqe); if (rv <= 0) { rv = -EINVAL; break; } sqe->flags |= SIW_WQE_INLINE; sqe->num_sge = 1; } if (wr->opcode == IB_WR_SEND) sqe->opcode = SIW_OP_SEND; else { sqe->opcode = SIW_OP_SEND_REMOTE_INV; sqe->rkey = wr->ex.invalidate_rkey; } break; case IB_WR_RDMA_READ_WITH_INV: case IB_WR_RDMA_READ: /* * iWarp restricts RREAD sink to SGL containing * 1 SGE only. we could relax to SGL with multiple * elements referring the SAME ltag or even sending * a private per-rreq tag referring to a checked * local sgl with MULTIPLE ltag's. */ if (unlikely(wr->num_sge != 1)) { rv = -EINVAL; break; } siw_copy_sgl(wr->sg_list, &sqe->sge[0], 1); /* * NOTE: zero length RREAD is allowed! */ sqe->raddr = rdma_wr(wr)->remote_addr; sqe->rkey = rdma_wr(wr)->rkey; sqe->num_sge = 1; if (wr->opcode == IB_WR_RDMA_READ) sqe->opcode = SIW_OP_READ; else sqe->opcode = SIW_OP_READ_LOCAL_INV; break; case IB_WR_RDMA_WRITE: if (!(wr->send_flags & IB_SEND_INLINE)) { siw_copy_sgl(wr->sg_list, &sqe->sge[0], wr->num_sge); sqe->num_sge = wr->num_sge; } else { rv = siw_copy_inline_sgl(wr, sqe); if (unlikely(rv < 0)) { rv = -EINVAL; break; } sqe->flags |= SIW_WQE_INLINE; sqe->num_sge = 1; } sqe->raddr = rdma_wr(wr)->remote_addr; sqe->rkey = rdma_wr(wr)->rkey; sqe->opcode = SIW_OP_WRITE; break; case IB_WR_REG_MR: sqe->base_mr = (uintptr_t)reg_wr(wr)->mr; sqe->rkey = reg_wr(wr)->key; sqe->access = reg_wr(wr)->access & IWARP_ACCESS_MASK; sqe->opcode = SIW_OP_REG_MR; break; case IB_WR_LOCAL_INV: sqe->rkey = wr->ex.invalidate_rkey; sqe->opcode = SIW_OP_INVAL_STAG; break; default: siw_dbg_qp(qp, "ib wr type %d unsupported\n", wr->opcode); rv = -EINVAL; break; } siw_dbg_qp(qp, "opcode %d, flags 0x%x, wr_id 0x%pK\n", sqe->opcode, sqe->flags, (void *)(uintptr_t)sqe->id); if (unlikely(rv < 0)) break; /* make SQE only valid after completely written */ smp_wmb(); sqe->flags |= SIW_WQE_VALID; qp->sq_put++; wr = wr->next; } /* * Send directly if SQ processing is not in progress. * Eventual immediate errors (rv < 0) do not affect the involved * RI resources (Verbs, 8.3.1) and thus do not prevent from SQ * processing, if new work is already pending. But rv must be passed * to caller. */ if (wqe->wr_status != SIW_WR_IDLE) { spin_unlock_irqrestore(&qp->sq_lock, flags); goto skip_direct_sending; } rv = siw_activate_tx(qp); spin_unlock_irqrestore(&qp->sq_lock, flags); if (rv <= 0) goto skip_direct_sending; if (rdma_is_kernel_res(&qp->base_qp.res)) { rv = siw_sq_start(qp); } else { qp->tx_ctx.in_syscall = 1; if (siw_qp_sq_process(qp) != 0 && !(qp->tx_ctx.tx_suspend)) siw_qp_cm_drop(qp, 0); qp->tx_ctx.in_syscall = 0; } skip_direct_sending: up_read(&qp->state_lock); if (rv >= 0) return 0; /* * Immediate error */ siw_dbg_qp(qp, "error %d\n", rv); *bad_wr = wr; return rv; } /* * siw_post_receive() * * Post a list of R-WR's to a RQ. * * @base_qp: Base QP contained in siw QP * @wr: Null terminated list of user WR's * @bad_wr: Points to failing WR in case of synchronous failure. */ int siw_post_receive(struct ib_qp *base_qp, const struct ib_recv_wr *wr, const struct ib_recv_wr **bad_wr) { struct siw_qp *qp = to_siw_qp(base_qp); unsigned long flags; int rv = 0; if (qp->srq || qp->attrs.rq_size == 0) { *bad_wr = wr; return -EINVAL; } if (!rdma_is_kernel_res(&qp->base_qp.res)) { siw_dbg_qp(qp, "no kernel post_recv for user mapped rq\n"); *bad_wr = wr; return -EINVAL; } /* * Try to acquire QP state lock. Must be non-blocking * to accommodate kernel clients needs. */ if (!down_read_trylock(&qp->state_lock)) { if (qp->attrs.state == SIW_QP_STATE_ERROR) { /* * ERROR state is final, so we can be sure * this state will not change as long as the QP * exists. * * This handles an ib_drain_rq() call with * a concurrent request to set the QP state * to ERROR. */ rv = siw_rq_flush_wr(qp, wr, bad_wr); } else { siw_dbg_qp(qp, "QP locked, state %d\n", qp->attrs.state); *bad_wr = wr; rv = -ENOTCONN; } return rv; } if (qp->attrs.state > SIW_QP_STATE_RTS) { if (qp->attrs.state == SIW_QP_STATE_ERROR) { /* * Immediately flush this WR to CQ, if QP * is in ERROR state. RQ is guaranteed to * be empty, so WR complets in-order. * * Typically triggered by ib_drain_rq(). */ rv = siw_rq_flush_wr(qp, wr, bad_wr); } else { siw_dbg_qp(qp, "QP out of state %d\n", qp->attrs.state); *bad_wr = wr; rv = -ENOTCONN; } up_read(&qp->state_lock); return rv; } /* * Serialize potentially multiple producers. * Not needed for single threaded consumer side. */ spin_lock_irqsave(&qp->rq_lock, flags); while (wr) { u32 idx = qp->rq_put % qp->attrs.rq_size; struct siw_rqe *rqe = &qp->recvq[idx]; if (rqe->flags) { siw_dbg_qp(qp, "RQ full\n"); rv = -ENOMEM; break; } if (wr->num_sge > qp->attrs.rq_max_sges) { siw_dbg_qp(qp, "too many sge's: %d\n", wr->num_sge); rv = -EINVAL; break; } rqe->id = wr->wr_id; rqe->num_sge = wr->num_sge; siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge); /* make sure RQE is completely written before valid */ smp_wmb(); rqe->flags = SIW_WQE_VALID; qp->rq_put++; wr = wr->next; } spin_unlock_irqrestore(&qp->rq_lock, flags); up_read(&qp->state_lock); if (rv < 0) { siw_dbg_qp(qp, "error %d\n", rv); *bad_wr = wr; } return rv > 0 ? 0 : rv; } int siw_destroy_cq(struct ib_cq *base_cq, struct ib_udata *udata) { struct siw_cq *cq = to_siw_cq(base_cq); struct siw_device *sdev = to_siw_dev(base_cq->device); struct siw_ucontext *ctx = rdma_udata_to_drv_context(udata, struct siw_ucontext, base_ucontext); siw_dbg_cq(cq, "free CQ resources\n"); siw_cq_flush(cq); if (ctx) rdma_user_mmap_entry_remove(cq->cq_entry); atomic_dec(&sdev->num_cq); vfree(cq->queue); return 0; } /* * siw_create_cq() * * Populate CQ of requested size * * @base_cq: CQ as allocated by RDMA midlayer * @attr: Initial CQ attributes * @udata: relates to user context */ int siw_create_cq(struct ib_cq *base_cq, const struct ib_cq_init_attr *attr, struct ib_udata *udata) { struct siw_device *sdev = to_siw_dev(base_cq->device); struct siw_cq *cq = to_siw_cq(base_cq); int rv, size = attr->cqe; if (attr->flags) return -EOPNOTSUPP; if (atomic_inc_return(&sdev->num_cq) > SIW_MAX_CQ) { siw_dbg(base_cq->device, "too many CQ's\n"); rv = -ENOMEM; goto err_out; } if (size < 1 || size > sdev->attrs.max_cqe) { siw_dbg(base_cq->device, "CQ size error: %d\n", size); rv = -EINVAL; goto err_out; } size = roundup_pow_of_two(size); cq->base_cq.cqe = size; cq->num_cqe = size; if (udata) cq->queue = vmalloc_user(size * sizeof(struct siw_cqe) + sizeof(struct siw_cq_ctrl)); else cq->queue = vzalloc(size * sizeof(struct siw_cqe) + sizeof(struct siw_cq_ctrl)); if (cq->queue == NULL) { rv = -ENOMEM; goto err_out; } get_random_bytes(&cq->id, 4); siw_dbg(base_cq->device, "new CQ [%u]\n", cq->id); spin_lock_init(&cq->lock); cq->notify = (struct siw_cq_ctrl *)&cq->queue[size]; if (udata) { struct siw_uresp_create_cq uresp = {}; struct siw_ucontext *ctx = rdma_udata_to_drv_context(udata, struct siw_ucontext, base_ucontext); size_t length = size * sizeof(struct siw_cqe) + sizeof(struct siw_cq_ctrl); cq->cq_entry = siw_mmap_entry_insert(ctx, cq->queue, length, &uresp.cq_key); if (!cq->cq_entry) { rv = -ENOMEM; goto err_out; } uresp.cq_id = cq->id; uresp.num_cqe = size; if (udata->outlen < sizeof(uresp)) { rv = -EINVAL; goto err_out; } rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); if (rv) goto err_out; } return 0; err_out: siw_dbg(base_cq->device, "CQ creation failed: %d", rv); if (cq && cq->queue) { struct siw_ucontext *ctx = rdma_udata_to_drv_context(udata, struct siw_ucontext, base_ucontext); if (ctx) rdma_user_mmap_entry_remove(cq->cq_entry); vfree(cq->queue); } atomic_dec(&sdev->num_cq); return rv; } /* * siw_poll_cq() * * Reap CQ entries if available and copy work completion status into * array of WC's provided by caller. Returns number of reaped CQE's. * * @base_cq: Base CQ contained in siw CQ. * @num_cqe: Maximum number of CQE's to reap. * @wc: Array of work completions to be filled by siw. */ int siw_poll_cq(struct ib_cq *base_cq, int num_cqe, struct ib_wc *wc) { struct siw_cq *cq = to_siw_cq(base_cq); int i; for (i = 0; i < num_cqe; i++) { if (!siw_reap_cqe(cq, wc)) break; wc++; } return i; } /* * siw_req_notify_cq() * * Request notification for new CQE's added to that CQ. * Defined flags: * o SIW_CQ_NOTIFY_SOLICITED lets siw trigger a notification * event if a WQE with notification flag set enters the CQ * o SIW_CQ_NOTIFY_NEXT_COMP lets siw trigger a notification * event if a WQE enters the CQ. * o IB_CQ_REPORT_MISSED_EVENTS: return value will provide the * number of not reaped CQE's regardless of its notification * type and current or new CQ notification settings. * * @base_cq: Base CQ contained in siw CQ. * @flags: Requested notification flags. */ int siw_req_notify_cq(struct ib_cq *base_cq, enum ib_cq_notify_flags flags) { struct siw_cq *cq = to_siw_cq(base_cq); siw_dbg_cq(cq, "flags: 0x%02x\n", flags); if ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED) /* * Enable CQ event for next solicited completion. * and make it visible to all associated producers. */ smp_store_mb(cq->notify->flags, SIW_NOTIFY_SOLICITED); else /* * Enable CQ event for any signalled completion. * and make it visible to all associated producers. */ smp_store_mb(cq->notify->flags, SIW_NOTIFY_ALL); if (flags & IB_CQ_REPORT_MISSED_EVENTS) return cq->cq_put - cq->cq_get; return 0; } /* * siw_dereg_mr() * * Release Memory Region. * * @base_mr: Base MR contained in siw MR. * @udata: points to user context, unused. */ int siw_dereg_mr(struct ib_mr *base_mr, struct ib_udata *udata) { struct siw_mr *mr = to_siw_mr(base_mr); struct siw_device *sdev = to_siw_dev(base_mr->device); siw_dbg_mem(mr->mem, "deregister MR\n"); atomic_dec(&sdev->num_mr); siw_mr_drop_mem(mr); kfree_rcu(mr, rcu); return 0; } /* * siw_reg_user_mr() * * Register Memory Region. * * @pd: Protection Domain * @start: starting address of MR (virtual address) * @len: len of MR * @rnic_va: not used by siw * @rights: MR access rights * @udata: user buffer to communicate STag and Key. */ struct ib_mr *siw_reg_user_mr(struct ib_pd *pd, u64 start, u64 len, u64 rnic_va, int rights, struct ib_udata *udata) { struct siw_mr *mr = NULL; struct siw_umem *umem = NULL; struct siw_ureq_reg_mr ureq; struct siw_device *sdev = to_siw_dev(pd->device); unsigned long mem_limit = rlimit(RLIMIT_MEMLOCK); int rv; siw_dbg_pd(pd, "start: 0x%pK, va: 0x%pK, len: %llu\n", (void *)(uintptr_t)start, (void *)(uintptr_t)rnic_va, (unsigned long long)len); if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) { siw_dbg_pd(pd, "too many mr's\n"); rv = -ENOMEM; goto err_out; } if (!len) { rv = -EINVAL; goto err_out; } if (mem_limit != RLIM_INFINITY) { unsigned long num_pages = (PAGE_ALIGN(len + (start & ~PAGE_MASK))) >> PAGE_SHIFT; mem_limit >>= PAGE_SHIFT; if (num_pages > mem_limit - current->mm->locked_vm) { siw_dbg_pd(pd, "pages req %lu, max %lu, lock %lu\n", num_pages, mem_limit, current->mm->locked_vm); rv = -ENOMEM; goto err_out; } } umem = siw_umem_get(start, len, ib_access_writable(rights)); if (IS_ERR(umem)) { rv = PTR_ERR(umem); siw_dbg_pd(pd, "getting user memory failed: %d\n", rv); umem = NULL; goto err_out; } mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) { rv = -ENOMEM; goto err_out; } rv = siw_mr_add_mem(mr, pd, umem, start, len, rights); if (rv) goto err_out; if (udata) { struct siw_uresp_reg_mr uresp = {}; struct siw_mem *mem = mr->mem; if (udata->inlen < sizeof(ureq)) { rv = -EINVAL; goto err_out; } rv = ib_copy_from_udata(&ureq, udata, sizeof(ureq)); if (rv) goto err_out; mr->base_mr.lkey |= ureq.stag_key; mr->base_mr.rkey |= ureq.stag_key; mem->stag |= ureq.stag_key; uresp.stag = mem->stag; if (udata->outlen < sizeof(uresp)) { rv = -EINVAL; goto err_out; } rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); if (rv) goto err_out; } mr->mem->stag_valid = 1; return &mr->base_mr; err_out: atomic_dec(&sdev->num_mr); if (mr) { if (mr->mem) siw_mr_drop_mem(mr); kfree_rcu(mr, rcu); } else { if (umem) siw_umem_release(umem, false); } return ERR_PTR(rv); } struct ib_mr *siw_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_sge) { struct siw_device *sdev = to_siw_dev(pd->device); struct siw_mr *mr = NULL; struct siw_pbl *pbl = NULL; int rv; if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) { siw_dbg_pd(pd, "too many mr's\n"); rv = -ENOMEM; goto err_out; } if (mr_type != IB_MR_TYPE_MEM_REG) { siw_dbg_pd(pd, "mr type %d unsupported\n", mr_type); rv = -EOPNOTSUPP; goto err_out; } if (max_sge > SIW_MAX_SGE_PBL) { siw_dbg_pd(pd, "too many sge's: %d\n", max_sge); rv = -ENOMEM; goto err_out; } pbl = siw_pbl_alloc(max_sge); if (IS_ERR(pbl)) { rv = PTR_ERR(pbl); siw_dbg_pd(pd, "pbl allocation failed: %d\n", rv); pbl = NULL; goto err_out; } mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) { rv = -ENOMEM; goto err_out; } rv = siw_mr_add_mem(mr, pd, pbl, 0, max_sge * PAGE_SIZE, 0); if (rv) goto err_out; mr->mem->is_pbl = 1; siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag); return &mr->base_mr; err_out: atomic_dec(&sdev->num_mr); if (!mr) { kfree(pbl); } else { if (mr->mem) siw_mr_drop_mem(mr); kfree_rcu(mr, rcu); } siw_dbg_pd(pd, "failed: %d\n", rv); return ERR_PTR(rv); } /* Just used to count number of pages being mapped */ static int siw_set_pbl_page(struct ib_mr *base_mr, u64 buf_addr) { return 0; } int siw_map_mr_sg(struct ib_mr *base_mr, struct scatterlist *sl, int num_sle, unsigned int *sg_off) { struct scatterlist *slp; struct siw_mr *mr = to_siw_mr(base_mr); struct siw_mem *mem = mr->mem; struct siw_pbl *pbl = mem->pbl; struct siw_pble *pble; unsigned long pbl_size; int i, rv; if (!pbl) { siw_dbg_mem(mem, "no PBL allocated\n"); return -EINVAL; } pble = pbl->pbe; if (pbl->max_buf < num_sle) { siw_dbg_mem(mem, "too many SGE's: %d > %d\n", mem->pbl->max_buf, num_sle); return -ENOMEM; } for_each_sg(sl, slp, num_sle, i) { if (sg_dma_len(slp) == 0) { siw_dbg_mem(mem, "empty SGE\n"); return -EINVAL; } if (i == 0) { pble->addr = sg_dma_address(slp); pble->size = sg_dma_len(slp); pble->pbl_off = 0; pbl_size = pble->size; pbl->num_buf = 1; } else { /* Merge PBL entries if adjacent */ if (pble->addr + pble->size == sg_dma_address(slp)) { pble->size += sg_dma_len(slp); } else { pble++; pbl->num_buf++; pble->addr = sg_dma_address(slp); pble->size = sg_dma_len(slp); pble->pbl_off = pbl_size; } pbl_size += sg_dma_len(slp); } siw_dbg_mem(mem, "sge[%d], size %u, addr 0x%p, total %lu\n", i, pble->size, (void *)(uintptr_t)pble->addr, pbl_size); } rv = ib_sg_to_pages(base_mr, sl, num_sle, sg_off, siw_set_pbl_page); if (rv > 0) { mem->len = base_mr->length; mem->va = base_mr->iova; siw_dbg_mem(mem, "%llu bytes, start 0x%pK, %u SLE to %u entries\n", mem->len, (void *)(uintptr_t)mem->va, num_sle, pbl->num_buf); } return rv; } /* * siw_get_dma_mr() * * Create a (empty) DMA memory region, where no umem is attached. */ struct ib_mr *siw_get_dma_mr(struct ib_pd *pd, int rights) { struct siw_device *sdev = to_siw_dev(pd->device); struct siw_mr *mr = NULL; int rv; if (atomic_inc_return(&sdev->num_mr) > SIW_MAX_MR) { siw_dbg_pd(pd, "too many mr's\n"); rv = -ENOMEM; goto err_out; } mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) { rv = -ENOMEM; goto err_out; } rv = siw_mr_add_mem(mr, pd, NULL, 0, ULONG_MAX, rights); if (rv) goto err_out; mr->mem->stag_valid = 1; siw_dbg_pd(pd, "[MEM %u]: success\n", mr->mem->stag); return &mr->base_mr; err_out: if (rv) kfree(mr); atomic_dec(&sdev->num_mr); return ERR_PTR(rv); } /* * siw_create_srq() * * Create Shared Receive Queue of attributes @init_attrs * within protection domain given by @pd. * * @base_srq: Base SRQ contained in siw SRQ. * @init_attrs: SRQ init attributes. * @udata: points to user context */ int siw_create_srq(struct ib_srq *base_srq, struct ib_srq_init_attr *init_attrs, struct ib_udata *udata) { struct siw_srq *srq = to_siw_srq(base_srq); struct ib_srq_attr *attrs = &init_attrs->attr; struct siw_device *sdev = to_siw_dev(base_srq->device); struct siw_ucontext *ctx = rdma_udata_to_drv_context(udata, struct siw_ucontext, base_ucontext); int rv; if (init_attrs->srq_type != IB_SRQT_BASIC) return -EOPNOTSUPP; if (atomic_inc_return(&sdev->num_srq) > SIW_MAX_SRQ) { siw_dbg_pd(base_srq->pd, "too many SRQ's\n"); rv = -ENOMEM; goto err_out; } if (attrs->max_wr == 0 || attrs->max_wr > SIW_MAX_SRQ_WR || attrs->max_sge > SIW_MAX_SGE || attrs->srq_limit > attrs->max_wr) { rv = -EINVAL; goto err_out; } srq->max_sge = attrs->max_sge; srq->num_rqe = roundup_pow_of_two(attrs->max_wr); srq->limit = attrs->srq_limit; if (srq->limit) srq->armed = true; srq->is_kernel_res = !udata; if (udata) srq->recvq = vmalloc_user(srq->num_rqe * sizeof(struct siw_rqe)); else srq->recvq = vzalloc(srq->num_rqe * sizeof(struct siw_rqe)); if (srq->recvq == NULL) { rv = -ENOMEM; goto err_out; } if (udata) { struct siw_uresp_create_srq uresp = {}; size_t length = srq->num_rqe * sizeof(struct siw_rqe); srq->srq_entry = siw_mmap_entry_insert(ctx, srq->recvq, length, &uresp.srq_key); if (!srq->srq_entry) { rv = -ENOMEM; goto err_out; } uresp.num_rqe = srq->num_rqe; if (udata->outlen < sizeof(uresp)) { rv = -EINVAL; goto err_out; } rv = ib_copy_to_udata(udata, &uresp, sizeof(uresp)); if (rv) goto err_out; } spin_lock_init(&srq->lock); siw_dbg_pd(base_srq->pd, "[SRQ]: success\n"); return 0; err_out: if (srq->recvq) { if (ctx) rdma_user_mmap_entry_remove(srq->srq_entry); vfree(srq->recvq); } atomic_dec(&sdev->num_srq); return rv; } /* * siw_modify_srq() * * Modify SRQ. The caller may resize SRQ and/or set/reset notification * limit and (re)arm IB_EVENT_SRQ_LIMIT_REACHED notification. * * NOTE: it is unclear if RDMA core allows for changing the MAX_SGE * parameter. siw_modify_srq() does not check the attrs->max_sge param. */ int siw_modify_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs, enum ib_srq_attr_mask attr_mask, struct ib_udata *udata) { struct siw_srq *srq = to_siw_srq(base_srq); unsigned long flags; int rv = 0; spin_lock_irqsave(&srq->lock, flags); if (attr_mask & IB_SRQ_MAX_WR) { /* resize request not yet supported */ rv = -EOPNOTSUPP; goto out; } if (attr_mask & IB_SRQ_LIMIT) { if (attrs->srq_limit) { if (unlikely(attrs->srq_limit > srq->num_rqe)) { rv = -EINVAL; goto out; } srq->armed = true; } else { srq->armed = false; } srq->limit = attrs->srq_limit; } out: spin_unlock_irqrestore(&srq->lock, flags); return rv; } /* * siw_query_srq() * * Query SRQ attributes. */ int siw_query_srq(struct ib_srq *base_srq, struct ib_srq_attr *attrs) { struct siw_srq *srq = to_siw_srq(base_srq); unsigned long flags; spin_lock_irqsave(&srq->lock, flags); attrs->max_wr = srq->num_rqe; attrs->max_sge = srq->max_sge; attrs->srq_limit = srq->limit; spin_unlock_irqrestore(&srq->lock, flags); return 0; } /* * siw_destroy_srq() * * Destroy SRQ. * It is assumed that the SRQ is not referenced by any * QP anymore - the code trusts the RDMA core environment to keep track * of QP references. */ int siw_destroy_srq(struct ib_srq *base_srq, struct ib_udata *udata) { struct siw_srq *srq = to_siw_srq(base_srq); struct siw_device *sdev = to_siw_dev(base_srq->device); struct siw_ucontext *ctx = rdma_udata_to_drv_context(udata, struct siw_ucontext, base_ucontext); if (ctx) rdma_user_mmap_entry_remove(srq->srq_entry); vfree(srq->recvq); atomic_dec(&sdev->num_srq); return 0; } /* * siw_post_srq_recv() * * Post a list of receive queue elements to SRQ. * NOTE: The function does not check or lock a certain SRQ state * during the post operation. The code simply trusts the * RDMA core environment. * * @base_srq: Base SRQ contained in siw SRQ * @wr: List of R-WR's * @bad_wr: Updated to failing WR if posting fails. */ int siw_post_srq_recv(struct ib_srq *base_srq, const struct ib_recv_wr *wr, const struct ib_recv_wr **bad_wr) { struct siw_srq *srq = to_siw_srq(base_srq); unsigned long flags; int rv = 0; if (unlikely(!srq->is_kernel_res)) { siw_dbg_pd(base_srq->pd, "[SRQ]: no kernel post_recv for mapped srq\n"); rv = -EINVAL; goto out; } /* * Serialize potentially multiple producers. * Also needed to serialize potentially multiple * consumers. */ spin_lock_irqsave(&srq->lock, flags); while (wr) { u32 idx = srq->rq_put % srq->num_rqe; struct siw_rqe *rqe = &srq->recvq[idx]; if (rqe->flags) { siw_dbg_pd(base_srq->pd, "SRQ full\n"); rv = -ENOMEM; break; } if (unlikely(wr->num_sge > srq->max_sge)) { siw_dbg_pd(base_srq->pd, "[SRQ]: too many sge's: %d\n", wr->num_sge); rv = -EINVAL; break; } rqe->id = wr->wr_id; rqe->num_sge = wr->num_sge; siw_copy_sgl(wr->sg_list, rqe->sge, wr->num_sge); /* Make sure S-RQE is completely written before valid */ smp_wmb(); rqe->flags = SIW_WQE_VALID; srq->rq_put++; wr = wr->next; } spin_unlock_irqrestore(&srq->lock, flags); out: if (unlikely(rv < 0)) { siw_dbg_pd(base_srq->pd, "[SRQ]: error %d\n", rv); *bad_wr = wr; } return rv; } void siw_qp_event(struct siw_qp *qp, enum ib_event_type etype) { struct ib_event event; struct ib_qp *base_qp = &qp->base_qp; /* * Do not report asynchronous errors on QP which gets * destroyed via verbs interface (siw_destroy_qp()) */ if (qp->attrs.flags & SIW_QP_IN_DESTROY) return; event.event = etype; event.device = base_qp->device; event.element.qp = base_qp; if (base_qp->event_handler) { siw_dbg_qp(qp, "reporting event %d\n", etype); base_qp->event_handler(&event, base_qp->qp_context); } } void siw_cq_event(struct siw_cq *cq, enum ib_event_type etype) { struct ib_event event; struct ib_cq *base_cq = &cq->base_cq; event.event = etype; event.device = base_cq->device; event.element.cq = base_cq; if (base_cq->event_handler) { siw_dbg_cq(cq, "reporting CQ event %d\n", etype); base_cq->event_handler(&event, base_cq->cq_context); } } void siw_srq_event(struct siw_srq *srq, enum ib_event_type etype) { struct ib_event event; struct ib_srq *base_srq = &srq->base_srq; event.event = etype; event.device = base_srq->device; event.element.srq = base_srq; if (base_srq->event_handler) { siw_dbg_pd(srq->base_srq.pd, "reporting SRQ event %d\n", etype); base_srq->event_handler(&event, base_srq->srq_context); } } void siw_port_event(struct siw_device *sdev, u32 port, enum ib_event_type etype) { struct ib_event event; event.event = etype; event.device = &sdev->base_dev; event.element.port_num = port; siw_dbg(&sdev->base_dev, "reporting port event %d\n", etype); ib_dispatch_event(&event); }