// SPDX-License-Identifier: ISC /* * Copyright (C) 2016 Felix Fietkau */ #include #include "mt76.h" #include "dma.h" static struct mt76_txwi_cache * mt76_alloc_txwi(struct mt76_dev *dev) { struct mt76_txwi_cache *t; dma_addr_t addr; u8 *txwi; int size; size = L1_CACHE_ALIGN(dev->drv->txwi_size + sizeof(*t)); txwi = devm_kzalloc(dev->dev, size, GFP_ATOMIC); if (!txwi) return NULL; addr = dma_map_single(dev->dev, txwi, dev->drv->txwi_size, DMA_TO_DEVICE); t = (struct mt76_txwi_cache *)(txwi + dev->drv->txwi_size); t->dma_addr = addr; return t; } static struct mt76_txwi_cache * __mt76_get_txwi(struct mt76_dev *dev) { struct mt76_txwi_cache *t = NULL; spin_lock(&dev->lock); if (!list_empty(&dev->txwi_cache)) { t = list_first_entry(&dev->txwi_cache, struct mt76_txwi_cache, list); list_del(&t->list); } spin_unlock(&dev->lock); return t; } static struct mt76_txwi_cache * mt76_get_txwi(struct mt76_dev *dev) { struct mt76_txwi_cache *t = __mt76_get_txwi(dev); if (t) return t; return mt76_alloc_txwi(dev); } void mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t) { if (!t) return; spin_lock(&dev->lock); list_add(&t->list, &dev->txwi_cache); spin_unlock(&dev->lock); } EXPORT_SYMBOL_GPL(mt76_put_txwi); static void mt76_free_pending_txwi(struct mt76_dev *dev) { struct mt76_txwi_cache *t; local_bh_disable(); while ((t = __mt76_get_txwi(dev)) != NULL) dma_unmap_single(dev->dev, t->dma_addr, dev->drv->txwi_size, DMA_TO_DEVICE); local_bh_enable(); } static void mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q) { writel(q->desc_dma, &q->regs->desc_base); writel(q->ndesc, &q->regs->ring_size); q->head = readl(&q->regs->dma_idx); q->tail = q->head; } static void mt76_dma_queue_reset(struct mt76_dev *dev, struct mt76_queue *q) { int i; if (!q) return; /* clear descriptors */ for (i = 0; i < q->ndesc; i++) q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE); writel(0, &q->regs->cpu_idx); writel(0, &q->regs->dma_idx); mt76_dma_sync_idx(dev, q); } static int mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q, int idx, int n_desc, int bufsize, u32 ring_base) { int size; spin_lock_init(&q->lock); spin_lock_init(&q->cleanup_lock); q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE; q->ndesc = n_desc; q->buf_size = bufsize; q->hw_idx = idx; size = q->ndesc * sizeof(struct mt76_desc); q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL); if (!q->desc) return -ENOMEM; size = q->ndesc * sizeof(*q->entry); q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL); if (!q->entry) return -ENOMEM; mt76_dma_queue_reset(dev, q); return 0; } static int mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q, struct mt76_queue_buf *buf, int nbufs, u32 info, struct sk_buff *skb, void *txwi) { struct mt76_queue_entry *entry; struct mt76_desc *desc; u32 ctrl; int i, idx = -1; if (txwi) { q->entry[q->head].txwi = DMA_DUMMY_DATA; q->entry[q->head].skip_buf0 = true; } for (i = 0; i < nbufs; i += 2, buf += 2) { u32 buf0 = buf[0].addr, buf1 = 0; idx = q->head; q->head = (q->head + 1) % q->ndesc; desc = &q->desc[idx]; entry = &q->entry[idx]; if (buf[0].skip_unmap) entry->skip_buf0 = true; entry->skip_buf1 = i == nbufs - 1; entry->dma_addr[0] = buf[0].addr; entry->dma_len[0] = buf[0].len; ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len); if (i < nbufs - 1) { entry->dma_addr[1] = buf[1].addr; entry->dma_len[1] = buf[1].len; buf1 = buf[1].addr; ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len); if (buf[1].skip_unmap) entry->skip_buf1 = true; } if (i == nbufs - 1) ctrl |= MT_DMA_CTL_LAST_SEC0; else if (i == nbufs - 2) ctrl |= MT_DMA_CTL_LAST_SEC1; WRITE_ONCE(desc->buf0, cpu_to_le32(buf0)); WRITE_ONCE(desc->buf1, cpu_to_le32(buf1)); WRITE_ONCE(desc->info, cpu_to_le32(info)); WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl)); q->queued++; } q->entry[idx].txwi = txwi; q->entry[idx].skb = skb; q->entry[idx].wcid = 0xffff; return idx; } static void mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx, struct mt76_queue_entry *prev_e) { struct mt76_queue_entry *e = &q->entry[idx]; if (!e->skip_buf0) dma_unmap_single(dev->dev, e->dma_addr[0], e->dma_len[0], DMA_TO_DEVICE); if (!e->skip_buf1) dma_unmap_single(dev->dev, e->dma_addr[1], e->dma_len[1], DMA_TO_DEVICE); if (e->txwi == DMA_DUMMY_DATA) e->txwi = NULL; if (e->skb == DMA_DUMMY_DATA) e->skb = NULL; *prev_e = *e; memset(e, 0, sizeof(*e)); } static void mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q) { wmb(); writel(q->head, &q->regs->cpu_idx); } static void mt76_dma_tx_cleanup(struct mt76_dev *dev, struct mt76_queue *q, bool flush) { struct mt76_queue_entry entry; int last; if (!q) return; spin_lock_bh(&q->cleanup_lock); if (flush) last = -1; else last = readl(&q->regs->dma_idx); while (q->queued > 0 && q->tail != last) { mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry); mt76_queue_tx_complete(dev, q, &entry); if (entry.txwi) { if (!(dev->drv->drv_flags & MT_DRV_TXWI_NO_FREE)) mt76_put_txwi(dev, entry.txwi); } if (!flush && q->tail == last) last = readl(&q->regs->dma_idx); } spin_unlock_bh(&q->cleanup_lock); if (flush) { spin_lock_bh(&q->lock); mt76_dma_sync_idx(dev, q); mt76_dma_kick_queue(dev, q); spin_unlock_bh(&q->lock); } if (!q->queued) wake_up(&dev->tx_wait); } static void * mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx, int *len, u32 *info, bool *more) { struct mt76_queue_entry *e = &q->entry[idx]; struct mt76_desc *desc = &q->desc[idx]; dma_addr_t buf_addr; void *buf = e->buf; int buf_len = SKB_WITH_OVERHEAD(q->buf_size); buf_addr = e->dma_addr[0]; if (len) { u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl)); *len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl); *more = !(ctl & MT_DMA_CTL_LAST_SEC0); } if (info) *info = le32_to_cpu(desc->info); dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE); e->buf = NULL; return buf; } static void * mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush, int *len, u32 *info, bool *more) { int idx = q->tail; *more = false; if (!q->queued) return NULL; if (flush) q->desc[idx].ctrl |= cpu_to_le32(MT_DMA_CTL_DMA_DONE); else if (!(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE))) return NULL; q->tail = (q->tail + 1) % q->ndesc; q->queued--; return mt76_dma_get_buf(dev, q, idx, len, info, more); } static int mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, struct mt76_queue *q, struct sk_buff *skb, u32 tx_info) { struct mt76_queue_buf buf = {}; dma_addr_t addr; if (q->queued + 1 >= q->ndesc - 1) goto error; addr = dma_map_single(dev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev->dev, addr))) goto error; buf.addr = addr; buf.len = skb->len; spin_lock_bh(&q->lock); mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL); mt76_dma_kick_queue(dev, q); spin_unlock_bh(&q->lock); return 0; error: dev_kfree_skb(skb); return -ENOMEM; } static int mt76_dma_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q, struct sk_buff *skb, struct mt76_wcid *wcid, struct ieee80211_sta *sta) { struct ieee80211_tx_status status = { .sta = sta, }; struct mt76_tx_info tx_info = { .skb = skb, }; struct ieee80211_hw *hw; int len, n = 0, ret = -ENOMEM; struct mt76_txwi_cache *t; struct sk_buff *iter; dma_addr_t addr; u8 *txwi; t = mt76_get_txwi(dev); if (!t) goto free_skb; txwi = mt76_get_txwi_ptr(dev, t); skb->prev = skb->next = NULL; if (dev->drv->drv_flags & MT_DRV_TX_ALIGNED4_SKBS) mt76_insert_hdr_pad(skb); len = skb_headlen(skb); addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev->dev, addr))) goto free; tx_info.buf[n].addr = t->dma_addr; tx_info.buf[n++].len = dev->drv->txwi_size; tx_info.buf[n].addr = addr; tx_info.buf[n++].len = len; skb_walk_frags(skb, iter) { if (n == ARRAY_SIZE(tx_info.buf)) goto unmap; addr = dma_map_single(dev->dev, iter->data, iter->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev->dev, addr))) goto unmap; tx_info.buf[n].addr = addr; tx_info.buf[n++].len = iter->len; } tx_info.nbuf = n; if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) { ret = -ENOMEM; goto unmap; } dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size, DMA_TO_DEVICE); ret = dev->drv->tx_prepare_skb(dev, txwi, q->qid, wcid, sta, &tx_info); dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size, DMA_TO_DEVICE); if (ret < 0) goto unmap; return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf, tx_info.info, tx_info.skb, t); unmap: for (n--; n > 0; n--) dma_unmap_single(dev->dev, tx_info.buf[n].addr, tx_info.buf[n].len, DMA_TO_DEVICE); free: #ifdef CONFIG_NL80211_TESTMODE /* fix tx_done accounting on queue overflow */ if (mt76_is_testmode_skb(dev, skb, &hw)) { struct mt76_phy *phy = hw->priv; if (tx_info.skb == phy->test.tx_skb) phy->test.tx_done--; } #endif mt76_put_txwi(dev, t); free_skb: status.skb = tx_info.skb; hw = mt76_tx_status_get_hw(dev, tx_info.skb); spin_lock_bh(&dev->rx_lock); ieee80211_tx_status_ext(hw, &status); spin_unlock_bh(&dev->rx_lock); return ret; } static int mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q) { dma_addr_t addr; void *buf; int frames = 0; int len = SKB_WITH_OVERHEAD(q->buf_size); int offset = q->buf_offset; spin_lock_bh(&q->lock); while (q->queued < q->ndesc - 1) { struct mt76_queue_buf qbuf; buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC); if (!buf) break; addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev->dev, addr))) { skb_free_frag(buf); break; } qbuf.addr = addr + offset; qbuf.len = len - offset; qbuf.skip_unmap = false; mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL); frames++; } if (frames) mt76_dma_kick_queue(dev, q); spin_unlock_bh(&q->lock); return frames; } static void mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q) { struct page *page; void *buf; bool more; spin_lock_bh(&q->lock); do { buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more); if (!buf) break; skb_free_frag(buf); } while (1); if (q->rx_head) { dev_kfree_skb(q->rx_head); q->rx_head = NULL; } spin_unlock_bh(&q->lock); if (!q->rx_page.va) return; page = virt_to_page(q->rx_page.va); __page_frag_cache_drain(page, q->rx_page.pagecnt_bias); memset(&q->rx_page, 0, sizeof(q->rx_page)); } static void mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid) { struct mt76_queue *q = &dev->q_rx[qid]; int i; for (i = 0; i < q->ndesc; i++) q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE); mt76_dma_rx_cleanup(dev, q); mt76_dma_sync_idx(dev, q); mt76_dma_rx_fill(dev, q); } static void mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data, int len, bool more) { struct sk_buff *skb = q->rx_head; struct skb_shared_info *shinfo = skb_shinfo(skb); int nr_frags = shinfo->nr_frags; if (nr_frags < ARRAY_SIZE(shinfo->frags)) { struct page *page = virt_to_head_page(data); int offset = data - page_address(page) + q->buf_offset; skb_add_rx_frag(skb, nr_frags, page, offset, len, q->buf_size); } else { skb_free_frag(data); } if (more) return; q->rx_head = NULL; if (nr_frags < ARRAY_SIZE(shinfo->frags)) dev->drv->rx_skb(dev, q - dev->q_rx, skb); else dev_kfree_skb(skb); } static int mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget) { int len, data_len, done = 0; struct sk_buff *skb; unsigned char *data; bool more; while (done < budget) { u32 info; data = mt76_dma_dequeue(dev, q, false, &len, &info, &more); if (!data) break; if (q->rx_head) data_len = q->buf_size; else data_len = SKB_WITH_OVERHEAD(q->buf_size); if (data_len < len + q->buf_offset) { dev_kfree_skb(q->rx_head); q->rx_head = NULL; skb_free_frag(data); continue; } if (q->rx_head) { mt76_add_fragment(dev, q, data, len, more); continue; } skb = build_skb(data, q->buf_size); if (!skb) { skb_free_frag(data); continue; } skb_reserve(skb, q->buf_offset); if (q == &dev->q_rx[MT_RXQ_MCU]) { u32 *rxfce = (u32 *)skb->cb; *rxfce = info; } __skb_put(skb, len); done++; if (more) { q->rx_head = skb; continue; } dev->drv->rx_skb(dev, q - dev->q_rx, skb); } mt76_dma_rx_fill(dev, q); return done; } int mt76_dma_rx_poll(struct napi_struct *napi, int budget) { struct mt76_dev *dev; int qid, done = 0, cur; dev = container_of(napi->dev, struct mt76_dev, napi_dev); qid = napi - dev->napi; rcu_read_lock(); do { cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done); mt76_rx_poll_complete(dev, qid, napi); done += cur; } while (cur && done < budget); rcu_read_unlock(); if (done < budget && napi_complete(napi)) dev->drv->rx_poll_complete(dev, qid); return done; } EXPORT_SYMBOL_GPL(mt76_dma_rx_poll); static int mt76_dma_init(struct mt76_dev *dev, int (*poll)(struct napi_struct *napi, int budget)) { int i; init_dummy_netdev(&dev->napi_dev); init_dummy_netdev(&dev->tx_napi_dev); snprintf(dev->napi_dev.name, sizeof(dev->napi_dev.name), "%s", wiphy_name(dev->hw->wiphy)); dev->napi_dev.threaded = 1; mt76_for_each_q_rx(dev, i) { netif_napi_add(&dev->napi_dev, &dev->napi[i], poll, 64); mt76_dma_rx_fill(dev, &dev->q_rx[i]); napi_enable(&dev->napi[i]); } return 0; } static const struct mt76_queue_ops mt76_dma_ops = { .init = mt76_dma_init, .alloc = mt76_dma_alloc_queue, .reset_q = mt76_dma_queue_reset, .tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw, .tx_queue_skb = mt76_dma_tx_queue_skb, .tx_cleanup = mt76_dma_tx_cleanup, .rx_cleanup = mt76_dma_rx_cleanup, .rx_reset = mt76_dma_rx_reset, .kick = mt76_dma_kick_queue, }; void mt76_dma_attach(struct mt76_dev *dev) { dev->queue_ops = &mt76_dma_ops; } EXPORT_SYMBOL_GPL(mt76_dma_attach); void mt76_dma_cleanup(struct mt76_dev *dev) { int i; mt76_worker_disable(&dev->tx_worker); netif_napi_del(&dev->tx_napi); for (i = 0; i < ARRAY_SIZE(dev->phy.q_tx); i++) { mt76_dma_tx_cleanup(dev, dev->phy.q_tx[i], true); if (dev->phy2) mt76_dma_tx_cleanup(dev, dev->phy2->q_tx[i], true); } for (i = 0; i < ARRAY_SIZE(dev->q_mcu); i++) mt76_dma_tx_cleanup(dev, dev->q_mcu[i], true); mt76_for_each_q_rx(dev, i) { netif_napi_del(&dev->napi[i]); mt76_dma_rx_cleanup(dev, &dev->q_rx[i]); } mt76_free_pending_txwi(dev); } EXPORT_SYMBOL_GPL(mt76_dma_cleanup);