// SPDX-License-Identifier: GPL-2.0-or-later /* * netup_unidvb_core.c * * Main module for NetUP Universal Dual DVB-CI * * Copyright (C) 2014 NetUP Inc. * Copyright (C) 2014 Sergey Kozlov * Copyright (C) 2014 Abylay Ospan */ #include #include #include #include #include #include #include #include #include #include #include #include "netup_unidvb.h" #include "cxd2841er.h" #include "horus3a.h" #include "ascot2e.h" #include "helene.h" #include "lnbh25.h" static int spi_enable; module_param(spi_enable, int, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); MODULE_DESCRIPTION("Driver for NetUP Dual Universal DVB CI PCIe card"); MODULE_AUTHOR("info@netup.ru"); MODULE_VERSION(NETUP_UNIDVB_VERSION); MODULE_LICENSE("GPL"); DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); /* Avalon-MM PCI-E registers */ #define AVL_PCIE_IENR 0x50 #define AVL_PCIE_ISR 0x40 #define AVL_IRQ_ENABLE 0x80 #define AVL_IRQ_ASSERTED 0x80 /* GPIO registers */ #define GPIO_REG_IO 0x4880 #define GPIO_REG_IO_TOGGLE 0x4882 #define GPIO_REG_IO_SET 0x4884 #define GPIO_REG_IO_CLEAR 0x4886 /* GPIO bits */ #define GPIO_FEA_RESET (1 << 0) #define GPIO_FEB_RESET (1 << 1) #define GPIO_RFA_CTL (1 << 2) #define GPIO_RFB_CTL (1 << 3) #define GPIO_FEA_TU_RESET (1 << 4) #define GPIO_FEB_TU_RESET (1 << 5) /* DMA base address */ #define NETUP_DMA0_ADDR 0x4900 #define NETUP_DMA1_ADDR 0x4940 /* 8 DMA blocks * 128 packets * 188 bytes*/ #define NETUP_DMA_BLOCKS_COUNT 8 #define NETUP_DMA_PACKETS_COUNT 128 /* DMA status bits */ #define BIT_DMA_RUN 1 #define BIT_DMA_ERROR 2 #define BIT_DMA_IRQ 0x200 /** * struct netup_dma_regs - the map of DMA module registers * @ctrlstat_set: Control register, write to set control bits * @ctrlstat_clear: Control register, write to clear control bits * @start_addr_lo: DMA ring buffer start address, lower part * @start_addr_hi: DMA ring buffer start address, higher part * @size: DMA ring buffer size register * * Bits [0-7]: DMA packet size, 188 bytes * * Bits [16-23]: packets count in block, 128 packets * * Bits [24-31]: blocks count, 8 blocks * @timeout: DMA timeout in units of 8ns * For example, value of 375000000 equals to 3 sec * @curr_addr_lo: Current ring buffer head address, lower part * @curr_addr_hi: Current ring buffer head address, higher part * @stat_pkt_received: Statistic register, not tested * @stat_pkt_accepted: Statistic register, not tested * @stat_pkt_overruns: Statistic register, not tested * @stat_pkt_underruns: Statistic register, not tested * @stat_fifo_overruns: Statistic register, not tested */ struct netup_dma_regs { __le32 ctrlstat_set; __le32 ctrlstat_clear; __le32 start_addr_lo; __le32 start_addr_hi; __le32 size; __le32 timeout; __le32 curr_addr_lo; __le32 curr_addr_hi; __le32 stat_pkt_received; __le32 stat_pkt_accepted; __le32 stat_pkt_overruns; __le32 stat_pkt_underruns; __le32 stat_fifo_overruns; } __packed __aligned(1); struct netup_unidvb_buffer { struct vb2_v4l2_buffer vb; struct list_head list; u32 size; }; static int netup_unidvb_tuner_ctrl(void *priv, int is_dvb_tc); static void netup_unidvb_queue_cleanup(struct netup_dma *dma); static struct cxd2841er_config demod_config = { .i2c_addr = 0xc8, .xtal = SONY_XTAL_24000, .flags = CXD2841ER_USE_GATECTRL | CXD2841ER_ASCOT }; static struct horus3a_config horus3a_conf = { .i2c_address = 0xc0, .xtal_freq_mhz = 16, .set_tuner_callback = netup_unidvb_tuner_ctrl }; static struct ascot2e_config ascot2e_conf = { .i2c_address = 0xc2, .set_tuner_callback = netup_unidvb_tuner_ctrl }; static struct helene_config helene_conf = { .i2c_address = 0xc0, .xtal = SONY_HELENE_XTAL_24000, .set_tuner_callback = netup_unidvb_tuner_ctrl }; static struct lnbh25_config lnbh25_conf = { .i2c_address = 0x10, .data2_config = LNBH25_TEN | LNBH25_EXTM }; static int netup_unidvb_tuner_ctrl(void *priv, int is_dvb_tc) { u8 reg, mask; struct netup_dma *dma = priv; struct netup_unidvb_dev *ndev; if (!priv) return -EINVAL; ndev = dma->ndev; dev_dbg(&ndev->pci_dev->dev, "%s(): num %d is_dvb_tc %d\n", __func__, dma->num, is_dvb_tc); reg = readb(ndev->bmmio0 + GPIO_REG_IO); mask = (dma->num == 0) ? GPIO_RFA_CTL : GPIO_RFB_CTL; /* inverted tuner control in hw rev. 1.4 */ if (ndev->rev == NETUP_HW_REV_1_4) is_dvb_tc = !is_dvb_tc; if (!is_dvb_tc) reg |= mask; else reg &= ~mask; writeb(reg, ndev->bmmio0 + GPIO_REG_IO); return 0; } static void netup_unidvb_dev_enable(struct netup_unidvb_dev *ndev) { u16 gpio_reg; /* enable PCI-E interrupts */ writel(AVL_IRQ_ENABLE, ndev->bmmio0 + AVL_PCIE_IENR); /* unreset frontends bits[0:1] */ writeb(0x00, ndev->bmmio0 + GPIO_REG_IO); msleep(100); gpio_reg = GPIO_FEA_RESET | GPIO_FEB_RESET | GPIO_FEA_TU_RESET | GPIO_FEB_TU_RESET | GPIO_RFA_CTL | GPIO_RFB_CTL; writeb(gpio_reg, ndev->bmmio0 + GPIO_REG_IO); dev_dbg(&ndev->pci_dev->dev, "%s(): AVL_PCIE_IENR 0x%x GPIO_REG_IO 0x%x\n", __func__, readl(ndev->bmmio0 + AVL_PCIE_IENR), (int)readb(ndev->bmmio0 + GPIO_REG_IO)); } static void netup_unidvb_dma_enable(struct netup_dma *dma, int enable) { u32 irq_mask = (dma->num == 0 ? NETUP_UNIDVB_IRQ_DMA1 : NETUP_UNIDVB_IRQ_DMA2); dev_dbg(&dma->ndev->pci_dev->dev, "%s(): DMA%d enable %d\n", __func__, dma->num, enable); if (enable) { writel(BIT_DMA_RUN, &dma->regs->ctrlstat_set); writew(irq_mask, dma->ndev->bmmio0 + REG_IMASK_SET); } else { writel(BIT_DMA_RUN, &dma->regs->ctrlstat_clear); writew(irq_mask, dma->ndev->bmmio0 + REG_IMASK_CLEAR); } } static irqreturn_t netup_dma_interrupt(struct netup_dma *dma) { u64 addr_curr; u32 size; unsigned long flags; struct device *dev = &dma->ndev->pci_dev->dev; spin_lock_irqsave(&dma->lock, flags); addr_curr = ((u64)readl(&dma->regs->curr_addr_hi) << 32) | (u64)readl(&dma->regs->curr_addr_lo) | dma->high_addr; /* clear IRQ */ writel(BIT_DMA_IRQ, &dma->regs->ctrlstat_clear); /* sanity check */ if (addr_curr < dma->addr_phys || addr_curr > dma->addr_phys + dma->ring_buffer_size) { if (addr_curr != 0) { dev_err(dev, "%s(): addr 0x%llx not from 0x%llx:0x%llx\n", __func__, addr_curr, (u64)dma->addr_phys, (u64)(dma->addr_phys + dma->ring_buffer_size)); } goto irq_handled; } size = (addr_curr >= dma->addr_last) ? (u32)(addr_curr - dma->addr_last) : (u32)(dma->ring_buffer_size - (dma->addr_last - addr_curr)); if (dma->data_size != 0) { printk_ratelimited("%s(): lost interrupt, data size %d\n", __func__, dma->data_size); dma->data_size += size; } if (dma->data_size == 0 || dma->data_size > dma->ring_buffer_size) { dma->data_size = size; dma->data_offset = (u32)(dma->addr_last - dma->addr_phys); } dma->addr_last = addr_curr; queue_work(dma->ndev->wq, &dma->work); irq_handled: spin_unlock_irqrestore(&dma->lock, flags); return IRQ_HANDLED; } static irqreturn_t netup_unidvb_isr(int irq, void *dev_id) { struct pci_dev *pci_dev = (struct pci_dev *)dev_id; struct netup_unidvb_dev *ndev = pci_get_drvdata(pci_dev); u32 reg40, reg_isr; irqreturn_t iret = IRQ_NONE; /* disable interrupts */ writel(0, ndev->bmmio0 + AVL_PCIE_IENR); /* check IRQ source */ reg40 = readl(ndev->bmmio0 + AVL_PCIE_ISR); if ((reg40 & AVL_IRQ_ASSERTED) != 0) { /* IRQ is being signaled */ reg_isr = readw(ndev->bmmio0 + REG_ISR); if (reg_isr & NETUP_UNIDVB_IRQ_SPI) iret = netup_spi_interrupt(ndev->spi); else if (!ndev->old_fw) { if (reg_isr & NETUP_UNIDVB_IRQ_I2C0) { iret = netup_i2c_interrupt(&ndev->i2c[0]); } else if (reg_isr & NETUP_UNIDVB_IRQ_I2C1) { iret = netup_i2c_interrupt(&ndev->i2c[1]); } else if (reg_isr & NETUP_UNIDVB_IRQ_DMA1) { iret = netup_dma_interrupt(&ndev->dma[0]); } else if (reg_isr & NETUP_UNIDVB_IRQ_DMA2) { iret = netup_dma_interrupt(&ndev->dma[1]); } else if (reg_isr & NETUP_UNIDVB_IRQ_CI) { iret = netup_ci_interrupt(ndev); } else { goto err; } } else { err: dev_err(&pci_dev->dev, "%s(): unknown interrupt 0x%x\n", __func__, reg_isr); } } /* re-enable interrupts */ writel(AVL_IRQ_ENABLE, ndev->bmmio0 + AVL_PCIE_IENR); return iret; } static int netup_unidvb_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct netup_dma *dma = vb2_get_drv_priv(vq); dev_dbg(&dma->ndev->pci_dev->dev, "%s()\n", __func__); *nplanes = 1; if (vq->num_buffers + *nbuffers < VIDEO_MAX_FRAME) *nbuffers = VIDEO_MAX_FRAME - vq->num_buffers; sizes[0] = PAGE_ALIGN(NETUP_DMA_PACKETS_COUNT * 188); dev_dbg(&dma->ndev->pci_dev->dev, "%s() nbuffers=%d sizes[0]=%d\n", __func__, *nbuffers, sizes[0]); return 0; } static int netup_unidvb_buf_prepare(struct vb2_buffer *vb) { struct netup_dma *dma = vb2_get_drv_priv(vb->vb2_queue); struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct netup_unidvb_buffer *buf = container_of(vbuf, struct netup_unidvb_buffer, vb); dev_dbg(&dma->ndev->pci_dev->dev, "%s(): buf 0x%p\n", __func__, buf); buf->size = 0; return 0; } static void netup_unidvb_buf_queue(struct vb2_buffer *vb) { unsigned long flags; struct netup_dma *dma = vb2_get_drv_priv(vb->vb2_queue); struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct netup_unidvb_buffer *buf = container_of(vbuf, struct netup_unidvb_buffer, vb); dev_dbg(&dma->ndev->pci_dev->dev, "%s(): %p\n", __func__, buf); spin_lock_irqsave(&dma->lock, flags); list_add_tail(&buf->list, &dma->free_buffers); spin_unlock_irqrestore(&dma->lock, flags); mod_timer(&dma->timeout, jiffies + msecs_to_jiffies(1000)); } static int netup_unidvb_start_streaming(struct vb2_queue *q, unsigned int count) { struct netup_dma *dma = vb2_get_drv_priv(q); dev_dbg(&dma->ndev->pci_dev->dev, "%s()\n", __func__); netup_unidvb_dma_enable(dma, 1); return 0; } static void netup_unidvb_stop_streaming(struct vb2_queue *q) { struct netup_dma *dma = vb2_get_drv_priv(q); dev_dbg(&dma->ndev->pci_dev->dev, "%s()\n", __func__); netup_unidvb_dma_enable(dma, 0); netup_unidvb_queue_cleanup(dma); } static const struct vb2_ops dvb_qops = { .queue_setup = netup_unidvb_queue_setup, .buf_prepare = netup_unidvb_buf_prepare, .buf_queue = netup_unidvb_buf_queue, .start_streaming = netup_unidvb_start_streaming, .stop_streaming = netup_unidvb_stop_streaming, }; static int netup_unidvb_queue_init(struct netup_dma *dma, struct vb2_queue *vb_queue) { int res; /* Init videobuf2 queue structure */ vb_queue->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; vb_queue->io_modes = VB2_MMAP | VB2_USERPTR | VB2_READ; vb_queue->drv_priv = dma; vb_queue->buf_struct_size = sizeof(struct netup_unidvb_buffer); vb_queue->ops = &dvb_qops; vb_queue->mem_ops = &vb2_vmalloc_memops; vb_queue->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; res = vb2_queue_init(vb_queue); if (res != 0) { dev_err(&dma->ndev->pci_dev->dev, "%s(): vb2_queue_init failed (%d)\n", __func__, res); } return res; } static int netup_unidvb_dvb_init(struct netup_unidvb_dev *ndev, int num) { int fe_count = 2; int i = 0; struct vb2_dvb_frontend *fes[2]; u8 fe_name[32]; if (ndev->rev == NETUP_HW_REV_1_3) demod_config.xtal = SONY_XTAL_20500; else demod_config.xtal = SONY_XTAL_24000; if (num < 0 || num > 1) { dev_dbg(&ndev->pci_dev->dev, "%s(): unable to init DVB bus %d\n", __func__, num); return -ENODEV; } mutex_init(&ndev->frontends[num].lock); INIT_LIST_HEAD(&ndev->frontends[num].felist); for (i = 0; i < fe_count; i++) { if (vb2_dvb_alloc_frontend(&ndev->frontends[num], i+1) == NULL) { dev_err(&ndev->pci_dev->dev, "%s(): unable to allocate vb2_dvb_frontend\n", __func__); return -ENOMEM; } } for (i = 0; i < fe_count; i++) { fes[i] = vb2_dvb_get_frontend(&ndev->frontends[num], i+1); if (fes[i] == NULL) { dev_err(&ndev->pci_dev->dev, "%s(): frontends has not been allocated\n", __func__); return -EINVAL; } } for (i = 0; i < fe_count; i++) { netup_unidvb_queue_init(&ndev->dma[num], &fes[i]->dvb.dvbq); snprintf(fe_name, sizeof(fe_name), "netup_fe%d", i); fes[i]->dvb.name = fe_name; } fes[0]->dvb.frontend = dvb_attach(cxd2841er_attach_s, &demod_config, &ndev->i2c[num].adap); if (fes[0]->dvb.frontend == NULL) { dev_dbg(&ndev->pci_dev->dev, "%s(): unable to attach DVB-S/S2 frontend\n", __func__); goto frontend_detach; } if (ndev->rev == NETUP_HW_REV_1_3) { horus3a_conf.set_tuner_priv = &ndev->dma[num]; if (!dvb_attach(horus3a_attach, fes[0]->dvb.frontend, &horus3a_conf, &ndev->i2c[num].adap)) { dev_dbg(&ndev->pci_dev->dev, "%s(): unable to attach HORUS3A DVB-S/S2 tuner frontend\n", __func__); goto frontend_detach; } } else { helene_conf.set_tuner_priv = &ndev->dma[num]; if (!dvb_attach(helene_attach_s, fes[0]->dvb.frontend, &helene_conf, &ndev->i2c[num].adap)) { dev_err(&ndev->pci_dev->dev, "%s(): unable to attach HELENE DVB-S/S2 tuner frontend\n", __func__); goto frontend_detach; } } if (!dvb_attach(lnbh25_attach, fes[0]->dvb.frontend, &lnbh25_conf, &ndev->i2c[num].adap)) { dev_dbg(&ndev->pci_dev->dev, "%s(): unable to attach SEC frontend\n", __func__); goto frontend_detach; } /* DVB-T/T2 frontend */ fes[1]->dvb.frontend = dvb_attach(cxd2841er_attach_t_c, &demod_config, &ndev->i2c[num].adap); if (fes[1]->dvb.frontend == NULL) { dev_dbg(&ndev->pci_dev->dev, "%s(): unable to attach Ter frontend\n", __func__); goto frontend_detach; } fes[1]->dvb.frontend->id = 1; if (ndev->rev == NETUP_HW_REV_1_3) { ascot2e_conf.set_tuner_priv = &ndev->dma[num]; if (!dvb_attach(ascot2e_attach, fes[1]->dvb.frontend, &ascot2e_conf, &ndev->i2c[num].adap)) { dev_dbg(&ndev->pci_dev->dev, "%s(): unable to attach Ter tuner frontend\n", __func__); goto frontend_detach; } } else { helene_conf.set_tuner_priv = &ndev->dma[num]; if (!dvb_attach(helene_attach, fes[1]->dvb.frontend, &helene_conf, &ndev->i2c[num].adap)) { dev_err(&ndev->pci_dev->dev, "%s(): unable to attach HELENE Ter tuner frontend\n", __func__); goto frontend_detach; } } if (vb2_dvb_register_bus(&ndev->frontends[num], THIS_MODULE, NULL, &ndev->pci_dev->dev, NULL, adapter_nr, 1)) { dev_dbg(&ndev->pci_dev->dev, "%s(): unable to register DVB bus %d\n", __func__, num); goto frontend_detach; } dev_info(&ndev->pci_dev->dev, "DVB init done, num=%d\n", num); return 0; frontend_detach: vb2_dvb_dealloc_frontends(&ndev->frontends[num]); return -EINVAL; } static void netup_unidvb_dvb_fini(struct netup_unidvb_dev *ndev, int num) { if (num < 0 || num > 1) { dev_err(&ndev->pci_dev->dev, "%s(): unable to unregister DVB bus %d\n", __func__, num); return; } vb2_dvb_unregister_bus(&ndev->frontends[num]); dev_info(&ndev->pci_dev->dev, "%s(): DVB bus %d unregistered\n", __func__, num); } static int netup_unidvb_dvb_setup(struct netup_unidvb_dev *ndev) { int res; res = netup_unidvb_dvb_init(ndev, 0); if (res) return res; res = netup_unidvb_dvb_init(ndev, 1); if (res) { netup_unidvb_dvb_fini(ndev, 0); return res; } return 0; } static int netup_unidvb_ring_copy(struct netup_dma *dma, struct netup_unidvb_buffer *buf) { u32 copy_bytes, ring_bytes; u32 buff_bytes = NETUP_DMA_PACKETS_COUNT * 188 - buf->size; u8 *p = vb2_plane_vaddr(&buf->vb.vb2_buf, 0); struct netup_unidvb_dev *ndev = dma->ndev; if (p == NULL) { dev_err(&ndev->pci_dev->dev, "%s(): buffer is NULL\n", __func__); return -EINVAL; } p += buf->size; if (dma->data_offset + dma->data_size > dma->ring_buffer_size) { ring_bytes = dma->ring_buffer_size - dma->data_offset; copy_bytes = (ring_bytes > buff_bytes) ? buff_bytes : ring_bytes; memcpy_fromio(p, (u8 __iomem *)(dma->addr_virt + dma->data_offset), copy_bytes); p += copy_bytes; buf->size += copy_bytes; buff_bytes -= copy_bytes; dma->data_size -= copy_bytes; dma->data_offset += copy_bytes; if (dma->data_offset == dma->ring_buffer_size) dma->data_offset = 0; } if (buff_bytes > 0) { ring_bytes = dma->data_size; copy_bytes = (ring_bytes > buff_bytes) ? buff_bytes : ring_bytes; memcpy_fromio(p, (u8 __iomem *)(dma->addr_virt + dma->data_offset), copy_bytes); buf->size += copy_bytes; dma->data_size -= copy_bytes; dma->data_offset += copy_bytes; if (dma->data_offset == dma->ring_buffer_size) dma->data_offset = 0; } return 0; } static void netup_unidvb_dma_worker(struct work_struct *work) { struct netup_dma *dma = container_of(work, struct netup_dma, work); struct netup_unidvb_dev *ndev = dma->ndev; struct netup_unidvb_buffer *buf; unsigned long flags; spin_lock_irqsave(&dma->lock, flags); if (dma->data_size == 0) { dev_dbg(&ndev->pci_dev->dev, "%s(): data_size == 0\n", __func__); goto work_done; } while (dma->data_size > 0) { if (list_empty(&dma->free_buffers)) { dev_dbg(&ndev->pci_dev->dev, "%s(): no free buffers\n", __func__); goto work_done; } buf = list_first_entry(&dma->free_buffers, struct netup_unidvb_buffer, list); if (buf->size >= NETUP_DMA_PACKETS_COUNT * 188) { dev_dbg(&ndev->pci_dev->dev, "%s(): buffer overflow, size %d\n", __func__, buf->size); goto work_done; } if (netup_unidvb_ring_copy(dma, buf)) goto work_done; if (buf->size == NETUP_DMA_PACKETS_COUNT * 188) { list_del(&buf->list); dev_dbg(&ndev->pci_dev->dev, "%s(): buffer %p done, size %d\n", __func__, buf, buf->size); buf->vb.vb2_buf.timestamp = ktime_get_ns(); vb2_set_plane_payload(&buf->vb.vb2_buf, 0, buf->size); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_DONE); } } work_done: dma->data_size = 0; spin_unlock_irqrestore(&dma->lock, flags); } static void netup_unidvb_queue_cleanup(struct netup_dma *dma) { struct netup_unidvb_buffer *buf; unsigned long flags; spin_lock_irqsave(&dma->lock, flags); while (!list_empty(&dma->free_buffers)) { buf = list_first_entry(&dma->free_buffers, struct netup_unidvb_buffer, list); list_del(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); } spin_unlock_irqrestore(&dma->lock, flags); } static void netup_unidvb_dma_timeout(struct timer_list *t) { struct netup_dma *dma = from_timer(dma, t, timeout); struct netup_unidvb_dev *ndev = dma->ndev; dev_dbg(&ndev->pci_dev->dev, "%s()\n", __func__); netup_unidvb_queue_cleanup(dma); } static int netup_unidvb_dma_init(struct netup_unidvb_dev *ndev, int num) { struct netup_dma *dma; struct device *dev = &ndev->pci_dev->dev; if (num < 0 || num > 1) { dev_err(dev, "%s(): unable to register DMA%d\n", __func__, num); return -ENODEV; } dma = &ndev->dma[num]; dev_info(dev, "%s(): starting DMA%d\n", __func__, num); dma->num = num; dma->ndev = ndev; spin_lock_init(&dma->lock); INIT_WORK(&dma->work, netup_unidvb_dma_worker); INIT_LIST_HEAD(&dma->free_buffers); timer_setup(&dma->timeout, netup_unidvb_dma_timeout, 0); dma->ring_buffer_size = ndev->dma_size / 2; dma->addr_virt = ndev->dma_virt + dma->ring_buffer_size * num; dma->addr_phys = (dma_addr_t)((u64)ndev->dma_phys + dma->ring_buffer_size * num); dev_info(dev, "%s(): DMA%d buffer virt/phys 0x%p/0x%llx size %d\n", __func__, num, dma->addr_virt, (unsigned long long)dma->addr_phys, dma->ring_buffer_size); memset_io((u8 __iomem *)dma->addr_virt, 0, dma->ring_buffer_size); dma->addr_last = dma->addr_phys; dma->high_addr = (u32)(dma->addr_phys & 0xC0000000); dma->regs = (struct netup_dma_regs __iomem *)(num == 0 ? ndev->bmmio0 + NETUP_DMA0_ADDR : ndev->bmmio0 + NETUP_DMA1_ADDR); writel((NETUP_DMA_BLOCKS_COUNT << 24) | (NETUP_DMA_PACKETS_COUNT << 8) | 188, &dma->regs->size); writel((u32)(dma->addr_phys & 0x3FFFFFFF), &dma->regs->start_addr_lo); writel(0, &dma->regs->start_addr_hi); writel(dma->high_addr, ndev->bmmio0 + 0x1000); writel(375000000, &dma->regs->timeout); msleep(1000); writel(BIT_DMA_IRQ, &dma->regs->ctrlstat_clear); return 0; } static void netup_unidvb_dma_fini(struct netup_unidvb_dev *ndev, int num) { struct netup_dma *dma; if (num < 0 || num > 1) return; dev_dbg(&ndev->pci_dev->dev, "%s(): num %d\n", __func__, num); dma = &ndev->dma[num]; netup_unidvb_dma_enable(dma, 0); msleep(50); cancel_work_sync(&dma->work); del_timer(&dma->timeout); } static int netup_unidvb_dma_setup(struct netup_unidvb_dev *ndev) { int res; res = netup_unidvb_dma_init(ndev, 0); if (res) return res; res = netup_unidvb_dma_init(ndev, 1); if (res) { netup_unidvb_dma_fini(ndev, 0); return res; } netup_unidvb_dma_enable(&ndev->dma[0], 0); netup_unidvb_dma_enable(&ndev->dma[1], 0); return 0; } static int netup_unidvb_ci_setup(struct netup_unidvb_dev *ndev, struct pci_dev *pci_dev) { int res; writew(NETUP_UNIDVB_IRQ_CI, ndev->bmmio0 + REG_IMASK_SET); res = netup_unidvb_ci_register(ndev, 0, pci_dev); if (res) return res; res = netup_unidvb_ci_register(ndev, 1, pci_dev); if (res) netup_unidvb_ci_unregister(ndev, 0); return res; } static int netup_unidvb_request_mmio(struct pci_dev *pci_dev) { if (!request_mem_region(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0), NETUP_UNIDVB_NAME)) { dev_err(&pci_dev->dev, "%s(): unable to request MMIO bar 0 at 0x%llx\n", __func__, (unsigned long long)pci_resource_start(pci_dev, 0)); return -EBUSY; } if (!request_mem_region(pci_resource_start(pci_dev, 1), pci_resource_len(pci_dev, 1), NETUP_UNIDVB_NAME)) { dev_err(&pci_dev->dev, "%s(): unable to request MMIO bar 1 at 0x%llx\n", __func__, (unsigned long long)pci_resource_start(pci_dev, 1)); release_mem_region(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0)); return -EBUSY; } return 0; } static int netup_unidvb_request_modules(struct device *dev) { static const char * const modules[] = { "lnbh25", "ascot2e", "horus3a", "cxd2841er", "helene", NULL }; const char * const *curr_mod = modules; int err; while (*curr_mod != NULL) { err = request_module(*curr_mod); if (err) { dev_warn(dev, "request_module(%s) failed: %d\n", *curr_mod, err); } ++curr_mod; } return 0; } static int netup_unidvb_initdev(struct pci_dev *pci_dev, const struct pci_device_id *pci_id) { u8 board_revision; u16 board_vendor; struct netup_unidvb_dev *ndev; int old_firmware = 0; netup_unidvb_request_modules(&pci_dev->dev); /* Check card revision */ if (pci_dev->revision != NETUP_PCI_DEV_REVISION) { dev_err(&pci_dev->dev, "netup_unidvb: expected card revision %d, got %d\n", NETUP_PCI_DEV_REVISION, pci_dev->revision); dev_err(&pci_dev->dev, "Please upgrade firmware!\n"); dev_err(&pci_dev->dev, "Instructions on http://www.netup.tv\n"); old_firmware = 1; spi_enable = 1; } /* allocate device context */ ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); if (!ndev) goto dev_alloc_err; /* detect hardware revision */ if (pci_dev->device == NETUP_HW_REV_1_3) ndev->rev = NETUP_HW_REV_1_3; else ndev->rev = NETUP_HW_REV_1_4; dev_info(&pci_dev->dev, "%s(): board (0x%x) hardware revision 0x%x\n", __func__, pci_dev->device, ndev->rev); ndev->old_fw = old_firmware; ndev->wq = create_singlethread_workqueue(NETUP_UNIDVB_NAME); if (!ndev->wq) { dev_err(&pci_dev->dev, "%s(): unable to create workqueue\n", __func__); goto wq_create_err; } ndev->pci_dev = pci_dev; ndev->pci_bus = pci_dev->bus->number; ndev->pci_slot = PCI_SLOT(pci_dev->devfn); ndev->pci_func = PCI_FUNC(pci_dev->devfn); ndev->board_num = ndev->pci_bus*10 + ndev->pci_slot; pci_set_drvdata(pci_dev, ndev); /* PCI init */ dev_info(&pci_dev->dev, "%s(): PCI device (%d). Bus:0x%x Slot:0x%x\n", __func__, ndev->board_num, ndev->pci_bus, ndev->pci_slot); if (pci_enable_device(pci_dev)) { dev_err(&pci_dev->dev, "%s(): pci_enable_device failed\n", __func__); goto pci_enable_err; } /* read PCI info */ pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &board_revision); pci_read_config_word(pci_dev, PCI_VENDOR_ID, &board_vendor); if (board_vendor != NETUP_VENDOR_ID) { dev_err(&pci_dev->dev, "%s(): unknown board vendor 0x%x", __func__, board_vendor); goto pci_detect_err; } dev_info(&pci_dev->dev, "%s(): board vendor 0x%x, revision 0x%x\n", __func__, board_vendor, board_revision); pci_set_master(pci_dev); if (pci_set_dma_mask(pci_dev, 0xffffffff) < 0) { dev_err(&pci_dev->dev, "%s(): 32bit PCI DMA is not supported\n", __func__); goto pci_detect_err; } dev_info(&pci_dev->dev, "%s(): using 32bit PCI DMA\n", __func__); /* Clear "no snoop" and "relaxed ordering" bits, use default MRRS. */ pcie_capability_clear_and_set_word(pci_dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_READRQ | PCI_EXP_DEVCTL_RELAX_EN | PCI_EXP_DEVCTL_NOSNOOP_EN, 0); /* Adjust PCIe completion timeout. */ pcie_capability_clear_and_set_word(pci_dev, PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0x2); if (netup_unidvb_request_mmio(pci_dev)) { dev_err(&pci_dev->dev, "%s(): unable to request MMIO regions\n", __func__); goto pci_detect_err; } ndev->lmmio0 = ioremap(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0)); if (!ndev->lmmio0) { dev_err(&pci_dev->dev, "%s(): unable to remap MMIO bar 0\n", __func__); goto pci_bar0_error; } ndev->lmmio1 = ioremap(pci_resource_start(pci_dev, 1), pci_resource_len(pci_dev, 1)); if (!ndev->lmmio1) { dev_err(&pci_dev->dev, "%s(): unable to remap MMIO bar 1\n", __func__); goto pci_bar1_error; } ndev->bmmio0 = (u8 __iomem *)ndev->lmmio0; ndev->bmmio1 = (u8 __iomem *)ndev->lmmio1; dev_info(&pci_dev->dev, "%s(): PCI MMIO at 0x%p (%d); 0x%p (%d); IRQ %d", __func__, ndev->lmmio0, (u32)pci_resource_len(pci_dev, 0), ndev->lmmio1, (u32)pci_resource_len(pci_dev, 1), pci_dev->irq); if (request_irq(pci_dev->irq, netup_unidvb_isr, IRQF_SHARED, "netup_unidvb", pci_dev) < 0) { dev_err(&pci_dev->dev, "%s(): can't get IRQ %d\n", __func__, pci_dev->irq); goto irq_request_err; } ndev->dma_size = 2 * 188 * NETUP_DMA_BLOCKS_COUNT * NETUP_DMA_PACKETS_COUNT; ndev->dma_virt = dma_alloc_coherent(&pci_dev->dev, ndev->dma_size, &ndev->dma_phys, GFP_KERNEL); if (!ndev->dma_virt) { dev_err(&pci_dev->dev, "%s(): unable to allocate DMA buffer\n", __func__); goto dma_alloc_err; } netup_unidvb_dev_enable(ndev); if (spi_enable && netup_spi_init(ndev)) { dev_warn(&pci_dev->dev, "netup_unidvb: SPI flash setup failed\n"); goto spi_setup_err; } if (old_firmware) { dev_err(&pci_dev->dev, "netup_unidvb: card initialization was incomplete\n"); return 0; } if (netup_i2c_register(ndev)) { dev_err(&pci_dev->dev, "netup_unidvb: I2C setup failed\n"); goto i2c_setup_err; } /* enable I2C IRQs */ writew(NETUP_UNIDVB_IRQ_I2C0 | NETUP_UNIDVB_IRQ_I2C1, ndev->bmmio0 + REG_IMASK_SET); usleep_range(5000, 10000); if (netup_unidvb_dvb_setup(ndev)) { dev_err(&pci_dev->dev, "netup_unidvb: DVB setup failed\n"); goto dvb_setup_err; } if (netup_unidvb_ci_setup(ndev, pci_dev)) { dev_err(&pci_dev->dev, "netup_unidvb: CI setup failed\n"); goto ci_setup_err; } if (netup_unidvb_dma_setup(ndev)) { dev_err(&pci_dev->dev, "netup_unidvb: DMA setup failed\n"); goto dma_setup_err; } dev_info(&pci_dev->dev, "netup_unidvb: device has been initialized\n"); return 0; dma_setup_err: netup_unidvb_ci_unregister(ndev, 0); netup_unidvb_ci_unregister(ndev, 1); ci_setup_err: netup_unidvb_dvb_fini(ndev, 0); netup_unidvb_dvb_fini(ndev, 1); dvb_setup_err: netup_i2c_unregister(ndev); i2c_setup_err: if (ndev->spi) netup_spi_release(ndev); spi_setup_err: dma_free_coherent(&pci_dev->dev, ndev->dma_size, ndev->dma_virt, ndev->dma_phys); dma_alloc_err: free_irq(pci_dev->irq, pci_dev); irq_request_err: iounmap(ndev->lmmio1); pci_bar1_error: iounmap(ndev->lmmio0); pci_bar0_error: release_mem_region(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0)); release_mem_region(pci_resource_start(pci_dev, 1), pci_resource_len(pci_dev, 1)); pci_detect_err: pci_disable_device(pci_dev); pci_enable_err: pci_set_drvdata(pci_dev, NULL); destroy_workqueue(ndev->wq); wq_create_err: kfree(ndev); dev_alloc_err: dev_err(&pci_dev->dev, "%s(): failed to initialize device\n", __func__); return -EIO; } static void netup_unidvb_finidev(struct pci_dev *pci_dev) { struct netup_unidvb_dev *ndev = pci_get_drvdata(pci_dev); dev_info(&pci_dev->dev, "%s(): trying to stop device\n", __func__); if (!ndev->old_fw) { netup_unidvb_dma_fini(ndev, 0); netup_unidvb_dma_fini(ndev, 1); netup_unidvb_ci_unregister(ndev, 0); netup_unidvb_ci_unregister(ndev, 1); netup_unidvb_dvb_fini(ndev, 0); netup_unidvb_dvb_fini(ndev, 1); netup_i2c_unregister(ndev); } if (ndev->spi) netup_spi_release(ndev); writew(0xffff, ndev->bmmio0 + REG_IMASK_CLEAR); dma_free_coherent(&ndev->pci_dev->dev, ndev->dma_size, ndev->dma_virt, ndev->dma_phys); free_irq(pci_dev->irq, pci_dev); iounmap(ndev->lmmio0); iounmap(ndev->lmmio1); release_mem_region(pci_resource_start(pci_dev, 0), pci_resource_len(pci_dev, 0)); release_mem_region(pci_resource_start(pci_dev, 1), pci_resource_len(pci_dev, 1)); pci_disable_device(pci_dev); pci_set_drvdata(pci_dev, NULL); destroy_workqueue(ndev->wq); kfree(ndev); dev_info(&pci_dev->dev, "%s(): device has been successfully stopped\n", __func__); } static const struct pci_device_id netup_unidvb_pci_tbl[] = { { PCI_DEVICE(0x1b55, 0x18f6) }, /* hw rev. 1.3 */ { PCI_DEVICE(0x1b55, 0x18f7) }, /* hw rev. 1.4 */ { 0, } }; MODULE_DEVICE_TABLE(pci, netup_unidvb_pci_tbl); static struct pci_driver netup_unidvb_pci_driver = { .name = "netup_unidvb", .id_table = netup_unidvb_pci_tbl, .probe = netup_unidvb_initdev, .remove = netup_unidvb_finidev, }; module_pci_driver(netup_unidvb_pci_driver);