// SPDX-License-Identifier: GPL-2.0-only /* * intel_pt.c: Intel Processor Trace support * Copyright (c) 2013-2015, Intel Corporation. */ #include #include #include #include #include #include #include #include #include "session.h" #include "machine.h" #include "memswap.h" #include "sort.h" #include "tool.h" #include "event.h" #include "evlist.h" #include "evsel.h" #include "map.h" #include "color.h" #include "thread.h" #include "thread-stack.h" #include "symbol.h" #include "callchain.h" #include "dso.h" #include "debug.h" #include "auxtrace.h" #include "tsc.h" #include "intel-pt.h" #include "config.h" #include "util/perf_api_probe.h" #include "util/synthetic-events.h" #include "time-utils.h" #include "../arch/x86/include/uapi/asm/perf_regs.h" #include "intel-pt-decoder/intel-pt-log.h" #include "intel-pt-decoder/intel-pt-decoder.h" #include "intel-pt-decoder/intel-pt-insn-decoder.h" #include "intel-pt-decoder/intel-pt-pkt-decoder.h" #define MAX_TIMESTAMP (~0ULL) struct range { u64 start; u64 end; }; struct intel_pt { struct auxtrace auxtrace; struct auxtrace_queues queues; struct auxtrace_heap heap; u32 auxtrace_type; struct perf_session *session; struct machine *machine; struct evsel *switch_evsel; struct thread *unknown_thread; bool timeless_decoding; bool sampling_mode; bool snapshot_mode; bool per_cpu_mmaps; bool have_tsc; bool data_queued; bool est_tsc; bool sync_switch; bool mispred_all; bool use_thread_stack; bool callstack; unsigned int br_stack_sz; unsigned int br_stack_sz_plus; int have_sched_switch; u32 pmu_type; u64 kernel_start; u64 switch_ip; u64 ptss_ip; u64 first_timestamp; struct perf_tsc_conversion tc; bool cap_user_time_zero; struct itrace_synth_opts synth_opts; bool sample_instructions; u64 instructions_sample_type; u64 instructions_id; bool sample_branches; u32 branches_filter; u64 branches_sample_type; u64 branches_id; bool sample_transactions; u64 transactions_sample_type; u64 transactions_id; bool sample_ptwrites; u64 ptwrites_sample_type; u64 ptwrites_id; bool sample_pwr_events; u64 pwr_events_sample_type; u64 mwait_id; u64 pwre_id; u64 exstop_id; u64 pwrx_id; u64 cbr_id; u64 psb_id; bool sample_pebs; struct evsel *pebs_evsel; u64 tsc_bit; u64 mtc_bit; u64 mtc_freq_bits; u32 tsc_ctc_ratio_n; u32 tsc_ctc_ratio_d; u64 cyc_bit; u64 noretcomp_bit; unsigned max_non_turbo_ratio; unsigned cbr2khz; int max_loops; unsigned long num_events; char *filter; struct addr_filters filts; struct range *time_ranges; unsigned int range_cnt; struct ip_callchain *chain; struct branch_stack *br_stack; u64 dflt_tsc_offset; struct rb_root vmcs_info; }; enum switch_state { INTEL_PT_SS_NOT_TRACING, INTEL_PT_SS_UNKNOWN, INTEL_PT_SS_TRACING, INTEL_PT_SS_EXPECTING_SWITCH_EVENT, INTEL_PT_SS_EXPECTING_SWITCH_IP, }; struct intel_pt_queue { struct intel_pt *pt; unsigned int queue_nr; struct auxtrace_buffer *buffer; struct auxtrace_buffer *old_buffer; void *decoder; const struct intel_pt_state *state; struct ip_callchain *chain; struct branch_stack *last_branch; union perf_event *event_buf; bool on_heap; bool stop; bool step_through_buffers; bool use_buffer_pid_tid; bool sync_switch; pid_t pid, tid; int cpu; int switch_state; pid_t next_tid; struct thread *thread; struct machine *guest_machine; struct thread *unknown_guest_thread; pid_t guest_machine_pid; bool exclude_kernel; bool have_sample; u64 time; u64 timestamp; u64 sel_timestamp; bool sel_start; unsigned int sel_idx; u32 flags; u16 insn_len; u64 last_insn_cnt; u64 ipc_insn_cnt; u64 ipc_cyc_cnt; u64 last_in_insn_cnt; u64 last_in_cyc_cnt; u64 last_br_insn_cnt; u64 last_br_cyc_cnt; unsigned int cbr_seen; char insn[INTEL_PT_INSN_BUF_SZ]; }; static void intel_pt_dump(struct intel_pt *pt __maybe_unused, unsigned char *buf, size_t len) { struct intel_pt_pkt packet; size_t pos = 0; int ret, pkt_len, i; char desc[INTEL_PT_PKT_DESC_MAX]; const char *color = PERF_COLOR_BLUE; enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX; color_fprintf(stdout, color, ". ... Intel Processor Trace data: size %zu bytes\n", len); while (len) { ret = intel_pt_get_packet(buf, len, &packet, &ctx); if (ret > 0) pkt_len = ret; else pkt_len = 1; printf("."); color_fprintf(stdout, color, " %08x: ", pos); for (i = 0; i < pkt_len; i++) color_fprintf(stdout, color, " %02x", buf[i]); for (; i < 16; i++) color_fprintf(stdout, color, " "); if (ret > 0) { ret = intel_pt_pkt_desc(&packet, desc, INTEL_PT_PKT_DESC_MAX); if (ret > 0) color_fprintf(stdout, color, " %s\n", desc); } else { color_fprintf(stdout, color, " Bad packet!\n"); } pos += pkt_len; buf += pkt_len; len -= pkt_len; } } static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, size_t len) { printf(".\n"); intel_pt_dump(pt, buf, len); } static void intel_pt_log_event(union perf_event *event) { FILE *f = intel_pt_log_fp(); if (!intel_pt_enable_logging || !f) return; perf_event__fprintf(event, NULL, f); } static void intel_pt_dump_sample(struct perf_session *session, struct perf_sample *sample) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); printf("\n"); intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size); } static bool intel_pt_log_events(struct intel_pt *pt, u64 tm) { struct perf_time_interval *range = pt->synth_opts.ptime_range; int n = pt->synth_opts.range_num; if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) return true; if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS) return false; /* perf_time__ranges_skip_sample does not work if time is zero */ if (!tm) tm = 1; return !n || !perf_time__ranges_skip_sample(range, n, tm); } static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root, u64 vmcs, u64 dflt_tsc_offset) { struct rb_node **p = &rb_root->rb_node; struct rb_node *parent = NULL; struct intel_pt_vmcs_info *v; while (*p) { parent = *p; v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node); if (v->vmcs == vmcs) return v; if (vmcs < v->vmcs) p = &(*p)->rb_left; else p = &(*p)->rb_right; } v = zalloc(sizeof(*v)); if (v) { v->vmcs = vmcs; v->tsc_offset = dflt_tsc_offset; v->reliable = dflt_tsc_offset; rb_link_node(&v->rb_node, parent, p); rb_insert_color(&v->rb_node, rb_root); } return v; } static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs) { struct intel_pt_queue *ptq = data; struct intel_pt *pt = ptq->pt; if (!vmcs && !pt->dflt_tsc_offset) return NULL; return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset); } static void intel_pt_free_vmcs_info(struct intel_pt *pt) { struct intel_pt_vmcs_info *v; struct rb_node *n; n = rb_first(&pt->vmcs_info); while (n) { v = rb_entry(n, struct intel_pt_vmcs_info, rb_node); n = rb_next(n); rb_erase(&v->rb_node, &pt->vmcs_info); free(v); } } static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, struct auxtrace_buffer *b) { bool consecutive = false; void *start; start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, pt->have_tsc, &consecutive, pt->synth_opts.vm_time_correlation); if (!start) return -EINVAL; /* * In the case of vm_time_correlation, the overlap might contain TSC * packets that will not be fixed, and that will then no longer work for * overlap detection. Avoid that by zeroing out the overlap. */ if (pt->synth_opts.vm_time_correlation) memset(b->data, 0, start - b->data); b->use_size = b->data + b->size - start; b->use_data = start; if (b->use_size && consecutive) b->consecutive = true; return 0; } static int intel_pt_get_buffer(struct intel_pt_queue *ptq, struct auxtrace_buffer *buffer, struct auxtrace_buffer *old_buffer, struct intel_pt_buffer *b) { bool might_overlap; if (!buffer->data) { int fd = perf_data__fd(ptq->pt->session->data); buffer->data = auxtrace_buffer__get_data(buffer, fd); if (!buffer->data) return -ENOMEM; } might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode; if (might_overlap && !buffer->consecutive && old_buffer && intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) return -ENOMEM; if (buffer->use_data) { b->len = buffer->use_size; b->buf = buffer->use_data; } else { b->len = buffer->size; b->buf = buffer->data; } b->ref_timestamp = buffer->reference; if (!old_buffer || (might_overlap && !buffer->consecutive)) { b->consecutive = false; b->trace_nr = buffer->buffer_nr + 1; } else { b->consecutive = true; } return 0; } /* Do not drop buffers with references - refer intel_pt_get_trace() */ static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq, struct auxtrace_buffer *buffer) { if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer) return; auxtrace_buffer__drop_data(buffer); } /* Must be serialized with respect to intel_pt_get_trace() */ static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb, void *cb_data) { struct intel_pt_queue *ptq = data; struct auxtrace_buffer *buffer = ptq->buffer; struct auxtrace_buffer *old_buffer = ptq->old_buffer; struct auxtrace_queue *queue; int err = 0; queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; while (1) { struct intel_pt_buffer b = { .len = 0 }; buffer = auxtrace_buffer__next(queue, buffer); if (!buffer) break; err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b); if (err) break; if (b.len) { intel_pt_lookahead_drop_buffer(ptq, old_buffer); old_buffer = buffer; } else { intel_pt_lookahead_drop_buffer(ptq, buffer); continue; } err = cb(&b, cb_data); if (err) break; } if (buffer != old_buffer) intel_pt_lookahead_drop_buffer(ptq, buffer); intel_pt_lookahead_drop_buffer(ptq, old_buffer); return err; } /* * This function assumes data is processed sequentially only. * Must be serialized with respect to intel_pt_lookahead() */ static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) { struct intel_pt_queue *ptq = data; struct auxtrace_buffer *buffer = ptq->buffer; struct auxtrace_buffer *old_buffer = ptq->old_buffer; struct auxtrace_queue *queue; int err; if (ptq->stop) { b->len = 0; return 0; } queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; buffer = auxtrace_buffer__next(queue, buffer); if (!buffer) { if (old_buffer) auxtrace_buffer__drop_data(old_buffer); b->len = 0; return 0; } ptq->buffer = buffer; err = intel_pt_get_buffer(ptq, buffer, old_buffer, b); if (err) return err; if (ptq->step_through_buffers) ptq->stop = true; if (b->len) { if (old_buffer) auxtrace_buffer__drop_data(old_buffer); ptq->old_buffer = buffer; } else { auxtrace_buffer__drop_data(buffer); return intel_pt_get_trace(b, data); } return 0; } struct intel_pt_cache_entry { struct auxtrace_cache_entry entry; u64 insn_cnt; u64 byte_cnt; enum intel_pt_insn_op op; enum intel_pt_insn_branch branch; bool emulated_ptwrite; int length; int32_t rel; char insn[INTEL_PT_INSN_BUF_SZ]; }; static int intel_pt_config_div(const char *var, const char *value, void *data) { int *d = data; long val; if (!strcmp(var, "intel-pt.cache-divisor")) { val = strtol(value, NULL, 0); if (val > 0 && val <= INT_MAX) *d = val; } return 0; } static int intel_pt_cache_divisor(void) { static int d; if (d) return d; perf_config(intel_pt_config_div, &d); if (!d) d = 64; return d; } static unsigned int intel_pt_cache_size(struct dso *dso, struct machine *machine) { off_t size; size = dso__data_size(dso, machine); size /= intel_pt_cache_divisor(); if (size < 1000) return 10; if (size > (1 << 21)) return 21; return 32 - __builtin_clz(size); } static struct auxtrace_cache *intel_pt_cache(struct dso *dso, struct machine *machine) { struct auxtrace_cache *c; unsigned int bits; if (dso->auxtrace_cache) return dso->auxtrace_cache; bits = intel_pt_cache_size(dso, machine); /* Ignoring cache creation failure */ c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); dso->auxtrace_cache = c; return c; } static int intel_pt_cache_add(struct dso *dso, struct machine *machine, u64 offset, u64 insn_cnt, u64 byte_cnt, struct intel_pt_insn *intel_pt_insn) { struct auxtrace_cache *c = intel_pt_cache(dso, machine); struct intel_pt_cache_entry *e; int err; if (!c) return -ENOMEM; e = auxtrace_cache__alloc_entry(c); if (!e) return -ENOMEM; e->insn_cnt = insn_cnt; e->byte_cnt = byte_cnt; e->op = intel_pt_insn->op; e->branch = intel_pt_insn->branch; e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite; e->length = intel_pt_insn->length; e->rel = intel_pt_insn->rel; memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ); err = auxtrace_cache__add(c, offset, &e->entry); if (err) auxtrace_cache__free_entry(c, e); return err; } static struct intel_pt_cache_entry * intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) { struct auxtrace_cache *c = intel_pt_cache(dso, machine); if (!c) return NULL; return auxtrace_cache__lookup(dso->auxtrace_cache, offset); } static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine, u64 offset) { struct auxtrace_cache *c = intel_pt_cache(dso, machine); if (!c) return; auxtrace_cache__remove(dso->auxtrace_cache, offset); } static inline bool intel_pt_guest_kernel_ip(uint64_t ip) { /* Assumes 64-bit kernel */ return ip & (1ULL << 63); } static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr) { if (nr) { return intel_pt_guest_kernel_ip(ip) ? PERF_RECORD_MISC_GUEST_KERNEL : PERF_RECORD_MISC_GUEST_USER; } return ip >= ptq->pt->kernel_start ? PERF_RECORD_MISC_KERNEL : PERF_RECORD_MISC_USER; } static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip) { /* No support for non-zero CS base */ if (from_ip) return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr); return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr); } static int intel_pt_get_guest(struct intel_pt_queue *ptq) { struct machines *machines = &ptq->pt->session->machines; struct machine *machine; pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid; if (ptq->guest_machine && pid == ptq->guest_machine_pid) return 0; ptq->guest_machine = NULL; thread__zput(ptq->unknown_guest_thread); machine = machines__find_guest(machines, pid); if (!machine) return -1; ptq->unknown_guest_thread = machine__idle_thread(machine); if (!ptq->unknown_guest_thread) return -1; ptq->guest_machine = machine; ptq->guest_machine_pid = pid; return 0; } static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn) { return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL; } #define PTWRITE_MAGIC "\x0f\x0bperf,ptwrite " #define PTWRITE_MAGIC_LEN 16 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset) { unsigned char buf[PTWRITE_MAGIC_LEN]; ssize_t len; len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN); if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) { intel_pt_log("Emulated ptwrite signature found\n"); return true; } intel_pt_log("Emulated ptwrite signature not found\n"); return false; } static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, uint64_t *insn_cnt_ptr, uint64_t *ip, uint64_t to_ip, uint64_t max_insn_cnt, void *data) { struct intel_pt_queue *ptq = data; struct machine *machine = ptq->pt->machine; struct thread *thread; struct addr_location al; unsigned char buf[INTEL_PT_INSN_BUF_SZ]; ssize_t len; int x86_64; u8 cpumode; u64 offset, start_offset, start_ip; u64 insn_cnt = 0; bool one_map = true; bool nr; intel_pt_insn->length = 0; if (to_ip && *ip == to_ip) goto out_no_cache; nr = ptq->state->to_nr; cpumode = intel_pt_nr_cpumode(ptq, *ip, nr); if (nr) { if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL || intel_pt_get_guest(ptq)) return -EINVAL; machine = ptq->guest_machine; thread = ptq->unknown_guest_thread; } else { thread = ptq->thread; if (!thread) { if (cpumode != PERF_RECORD_MISC_KERNEL) return -EINVAL; thread = ptq->pt->unknown_thread; } } while (1) { if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) return -EINVAL; if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) return -ENOENT; offset = al.map->map_ip(al.map, *ip); if (!to_ip && one_map) { struct intel_pt_cache_entry *e; e = intel_pt_cache_lookup(al.map->dso, machine, offset); if (e && (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { *insn_cnt_ptr = e->insn_cnt; *ip += e->byte_cnt; intel_pt_insn->op = e->op; intel_pt_insn->branch = e->branch; intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite; intel_pt_insn->length = e->length; intel_pt_insn->rel = e->rel; memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ); intel_pt_log_insn_no_data(intel_pt_insn, *ip); return 0; } } start_offset = offset; start_ip = *ip; /* Load maps to ensure dso->is_64_bit has been updated */ map__load(al.map); x86_64 = al.map->dso->is_64_bit; while (1) { len = dso__data_read_offset(al.map->dso, machine, offset, buf, INTEL_PT_INSN_BUF_SZ); if (len <= 0) return -EINVAL; if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) return -EINVAL; intel_pt_log_insn(intel_pt_insn, *ip); insn_cnt += 1; if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) { bool eptw; u64 offs; if (!intel_pt_jmp_16(intel_pt_insn)) goto out; /* Check for emulated ptwrite */ offs = offset + intel_pt_insn->length; eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs); intel_pt_insn->emulated_ptwrite = eptw; goto out; } if (max_insn_cnt && insn_cnt >= max_insn_cnt) goto out_no_cache; *ip += intel_pt_insn->length; if (to_ip && *ip == to_ip) { intel_pt_insn->length = 0; goto out_no_cache; } if (*ip >= al.map->end) break; offset += intel_pt_insn->length; } one_map = false; } out: *insn_cnt_ptr = insn_cnt; if (!one_map) goto out_no_cache; /* * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate * entries. */ if (to_ip) { struct intel_pt_cache_entry *e; e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); if (e) return 0; } /* Ignore cache errors */ intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, *ip - start_ip, intel_pt_insn); return 0; out_no_cache: *insn_cnt_ptr = insn_cnt; return 0; } static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip, uint64_t offset, const char *filename) { struct addr_filter *filt; bool have_filter = false; bool hit_tracestop = false; bool hit_filter = false; list_for_each_entry(filt, &pt->filts.head, list) { if (filt->start) have_filter = true; if ((filename && !filt->filename) || (!filename && filt->filename) || (filename && strcmp(filename, filt->filename))) continue; if (!(offset >= filt->addr && offset < filt->addr + filt->size)) continue; intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n", ip, offset, filename ? filename : "[kernel]", filt->start ? "filter" : "stop", filt->addr, filt->size); if (filt->start) hit_filter = true; else hit_tracestop = true; } if (!hit_tracestop && !hit_filter) intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n", ip, offset, filename ? filename : "[kernel]"); return hit_tracestop || (have_filter && !hit_filter); } static int __intel_pt_pgd_ip(uint64_t ip, void *data) { struct intel_pt_queue *ptq = data; struct thread *thread; struct addr_location al; u8 cpumode; u64 offset; if (ptq->state->to_nr) { if (intel_pt_guest_kernel_ip(ip)) return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); /* No support for decoding guest user space */ return -EINVAL; } else if (ip >= ptq->pt->kernel_start) { return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL); } cpumode = PERF_RECORD_MISC_USER; thread = ptq->thread; if (!thread) return -EINVAL; if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso) return -EINVAL; offset = al.map->map_ip(al.map, ip); return intel_pt_match_pgd_ip(ptq->pt, ip, offset, al.map->dso->long_name); } static bool intel_pt_pgd_ip(uint64_t ip, void *data) { return __intel_pt_pgd_ip(ip, data) > 0; } static bool intel_pt_get_config(struct intel_pt *pt, struct perf_event_attr *attr, u64 *config) { if (attr->type == pt->pmu_type) { if (config) *config = attr->config; return true; } return false; } static bool intel_pt_exclude_kernel(struct intel_pt *pt) { struct evsel *evsel; evlist__for_each_entry(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && !evsel->core.attr.exclude_kernel) return false; } return true; } static bool intel_pt_return_compression(struct intel_pt *pt) { struct evsel *evsel; u64 config; if (!pt->noretcomp_bit) return true; evlist__for_each_entry(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->core.attr, &config) && (config & pt->noretcomp_bit)) return false; } return true; } static bool intel_pt_branch_enable(struct intel_pt *pt) { struct evsel *evsel; u64 config; evlist__for_each_entry(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->core.attr, &config) && (config & 1) && !(config & 0x2000)) return false; } return true; } static unsigned int intel_pt_mtc_period(struct intel_pt *pt) { struct evsel *evsel; unsigned int shift; u64 config; if (!pt->mtc_freq_bits) return 0; for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) config >>= 1; evlist__for_each_entry(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->core.attr, &config)) return (config & pt->mtc_freq_bits) >> shift; } return 0; } static bool intel_pt_timeless_decoding(struct intel_pt *pt) { struct evsel *evsel; bool timeless_decoding = true; u64 config; if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding) return true; evlist__for_each_entry(pt->session->evlist, evsel) { if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME)) return true; if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { if (config & pt->tsc_bit) timeless_decoding = false; else return true; } } return timeless_decoding; } static bool intel_pt_tracing_kernel(struct intel_pt *pt) { struct evsel *evsel; evlist__for_each_entry(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->core.attr, NULL) && !evsel->core.attr.exclude_kernel) return true; } return false; } static bool intel_pt_have_tsc(struct intel_pt *pt) { struct evsel *evsel; bool have_tsc = false; u64 config; if (!pt->tsc_bit) return false; evlist__for_each_entry(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->core.attr, &config)) { if (config & pt->tsc_bit) have_tsc = true; else return false; } } return have_tsc; } static bool intel_pt_have_mtc(struct intel_pt *pt) { struct evsel *evsel; u64 config; evlist__for_each_entry(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->core.attr, &config) && (config & pt->mtc_bit)) return true; } return false; } static bool intel_pt_sampling_mode(struct intel_pt *pt) { struct evsel *evsel; evlist__for_each_entry(pt->session->evlist, evsel) { if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) && evsel->core.attr.aux_sample_size) return true; } return false; } static u64 intel_pt_ctl(struct intel_pt *pt) { struct evsel *evsel; u64 config; evlist__for_each_entry(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->core.attr, &config)) return config; } return 0; } static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) { u64 quot, rem; quot = ns / pt->tc.time_mult; rem = ns % pt->tc.time_mult; return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / pt->tc.time_mult; } static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt) { size_t sz = sizeof(struct ip_callchain); /* Add 1 to callchain_sz for callchain context */ sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64); return zalloc(sz); } static int intel_pt_callchain_init(struct intel_pt *pt) { struct evsel *evsel; evlist__for_each_entry(pt->session->evlist, evsel) { if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN)) evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN; } pt->chain = intel_pt_alloc_chain(pt); if (!pt->chain) return -ENOMEM; return 0; } static void intel_pt_add_callchain(struct intel_pt *pt, struct perf_sample *sample) { struct thread *thread = machine__findnew_thread(pt->machine, sample->pid, sample->tid); thread_stack__sample_late(thread, sample->cpu, pt->chain, pt->synth_opts.callchain_sz + 1, sample->ip, pt->kernel_start); sample->callchain = pt->chain; } static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt) { size_t sz = sizeof(struct branch_stack); sz += entry_cnt * sizeof(struct branch_entry); return zalloc(sz); } static int intel_pt_br_stack_init(struct intel_pt *pt) { struct evsel *evsel; evlist__for_each_entry(pt->session->evlist, evsel) { if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK)) evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK; } pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz); if (!pt->br_stack) return -ENOMEM; return 0; } static void intel_pt_add_br_stack(struct intel_pt *pt, struct perf_sample *sample) { struct thread *thread = machine__findnew_thread(pt->machine, sample->pid, sample->tid); thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack, pt->br_stack_sz, sample->ip, pt->kernel_start); sample->branch_stack = pt->br_stack; } /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */ #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U) static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, unsigned int queue_nr) { struct intel_pt_params params = { .get_trace = 0, }; struct perf_env *env = pt->machine->env; struct intel_pt_queue *ptq; ptq = zalloc(sizeof(struct intel_pt_queue)); if (!ptq) return NULL; if (pt->synth_opts.callchain) { ptq->chain = intel_pt_alloc_chain(pt); if (!ptq->chain) goto out_free; } if (pt->synth_opts.last_branch || pt->synth_opts.other_events) { unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz); ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt); if (!ptq->last_branch) goto out_free; } ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); if (!ptq->event_buf) goto out_free; ptq->pt = pt; ptq->queue_nr = queue_nr; ptq->exclude_kernel = intel_pt_exclude_kernel(pt); ptq->pid = -1; ptq->tid = -1; ptq->cpu = -1; ptq->next_tid = -1; params.get_trace = intel_pt_get_trace; params.walk_insn = intel_pt_walk_next_insn; params.lookahead = intel_pt_lookahead; params.findnew_vmcs_info = intel_pt_findnew_vmcs_info; params.data = ptq; params.return_compression = intel_pt_return_compression(pt); params.branch_enable = intel_pt_branch_enable(pt); params.ctl = intel_pt_ctl(pt); params.max_non_turbo_ratio = pt->max_non_turbo_ratio; params.mtc_period = intel_pt_mtc_period(pt); params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; params.quick = pt->synth_opts.quick; params.vm_time_correlation = pt->synth_opts.vm_time_correlation; params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run; params.first_timestamp = pt->first_timestamp; params.max_loops = pt->max_loops; if (pt->filts.cnt > 0) params.pgd_ip = intel_pt_pgd_ip; if (pt->synth_opts.instructions) { if (pt->synth_opts.period) { switch (pt->synth_opts.period_type) { case PERF_ITRACE_PERIOD_INSTRUCTIONS: params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; params.period = pt->synth_opts.period; break; case PERF_ITRACE_PERIOD_TICKS: params.period_type = INTEL_PT_PERIOD_TICKS; params.period = pt->synth_opts.period; break; case PERF_ITRACE_PERIOD_NANOSECS: params.period_type = INTEL_PT_PERIOD_TICKS; params.period = intel_pt_ns_to_ticks(pt, pt->synth_opts.period); break; default: break; } } if (!params.period) { params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; params.period = 1; } } if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18)) params.flags |= INTEL_PT_FUP_WITH_NLIP; ptq->decoder = intel_pt_decoder_new(¶ms); if (!ptq->decoder) goto out_free; return ptq; out_free: zfree(&ptq->event_buf); zfree(&ptq->last_branch); zfree(&ptq->chain); free(ptq); return NULL; } static void intel_pt_free_queue(void *priv) { struct intel_pt_queue *ptq = priv; if (!ptq) return; thread__zput(ptq->thread); thread__zput(ptq->unknown_guest_thread); intel_pt_decoder_free(ptq->decoder); zfree(&ptq->event_buf); zfree(&ptq->last_branch); zfree(&ptq->chain); free(ptq); } static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp) { unsigned int i; pt->first_timestamp = timestamp; for (i = 0; i < pt->queues.nr_queues; i++) { struct auxtrace_queue *queue = &pt->queues.queue_array[i]; struct intel_pt_queue *ptq = queue->priv; if (ptq && ptq->decoder) intel_pt_set_first_timestamp(ptq->decoder, timestamp); } } static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, struct auxtrace_queue *queue) { struct intel_pt_queue *ptq = queue->priv; if (queue->tid == -1 || pt->have_sched_switch) { ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); if (ptq->tid == -1) ptq->pid = -1; thread__zput(ptq->thread); } if (!ptq->thread && ptq->tid != -1) ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); if (ptq->thread) { ptq->pid = ptq->thread->pid_; if (queue->cpu == -1) ptq->cpu = ptq->thread->cpu; } } static void intel_pt_sample_flags(struct intel_pt_queue *ptq) { ptq->insn_len = 0; if (ptq->state->flags & INTEL_PT_ABORT_TX) { ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; } else if (ptq->state->flags & INTEL_PT_ASYNC) { if (!ptq->state->to_ip) ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TRACE_END; else if (ptq->state->from_nr && !ptq->state->to_nr) ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | PERF_IP_FLAG_VMEXIT; else ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | PERF_IP_FLAG_INTERRUPT; } else { if (ptq->state->from_ip) ptq->flags = intel_pt_insn_type(ptq->state->insn_op); else ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TRACE_BEGIN; if (ptq->state->flags & INTEL_PT_IN_TX) ptq->flags |= PERF_IP_FLAG_IN_TX; ptq->insn_len = ptq->state->insn_len; memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ); } if (ptq->state->type & INTEL_PT_TRACE_BEGIN) ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN; if (ptq->state->type & INTEL_PT_TRACE_END) ptq->flags |= PERF_IP_FLAG_TRACE_END; } static void intel_pt_setup_time_range(struct intel_pt *pt, struct intel_pt_queue *ptq) { if (!pt->range_cnt) return; ptq->sel_timestamp = pt->time_ranges[0].start; ptq->sel_idx = 0; if (ptq->sel_timestamp) { ptq->sel_start = true; } else { ptq->sel_timestamp = pt->time_ranges[0].end; ptq->sel_start = false; } } static int intel_pt_setup_queue(struct intel_pt *pt, struct auxtrace_queue *queue, unsigned int queue_nr) { struct intel_pt_queue *ptq = queue->priv; if (list_empty(&queue->head)) return 0; if (!ptq) { ptq = intel_pt_alloc_queue(pt, queue_nr); if (!ptq) return -ENOMEM; queue->priv = ptq; if (queue->cpu != -1) ptq->cpu = queue->cpu; ptq->tid = queue->tid; ptq->cbr_seen = UINT_MAX; if (pt->sampling_mode && !pt->snapshot_mode && pt->timeless_decoding) ptq->step_through_buffers = true; ptq->sync_switch = pt->sync_switch; intel_pt_setup_time_range(pt, ptq); } if (!ptq->on_heap && (!ptq->sync_switch || ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { const struct intel_pt_state *state; int ret; if (pt->timeless_decoding) return 0; intel_pt_log("queue %u getting timestamp\n", queue_nr); intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", queue_nr, ptq->cpu, ptq->pid, ptq->tid); if (ptq->sel_start && ptq->sel_timestamp) { ret = intel_pt_fast_forward(ptq->decoder, ptq->sel_timestamp); if (ret) return ret; } while (1) { state = intel_pt_decode(ptq->decoder); if (state->err) { if (state->err == INTEL_PT_ERR_NODATA) { intel_pt_log("queue %u has no timestamp\n", queue_nr); return 0; } continue; } if (state->timestamp) break; } ptq->timestamp = state->timestamp; intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", queue_nr, ptq->timestamp); ptq->state = state; ptq->have_sample = true; if (ptq->sel_start && ptq->sel_timestamp && ptq->timestamp < ptq->sel_timestamp) ptq->have_sample = false; intel_pt_sample_flags(ptq); ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); if (ret) return ret; ptq->on_heap = true; } return 0; } static int intel_pt_setup_queues(struct intel_pt *pt) { unsigned int i; int ret; for (i = 0; i < pt->queues.nr_queues; i++) { ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); if (ret) return ret; } return 0; } static inline bool intel_pt_skip_event(struct intel_pt *pt) { return pt->synth_opts.initial_skip && pt->num_events++ < pt->synth_opts.initial_skip; } /* * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen. * Also ensure CBR is first non-skipped event by allowing for 4 more samples * from this decoder state. */ static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt) { return pt->synth_opts.initial_skip && pt->num_events + 4 < pt->synth_opts.initial_skip; } static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq, union perf_event *event, struct perf_sample *sample) { event->sample.header.type = PERF_RECORD_SAMPLE; event->sample.header.size = sizeof(struct perf_event_header); sample->pid = ptq->pid; sample->tid = ptq->tid; sample->cpu = ptq->cpu; sample->insn_len = ptq->insn_len; memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ); } static void intel_pt_prep_b_sample(struct intel_pt *pt, struct intel_pt_queue *ptq, union perf_event *event, struct perf_sample *sample) { intel_pt_prep_a_sample(ptq, event, sample); if (!pt->timeless_decoding) sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc); sample->ip = ptq->state->from_ip; sample->addr = ptq->state->to_ip; sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr); sample->period = 1; sample->flags = ptq->flags; event->sample.header.misc = sample->cpumode; } static int intel_pt_inject_event(union perf_event *event, struct perf_sample *sample, u64 type) { event->header.size = perf_event__sample_event_size(sample, type, 0); return perf_event__synthesize_sample(event, type, 0, sample); } static inline int intel_pt_opt_inject(struct intel_pt *pt, union perf_event *event, struct perf_sample *sample, u64 type) { if (!pt->synth_opts.inject) return 0; return intel_pt_inject_event(event, sample, type); } static int intel_pt_deliver_synth_event(struct intel_pt *pt, union perf_event *event, struct perf_sample *sample, u64 type) { int ret; ret = intel_pt_opt_inject(pt, event, sample, type); if (ret) return ret; ret = perf_session__deliver_synth_event(pt->session, event, sample); if (ret) pr_err("Intel PT: failed to deliver event, error %d\n", ret); return ret; } static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; struct dummy_branch_stack { u64 nr; u64 hw_idx; struct branch_entry entries; } dummy_bs; if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) return 0; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_b_sample(pt, ptq, event, &sample); sample.id = ptq->pt->branches_id; sample.stream_id = ptq->pt->branches_id; /* * perf report cannot handle events without a branch stack when using * SORT_MODE__BRANCH so make a dummy one. */ if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { dummy_bs = (struct dummy_branch_stack){ .nr = 1, .hw_idx = -1ULL, .entries = { .from = sample.ip, .to = sample.addr, }, }; sample.branch_stack = (struct branch_stack *)&dummy_bs; } if (ptq->state->flags & INTEL_PT_SAMPLE_IPC) sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt; if (sample.cyc_cnt) { sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt; ptq->last_br_insn_cnt = ptq->ipc_insn_cnt; ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt; } return intel_pt_deliver_synth_event(pt, event, &sample, pt->branches_sample_type); } static void intel_pt_prep_sample(struct intel_pt *pt, struct intel_pt_queue *ptq, union perf_event *event, struct perf_sample *sample) { intel_pt_prep_b_sample(pt, ptq, event, sample); if (pt->synth_opts.callchain) { thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, pt->synth_opts.callchain_sz + 1, sample->ip, pt->kernel_start); sample->callchain = ptq->chain; } if (pt->synth_opts.last_branch) { thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, pt->br_stack_sz); sample->branch_stack = ptq->last_branch; } } static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_sample(pt, ptq, event, &sample); sample.id = ptq->pt->instructions_id; sample.stream_id = ptq->pt->instructions_id; if (pt->synth_opts.quick) sample.period = 1; else sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; if (ptq->state->flags & INTEL_PT_SAMPLE_IPC) sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt; if (sample.cyc_cnt) { sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt; ptq->last_in_insn_cnt = ptq->ipc_insn_cnt; ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt; } ptq->last_insn_cnt = ptq->state->tot_insn_cnt; return intel_pt_deliver_synth_event(pt, event, &sample, pt->instructions_sample_type); } static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_sample(pt, ptq, event, &sample); sample.id = ptq->pt->transactions_id; sample.stream_id = ptq->pt->transactions_id; return intel_pt_deliver_synth_event(pt, event, &sample, pt->transactions_sample_type); } static void intel_pt_prep_p_sample(struct intel_pt *pt, struct intel_pt_queue *ptq, union perf_event *event, struct perf_sample *sample) { intel_pt_prep_sample(pt, ptq, event, sample); /* * Zero IP is used to mean "trace start" but that is not the case for * power or PTWRITE events with no IP, so clear the flags. */ if (!sample->ip) sample->flags = 0; } static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; struct perf_synth_intel_ptwrite raw; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_p_sample(pt, ptq, event, &sample); sample.id = ptq->pt->ptwrites_id; sample.stream_id = ptq->pt->ptwrites_id; raw.flags = 0; raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); raw.payload = cpu_to_le64(ptq->state->ptw_payload); sample.raw_size = perf_synth__raw_size(raw); sample.raw_data = perf_synth__raw_data(&raw); return intel_pt_deliver_synth_event(pt, event, &sample, pt->ptwrites_sample_type); } static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; struct perf_synth_intel_cbr raw; u32 flags; if (intel_pt_skip_cbr_event(pt)) return 0; ptq->cbr_seen = ptq->state->cbr; intel_pt_prep_p_sample(pt, ptq, event, &sample); sample.id = ptq->pt->cbr_id; sample.stream_id = ptq->pt->cbr_id; flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16); raw.flags = cpu_to_le32(flags); raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz); raw.reserved3 = 0; sample.raw_size = perf_synth__raw_size(raw); sample.raw_data = perf_synth__raw_data(&raw); return intel_pt_deliver_synth_event(pt, event, &sample, pt->pwr_events_sample_type); } static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; struct perf_synth_intel_psb raw; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_p_sample(pt, ptq, event, &sample); sample.id = ptq->pt->psb_id; sample.stream_id = ptq->pt->psb_id; sample.flags = 0; raw.reserved = 0; raw.offset = ptq->state->psb_offset; sample.raw_size = perf_synth__raw_size(raw); sample.raw_data = perf_synth__raw_data(&raw); return intel_pt_deliver_synth_event(pt, event, &sample, pt->pwr_events_sample_type); } static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; struct perf_synth_intel_mwait raw; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_p_sample(pt, ptq, event, &sample); sample.id = ptq->pt->mwait_id; sample.stream_id = ptq->pt->mwait_id; raw.reserved = 0; raw.payload = cpu_to_le64(ptq->state->mwait_payload); sample.raw_size = perf_synth__raw_size(raw); sample.raw_data = perf_synth__raw_data(&raw); return intel_pt_deliver_synth_event(pt, event, &sample, pt->pwr_events_sample_type); } static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; struct perf_synth_intel_pwre raw; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_p_sample(pt, ptq, event, &sample); sample.id = ptq->pt->pwre_id; sample.stream_id = ptq->pt->pwre_id; raw.reserved = 0; raw.payload = cpu_to_le64(ptq->state->pwre_payload); sample.raw_size = perf_synth__raw_size(raw); sample.raw_data = perf_synth__raw_data(&raw); return intel_pt_deliver_synth_event(pt, event, &sample, pt->pwr_events_sample_type); } static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; struct perf_synth_intel_exstop raw; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_p_sample(pt, ptq, event, &sample); sample.id = ptq->pt->exstop_id; sample.stream_id = ptq->pt->exstop_id; raw.flags = 0; raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP); sample.raw_size = perf_synth__raw_size(raw); sample.raw_data = perf_synth__raw_data(&raw); return intel_pt_deliver_synth_event(pt, event, &sample, pt->pwr_events_sample_type); } static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; struct perf_synth_intel_pwrx raw; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_p_sample(pt, ptq, event, &sample); sample.id = ptq->pt->pwrx_id; sample.stream_id = ptq->pt->pwrx_id; raw.reserved = 0; raw.payload = cpu_to_le64(ptq->state->pwrx_payload); sample.raw_size = perf_synth__raw_size(raw); sample.raw_data = perf_synth__raw_data(&raw); return intel_pt_deliver_synth_event(pt, event, &sample, pt->pwr_events_sample_type); } /* * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer * intel_pt_add_gp_regs(). */ static const int pebs_gp_regs[] = { [PERF_REG_X86_FLAGS] = 1, [PERF_REG_X86_IP] = 2, [PERF_REG_X86_AX] = 3, [PERF_REG_X86_CX] = 4, [PERF_REG_X86_DX] = 5, [PERF_REG_X86_BX] = 6, [PERF_REG_X86_SP] = 7, [PERF_REG_X86_BP] = 8, [PERF_REG_X86_SI] = 9, [PERF_REG_X86_DI] = 10, [PERF_REG_X86_R8] = 11, [PERF_REG_X86_R9] = 12, [PERF_REG_X86_R10] = 13, [PERF_REG_X86_R11] = 14, [PERF_REG_X86_R12] = 15, [PERF_REG_X86_R13] = 16, [PERF_REG_X86_R14] = 17, [PERF_REG_X86_R15] = 18, }; static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos, const struct intel_pt_blk_items *items, u64 regs_mask) { const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS]; u32 mask = items->mask[INTEL_PT_GP_REGS_POS]; u32 bit; int i; for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) { /* Get the PEBS gp_regs array index */ int n = pebs_gp_regs[i] - 1; if (n < 0) continue; /* * Add only registers that were requested (i.e. 'regs_mask') and * that were provided (i.e. 'mask'), and update the resulting * mask (i.e. 'intr_regs->mask') accordingly. */ if (mask & 1 << n && regs_mask & bit) { intr_regs->mask |= bit; *pos++ = gp_regs[n]; } } return pos; } #ifndef PERF_REG_X86_XMM0 #define PERF_REG_X86_XMM0 32 #endif static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos, const struct intel_pt_blk_items *items, u64 regs_mask) { u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0); const u64 *xmm = items->xmm; /* * If there are any XMM registers, then there should be all of them. * Nevertheless, follow the logic to add only registers that were * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'), * and update the resulting mask (i.e. 'intr_regs->mask') accordingly. */ intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0; for (; mask; mask >>= 1, xmm++) { if (mask & 1) *pos++ = *xmm; } } #define LBR_INFO_MISPRED (1ULL << 63) #define LBR_INFO_IN_TX (1ULL << 62) #define LBR_INFO_ABORT (1ULL << 61) #define LBR_INFO_CYCLES 0xffff /* Refer kernel's intel_pmu_store_pebs_lbrs() */ static u64 intel_pt_lbr_flags(u64 info) { union { struct branch_flags flags; u64 result; } u; u.result = 0; u.flags.mispred = !!(info & LBR_INFO_MISPRED); u.flags.predicted = !(info & LBR_INFO_MISPRED); u.flags.in_tx = !!(info & LBR_INFO_IN_TX); u.flags.abort = !!(info & LBR_INFO_ABORT); u.flags.cycles = info & LBR_INFO_CYCLES; return u.result; } static void intel_pt_add_lbrs(struct branch_stack *br_stack, const struct intel_pt_blk_items *items) { u64 *to; int i; br_stack->nr = 0; to = &br_stack->entries[0].from; for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) { u32 mask = items->mask[i]; const u64 *from = items->val[i]; for (; mask; mask >>= 3, from += 3) { if ((mask & 7) == 7) { *to++ = from[0]; *to++ = from[1]; *to++ = intel_pt_lbr_flags(from[2]); br_stack->nr += 1; } } } } static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq) { const struct intel_pt_blk_items *items = &ptq->state->items; struct perf_sample sample = { .ip = 0, }; union perf_event *event = ptq->event_buf; struct intel_pt *pt = ptq->pt; struct evsel *evsel = pt->pebs_evsel; u64 sample_type = evsel->core.attr.sample_type; u64 id = evsel->core.id[0]; u8 cpumode; u64 regs[8 * sizeof(sample.intr_regs.mask)]; if (intel_pt_skip_event(pt)) return 0; intel_pt_prep_a_sample(ptq, event, &sample); sample.id = id; sample.stream_id = id; if (!evsel->core.attr.freq) sample.period = evsel->core.attr.sample_period; /* No support for non-zero CS base */ if (items->has_ip) sample.ip = items->ip; else if (items->has_rip) sample.ip = items->rip; else sample.ip = ptq->state->from_ip; cpumode = intel_pt_cpumode(ptq, sample.ip, 0); event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP; sample.cpumode = cpumode; if (sample_type & PERF_SAMPLE_TIME) { u64 timestamp = 0; if (items->has_timestamp) timestamp = items->timestamp; else if (!pt->timeless_decoding) timestamp = ptq->timestamp; if (timestamp) sample.time = tsc_to_perf_time(timestamp, &pt->tc); } if (sample_type & PERF_SAMPLE_CALLCHAIN && pt->synth_opts.callchain) { thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain, pt->synth_opts.callchain_sz, sample.ip, pt->kernel_start); sample.callchain = ptq->chain; } if (sample_type & PERF_SAMPLE_REGS_INTR && (items->mask[INTEL_PT_GP_REGS_POS] || items->mask[INTEL_PT_XMM_POS])) { u64 regs_mask = evsel->core.attr.sample_regs_intr; u64 *pos; sample.intr_regs.abi = items->is_32_bit ? PERF_SAMPLE_REGS_ABI_32 : PERF_SAMPLE_REGS_ABI_64; sample.intr_regs.regs = regs; pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask); intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask); } if (sample_type & PERF_SAMPLE_BRANCH_STACK) { if (items->mask[INTEL_PT_LBR_0_POS] || items->mask[INTEL_PT_LBR_1_POS] || items->mask[INTEL_PT_LBR_2_POS]) { intel_pt_add_lbrs(ptq->last_branch, items); } else if (pt->synth_opts.last_branch) { thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch, pt->br_stack_sz); } else { ptq->last_branch->nr = 0; } sample.branch_stack = ptq->last_branch; } if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address) sample.addr = items->mem_access_address; if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) { /* * Refer kernel's setup_pebs_adaptive_sample_data() and * intel_hsw_weight(). */ if (items->has_mem_access_latency) { u64 weight = items->mem_access_latency >> 32; /* * Starts from SPR, the mem access latency field * contains both cache latency [47:32] and instruction * latency [15:0]. The cache latency is the same as the * mem access latency on previous platforms. * * In practice, no memory access could last than 4G * cycles. Use latency >> 32 to distinguish the * different format of the mem access latency field. */ if (weight > 0) { sample.weight = weight & 0xffff; sample.ins_lat = items->mem_access_latency & 0xffff; } else sample.weight = items->mem_access_latency; } if (!sample.weight && items->has_tsx_aux_info) { /* Cycles last block */ sample.weight = (u32)items->tsx_aux_info; } } if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) { u64 ax = items->has_rax ? items->rax : 0; /* Refer kernel's intel_hsw_transaction() */ u64 txn = (u8)(items->tsx_aux_info >> 32); /* For RTM XABORTs also log the abort code from AX */ if (txn & PERF_TXN_TRANSACTION && ax & 1) txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; sample.transaction = txn; } return intel_pt_deliver_synth_event(pt, event, &sample, sample_type); } static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, pid_t pid, pid_t tid, u64 ip, u64 timestamp) { union perf_event event; char msg[MAX_AUXTRACE_ERROR_MSG]; int err; if (pt->synth_opts.error_minus_flags) { if (code == INTEL_PT_ERR_OVR && pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW) return 0; if (code == INTEL_PT_ERR_LOST && pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST) return 0; } intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, code, cpu, pid, tid, ip, msg, timestamp); err = perf_session__deliver_synth_event(pt->session, &event, NULL); if (err) pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", err); return err; } static int intel_ptq_synth_error(struct intel_pt_queue *ptq, const struct intel_pt_state *state) { struct intel_pt *pt = ptq->pt; u64 tm = ptq->timestamp; tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc); return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid, ptq->tid, state->from_ip, tm); } static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) { struct auxtrace_queue *queue; pid_t tid = ptq->next_tid; int err; if (tid == -1) return 0; intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); queue = &pt->queues.queue_array[ptq->queue_nr]; intel_pt_set_pid_tid_cpu(pt, queue); ptq->next_tid = -1; return err; } static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) { struct intel_pt *pt = ptq->pt; return ip == pt->switch_ip && (ptq->flags & PERF_IP_FLAG_BRANCH) && !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); } #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \ INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT) static int intel_pt_sample(struct intel_pt_queue *ptq) { const struct intel_pt_state *state = ptq->state; struct intel_pt *pt = ptq->pt; int err; if (!ptq->have_sample) return 0; ptq->have_sample = false; ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt; ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt; /* * Do PEBS first to allow for the possibility that the PEBS timestamp * precedes the current timestamp. */ if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) { err = intel_pt_synth_pebs_sample(ptq); if (err) return err; } if (pt->sample_pwr_events) { if (state->type & INTEL_PT_PSB_EVT) { err = intel_pt_synth_psb_sample(ptq); if (err) return err; } if (ptq->state->cbr != ptq->cbr_seen) { err = intel_pt_synth_cbr_sample(ptq); if (err) return err; } if (state->type & INTEL_PT_PWR_EVT) { if (state->type & INTEL_PT_MWAIT_OP) { err = intel_pt_synth_mwait_sample(ptq); if (err) return err; } if (state->type & INTEL_PT_PWR_ENTRY) { err = intel_pt_synth_pwre_sample(ptq); if (err) return err; } if (state->type & INTEL_PT_EX_STOP) { err = intel_pt_synth_exstop_sample(ptq); if (err) return err; } if (state->type & INTEL_PT_PWR_EXIT) { err = intel_pt_synth_pwrx_sample(ptq); if (err) return err; } } } if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) { err = intel_pt_synth_instruction_sample(ptq); if (err) return err; } if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) { err = intel_pt_synth_transaction_sample(ptq); if (err) return err; } if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) { err = intel_pt_synth_ptwrite_sample(ptq); if (err) return err; } if (!(state->type & INTEL_PT_BRANCH)) return 0; if (pt->use_thread_stack) { thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip, state->to_ip, ptq->insn_len, state->trace_nr, pt->callstack, pt->br_stack_sz_plus, pt->mispred_all); } else { thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr); } if (pt->sample_branches) { if (state->from_nr != state->to_nr && state->from_ip && state->to_ip) { struct intel_pt_state *st = (struct intel_pt_state *)state; u64 to_ip = st->to_ip; u64 from_ip = st->from_ip; /* * perf cannot handle having different machines for ip * and addr, so create 2 branches. */ st->to_ip = 0; err = intel_pt_synth_branch_sample(ptq); if (err) return err; st->from_ip = 0; st->to_ip = to_ip; err = intel_pt_synth_branch_sample(ptq); st->from_ip = from_ip; } else { err = intel_pt_synth_branch_sample(ptq); } if (err) return err; } if (!ptq->sync_switch) return 0; if (intel_pt_is_switch_ip(ptq, state->to_ip)) { switch (ptq->switch_state) { case INTEL_PT_SS_NOT_TRACING: case INTEL_PT_SS_UNKNOWN: case INTEL_PT_SS_EXPECTING_SWITCH_IP: err = intel_pt_next_tid(pt, ptq); if (err) return err; ptq->switch_state = INTEL_PT_SS_TRACING; break; default: ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; return 1; } } else if (!state->to_ip) { ptq->switch_state = INTEL_PT_SS_NOT_TRACING; } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { ptq->switch_state = INTEL_PT_SS_UNKNOWN; } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && state->to_ip == pt->ptss_ip && (ptq->flags & PERF_IP_FLAG_CALL)) { ptq->switch_state = INTEL_PT_SS_TRACING; } return 0; } static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) { struct machine *machine = pt->machine; struct map *map; struct symbol *sym, *start; u64 ip, switch_ip = 0; const char *ptss; if (ptss_ip) *ptss_ip = 0; map = machine__kernel_map(machine); if (!map) return 0; if (map__load(map)) return 0; start = dso__first_symbol(map->dso); for (sym = start; sym; sym = dso__next_symbol(sym)) { if (sym->binding == STB_GLOBAL && !strcmp(sym->name, "__switch_to")) { ip = map->unmap_ip(map, sym->start); if (ip >= map->start && ip < map->end) { switch_ip = ip; break; } } } if (!switch_ip || !ptss_ip) return 0; if (pt->have_sched_switch == 1) ptss = "perf_trace_sched_switch"; else ptss = "__perf_event_task_sched_out"; for (sym = start; sym; sym = dso__next_symbol(sym)) { if (!strcmp(sym->name, ptss)) { ip = map->unmap_ip(map, sym->start); if (ip >= map->start && ip < map->end) { *ptss_ip = ip; break; } } } return switch_ip; } static void intel_pt_enable_sync_switch(struct intel_pt *pt) { unsigned int i; pt->sync_switch = true; for (i = 0; i < pt->queues.nr_queues; i++) { struct auxtrace_queue *queue = &pt->queues.queue_array[i]; struct intel_pt_queue *ptq = queue->priv; if (ptq) ptq->sync_switch = true; } } /* * To filter against time ranges, it is only necessary to look at the next start * or end time. */ static bool intel_pt_next_time(struct intel_pt_queue *ptq) { struct intel_pt *pt = ptq->pt; if (ptq->sel_start) { /* Next time is an end time */ ptq->sel_start = false; ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end; return true; } else if (ptq->sel_idx + 1 < pt->range_cnt) { /* Next time is a start time */ ptq->sel_start = true; ptq->sel_idx += 1; ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start; return true; } /* No next time */ return false; } static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp) { int err; while (1) { if (ptq->sel_start) { if (ptq->timestamp >= ptq->sel_timestamp) { /* After start time, so consider next time */ intel_pt_next_time(ptq); if (!ptq->sel_timestamp) { /* No end time */ return 0; } /* Check against end time */ continue; } /* Before start time, so fast forward */ ptq->have_sample = false; if (ptq->sel_timestamp > *ff_timestamp) { if (ptq->sync_switch) { intel_pt_next_tid(ptq->pt, ptq); ptq->switch_state = INTEL_PT_SS_UNKNOWN; } *ff_timestamp = ptq->sel_timestamp; err = intel_pt_fast_forward(ptq->decoder, ptq->sel_timestamp); if (err) return err; } return 0; } else if (ptq->timestamp > ptq->sel_timestamp) { /* After end time, so consider next time */ if (!intel_pt_next_time(ptq)) { /* No next time range, so stop decoding */ ptq->have_sample = false; ptq->switch_state = INTEL_PT_SS_NOT_TRACING; return 1; } /* Check against next start time */ continue; } else { /* Before end time */ return 0; } } } static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) { const struct intel_pt_state *state = ptq->state; struct intel_pt *pt = ptq->pt; u64 ff_timestamp = 0; int err; if (!pt->kernel_start) { pt->kernel_start = machine__kernel_start(pt->machine); if (pt->per_cpu_mmaps && (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) { pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); if (pt->switch_ip) { intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", pt->switch_ip, pt->ptss_ip); intel_pt_enable_sync_switch(pt); } } } intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); while (1) { err = intel_pt_sample(ptq); if (err) return err; state = intel_pt_decode(ptq->decoder); if (state->err) { if (state->err == INTEL_PT_ERR_NODATA) return 1; if (ptq->sync_switch && state->from_ip >= pt->kernel_start) { ptq->sync_switch = false; intel_pt_next_tid(pt, ptq); } ptq->timestamp = state->est_timestamp; if (pt->synth_opts.errors) { err = intel_ptq_synth_error(ptq, state); if (err) return err; } continue; } ptq->state = state; ptq->have_sample = true; intel_pt_sample_flags(ptq); /* Use estimated TSC upon return to user space */ if (pt->est_tsc && (state->from_ip >= pt->kernel_start || !state->from_ip) && state->to_ip && state->to_ip < pt->kernel_start) { intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", state->timestamp, state->est_timestamp); ptq->timestamp = state->est_timestamp; /* Use estimated TSC in unknown switch state */ } else if (ptq->sync_switch && ptq->switch_state == INTEL_PT_SS_UNKNOWN && intel_pt_is_switch_ip(ptq, state->to_ip) && ptq->next_tid == -1) { intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", state->timestamp, state->est_timestamp); ptq->timestamp = state->est_timestamp; } else if (state->timestamp > ptq->timestamp) { ptq->timestamp = state->timestamp; } if (ptq->sel_timestamp) { err = intel_pt_time_filter(ptq, &ff_timestamp); if (err) return err; } if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { *timestamp = ptq->timestamp; return 0; } } return 0; } static inline int intel_pt_update_queues(struct intel_pt *pt) { if (pt->queues.new_data) { pt->queues.new_data = false; return intel_pt_setup_queues(pt); } return 0; } static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) { unsigned int queue_nr; u64 ts; int ret; while (1) { struct auxtrace_queue *queue; struct intel_pt_queue *ptq; if (!pt->heap.heap_cnt) return 0; if (pt->heap.heap_array[0].ordinal >= timestamp) return 0; queue_nr = pt->heap.heap_array[0].queue_nr; queue = &pt->queues.queue_array[queue_nr]; ptq = queue->priv; intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", queue_nr, pt->heap.heap_array[0].ordinal, timestamp); auxtrace_heap__pop(&pt->heap); if (pt->heap.heap_cnt) { ts = pt->heap.heap_array[0].ordinal + 1; if (ts > timestamp) ts = timestamp; } else { ts = timestamp; } intel_pt_set_pid_tid_cpu(pt, queue); ret = intel_pt_run_decoder(ptq, &ts); if (ret < 0) { auxtrace_heap__add(&pt->heap, queue_nr, ts); return ret; } if (!ret) { ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); if (ret < 0) return ret; } else { ptq->on_heap = false; } } return 0; } static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, u64 time_) { struct auxtrace_queues *queues = &pt->queues; unsigned int i; u64 ts = 0; for (i = 0; i < queues->nr_queues; i++) { struct auxtrace_queue *queue = &pt->queues.queue_array[i]; struct intel_pt_queue *ptq = queue->priv; if (ptq && (tid == -1 || ptq->tid == tid)) { ptq->time = time_; intel_pt_set_pid_tid_cpu(pt, queue); intel_pt_run_decoder(ptq, &ts); } } return 0; } static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq, struct auxtrace_queue *queue, struct perf_sample *sample) { struct machine *m = ptq->pt->machine; ptq->pid = sample->pid; ptq->tid = sample->tid; ptq->cpu = queue->cpu; intel_pt_log("queue %u cpu %d pid %d tid %d\n", ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); thread__zput(ptq->thread); if (ptq->tid == -1) return; if (ptq->pid == -1) { ptq->thread = machine__find_thread(m, -1, ptq->tid); if (ptq->thread) ptq->pid = ptq->thread->pid_; return; } ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid); } static int intel_pt_process_timeless_sample(struct intel_pt *pt, struct perf_sample *sample) { struct auxtrace_queue *queue; struct intel_pt_queue *ptq; u64 ts = 0; queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session); if (!queue) return -EINVAL; ptq = queue->priv; if (!ptq) return 0; ptq->stop = false; ptq->time = sample->time; intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample); intel_pt_run_decoder(ptq, &ts); return 0; } static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) { return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, sample->pid, sample->tid, 0, sample->time); } static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) { unsigned i, j; if (cpu < 0 || !pt->queues.nr_queues) return NULL; if ((unsigned)cpu >= pt->queues.nr_queues) i = pt->queues.nr_queues - 1; else i = cpu; if (pt->queues.queue_array[i].cpu == cpu) return pt->queues.queue_array[i].priv; for (j = 0; i > 0; j++) { if (pt->queues.queue_array[--i].cpu == cpu) return pt->queues.queue_array[i].priv; } for (; j < pt->queues.nr_queues; j++) { if (pt->queues.queue_array[j].cpu == cpu) return pt->queues.queue_array[j].priv; } return NULL; } static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, u64 timestamp) { struct intel_pt_queue *ptq; int err; if (!pt->sync_switch) return 1; ptq = intel_pt_cpu_to_ptq(pt, cpu); if (!ptq || !ptq->sync_switch) return 1; switch (ptq->switch_state) { case INTEL_PT_SS_NOT_TRACING: break; case INTEL_PT_SS_UNKNOWN: case INTEL_PT_SS_TRACING: ptq->next_tid = tid; ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; return 0; case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: if (!ptq->on_heap) { ptq->timestamp = perf_time_to_tsc(timestamp, &pt->tc); err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, ptq->timestamp); if (err) return err; ptq->on_heap = true; } ptq->switch_state = INTEL_PT_SS_TRACING; break; case INTEL_PT_SS_EXPECTING_SWITCH_IP: intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); break; default: break; } ptq->next_tid = -1; return 1; } static int intel_pt_process_switch(struct intel_pt *pt, struct perf_sample *sample) { pid_t tid; int cpu, ret; struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id); if (evsel != pt->switch_evsel) return 0; tid = evsel__intval(evsel, sample, "next_pid"); cpu = sample->cpu; intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", cpu, tid, sample->time, perf_time_to_tsc(sample->time, &pt->tc)); ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); if (ret <= 0) return ret; return machine__set_current_tid(pt->machine, cpu, -1, tid); } static int intel_pt_context_switch_in(struct intel_pt *pt, struct perf_sample *sample) { pid_t pid = sample->pid; pid_t tid = sample->tid; int cpu = sample->cpu; if (pt->sync_switch) { struct intel_pt_queue *ptq; ptq = intel_pt_cpu_to_ptq(pt, cpu); if (ptq && ptq->sync_switch) { ptq->next_tid = -1; switch (ptq->switch_state) { case INTEL_PT_SS_NOT_TRACING: case INTEL_PT_SS_UNKNOWN: case INTEL_PT_SS_TRACING: break; case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: case INTEL_PT_SS_EXPECTING_SWITCH_IP: ptq->switch_state = INTEL_PT_SS_TRACING; break; default: break; } } } /* * If the current tid has not been updated yet, ensure it is now that * a "switch in" event has occurred. */ if (machine__get_current_tid(pt->machine, cpu) == tid) return 0; return machine__set_current_tid(pt->machine, cpu, pid, tid); } static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, struct perf_sample *sample) { bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; pid_t pid, tid; int cpu, ret; cpu = sample->cpu; if (pt->have_sched_switch == 3) { if (!out) return intel_pt_context_switch_in(pt, sample); if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { pr_err("Expecting CPU-wide context switch event\n"); return -EINVAL; } pid = event->context_switch.next_prev_pid; tid = event->context_switch.next_prev_tid; } else { if (out) return 0; pid = sample->pid; tid = sample->tid; } if (tid == -1) intel_pt_log("context_switch event has no tid\n"); ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); if (ret <= 0) return ret; return machine__set_current_tid(pt->machine, cpu, pid, tid); } static int intel_pt_process_itrace_start(struct intel_pt *pt, union perf_event *event, struct perf_sample *sample) { if (!pt->per_cpu_mmaps) return 0; intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", sample->cpu, event->itrace_start.pid, event->itrace_start.tid, sample->time, perf_time_to_tsc(sample->time, &pt->tc)); return machine__set_current_tid(pt->machine, sample->cpu, event->itrace_start.pid, event->itrace_start.tid); } static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr, struct addr_location *al) { if (!al->map || addr < al->map->start || addr >= al->map->end) { if (!thread__find_map(thread, cpumode, addr, al)) return -1; } return 0; } /* Invalidate all instruction cache entries that overlap the text poke */ static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event) { u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; u64 addr = event->text_poke.addr + event->text_poke.new_len - 1; /* Assume text poke begins in a basic block no more than 4096 bytes */ int cnt = 4096 + event->text_poke.new_len; struct thread *thread = pt->unknown_thread; struct addr_location al = { .map = NULL }; struct machine *machine = pt->machine; struct intel_pt_cache_entry *e; u64 offset; if (!event->text_poke.new_len) return 0; for (; cnt; cnt--, addr--) { if (intel_pt_find_map(thread, cpumode, addr, &al)) { if (addr < event->text_poke.addr) return 0; continue; } if (!al.map->dso || !al.map->dso->auxtrace_cache) continue; offset = al.map->map_ip(al.map, addr); e = intel_pt_cache_lookup(al.map->dso, machine, offset); if (!e) continue; if (addr + e->byte_cnt + e->length <= event->text_poke.addr) { /* * No overlap. Working backwards there cannot be another * basic block that overlaps the text poke if there is a * branch instruction before the text poke address. */ if (e->branch != INTEL_PT_BR_NO_BRANCH) return 0; } else { intel_pt_cache_invalidate(al.map->dso, machine, offset); intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n", al.map->dso->long_name, addr); } } return 0; } static int intel_pt_process_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); u64 timestamp; int err = 0; if (dump_trace) return 0; if (!tool->ordered_events) { pr_err("Intel Processor Trace requires ordered events\n"); return -EINVAL; } if (sample->time && sample->time != (u64)-1) timestamp = perf_time_to_tsc(sample->time, &pt->tc); else timestamp = 0; if (timestamp || pt->timeless_decoding) { err = intel_pt_update_queues(pt); if (err) return err; } if (pt->timeless_decoding) { if (pt->sampling_mode) { if (sample->aux_sample.size) err = intel_pt_process_timeless_sample(pt, sample); } else if (event->header.type == PERF_RECORD_EXIT) { err = intel_pt_process_timeless_queues(pt, event->fork.tid, sample->time); } } else if (timestamp) { if (!pt->first_timestamp) intel_pt_first_timestamp(pt, timestamp); err = intel_pt_process_queues(pt, timestamp); } if (err) return err; if (event->header.type == PERF_RECORD_SAMPLE) { if (pt->synth_opts.add_callchain && !sample->callchain) intel_pt_add_callchain(pt, sample); if (pt->synth_opts.add_last_branch && !sample->branch_stack) intel_pt_add_br_stack(pt, sample); } if (event->header.type == PERF_RECORD_AUX && (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && pt->synth_opts.errors) { err = intel_pt_lost(pt, sample); if (err) return err; } if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) err = intel_pt_process_switch(pt, sample); else if (event->header.type == PERF_RECORD_ITRACE_START) err = intel_pt_process_itrace_start(pt, event, sample); else if (event->header.type == PERF_RECORD_SWITCH || event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) err = intel_pt_context_switch(pt, event, sample); if (!err && event->header.type == PERF_RECORD_TEXT_POKE) err = intel_pt_text_poke(pt, event); if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) { intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ", event->header.type, sample->cpu, sample->time, timestamp); intel_pt_log_event(event); } return err; } static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); int ret; if (dump_trace) return 0; if (!tool->ordered_events) return -EINVAL; ret = intel_pt_update_queues(pt); if (ret < 0) return ret; if (pt->timeless_decoding) return intel_pt_process_timeless_queues(pt, -1, MAX_TIMESTAMP - 1); return intel_pt_process_queues(pt, MAX_TIMESTAMP); } static void intel_pt_free_events(struct perf_session *session) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); struct auxtrace_queues *queues = &pt->queues; unsigned int i; for (i = 0; i < queues->nr_queues; i++) { intel_pt_free_queue(queues->queue_array[i].priv); queues->queue_array[i].priv = NULL; } intel_pt_log_disable(); auxtrace_queues__free(queues); } static void intel_pt_free(struct perf_session *session) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); auxtrace_heap__free(&pt->heap); intel_pt_free_events(session); session->auxtrace = NULL; intel_pt_free_vmcs_info(pt); thread__put(pt->unknown_thread); addr_filters__exit(&pt->filts); zfree(&pt->chain); zfree(&pt->filter); zfree(&pt->time_ranges); free(pt); } static bool intel_pt_evsel_is_auxtrace(struct perf_session *session, struct evsel *evsel) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); return evsel->core.attr.type == pt->pmu_type; } static int intel_pt_process_auxtrace_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool __maybe_unused) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); if (!pt->data_queued) { struct auxtrace_buffer *buffer; off_t data_offset; int fd = perf_data__fd(session->data); int err; if (perf_data__is_pipe(session->data)) { data_offset = 0; } else { data_offset = lseek(fd, 0, SEEK_CUR); if (data_offset == -1) return -errno; } err = auxtrace_queues__add_event(&pt->queues, session, event, data_offset, &buffer); if (err) return err; /* Dump here now we have copied a piped trace out of the pipe */ if (dump_trace) { if (auxtrace_buffer__get_data(buffer, fd)) { intel_pt_dump_event(pt, buffer->data, buffer->size); auxtrace_buffer__put_data(buffer); } } } return 0; } static int intel_pt_queue_data(struct perf_session *session, struct perf_sample *sample, union perf_event *event, u64 data_offset) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); u64 timestamp; if (event) { return auxtrace_queues__add_event(&pt->queues, session, event, data_offset, NULL); } if (sample->time && sample->time != (u64)-1) timestamp = perf_time_to_tsc(sample->time, &pt->tc); else timestamp = 0; return auxtrace_queues__add_sample(&pt->queues, session, sample, data_offset, timestamp); } struct intel_pt_synth { struct perf_tool dummy_tool; struct perf_session *session; }; static int intel_pt_event_synth(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { struct intel_pt_synth *intel_pt_synth = container_of(tool, struct intel_pt_synth, dummy_tool); return perf_session__deliver_synth_event(intel_pt_synth->session, event, NULL); } static int intel_pt_synth_event(struct perf_session *session, const char *name, struct perf_event_attr *attr, u64 id) { struct intel_pt_synth intel_pt_synth; int err; pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n", name, id, (u64)attr->sample_type); memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); intel_pt_synth.session = session; err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, &id, intel_pt_event_synth); if (err) pr_err("%s: failed to synthesize '%s' event type\n", __func__, name); return err; } static void intel_pt_set_event_name(struct evlist *evlist, u64 id, const char *name) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->core.id && evsel->core.id[0] == id) { if (evsel->name) zfree(&evsel->name); evsel->name = strdup(name); break; } } } static struct evsel *intel_pt_evsel(struct intel_pt *pt, struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids) return evsel; } return NULL; } static int intel_pt_synth_events(struct intel_pt *pt, struct perf_session *session) { struct evlist *evlist = session->evlist; struct evsel *evsel = intel_pt_evsel(pt, evlist); struct perf_event_attr attr; u64 id; int err; if (!evsel) { pr_debug("There are no selected events with Intel Processor Trace data\n"); return 0; } memset(&attr, 0, sizeof(struct perf_event_attr)); attr.size = sizeof(struct perf_event_attr); attr.type = PERF_TYPE_HARDWARE; attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK; attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_PERIOD; if (pt->timeless_decoding) attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; else attr.sample_type |= PERF_SAMPLE_TIME; if (!pt->per_cpu_mmaps) attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; attr.exclude_user = evsel->core.attr.exclude_user; attr.exclude_kernel = evsel->core.attr.exclude_kernel; attr.exclude_hv = evsel->core.attr.exclude_hv; attr.exclude_host = evsel->core.attr.exclude_host; attr.exclude_guest = evsel->core.attr.exclude_guest; attr.sample_id_all = evsel->core.attr.sample_id_all; attr.read_format = evsel->core.attr.read_format; id = evsel->core.id[0] + 1000000000; if (!id) id = 1; if (pt->synth_opts.branches) { attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; attr.sample_period = 1; attr.sample_type |= PERF_SAMPLE_ADDR; err = intel_pt_synth_event(session, "branches", &attr, id); if (err) return err; pt->sample_branches = true; pt->branches_sample_type = attr.sample_type; pt->branches_id = id; id += 1; attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR; } if (pt->synth_opts.callchain) attr.sample_type |= PERF_SAMPLE_CALLCHAIN; if (pt->synth_opts.last_branch) { attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; /* * We don't use the hardware index, but the sample generation * code uses the new format branch_stack with this field, * so the event attributes must indicate that it's present. */ attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX; } if (pt->synth_opts.instructions) { attr.config = PERF_COUNT_HW_INSTRUCTIONS; if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) attr.sample_period = intel_pt_ns_to_ticks(pt, pt->synth_opts.period); else attr.sample_period = pt->synth_opts.period; err = intel_pt_synth_event(session, "instructions", &attr, id); if (err) return err; pt->sample_instructions = true; pt->instructions_sample_type = attr.sample_type; pt->instructions_id = id; id += 1; } attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD; attr.sample_period = 1; if (pt->synth_opts.transactions) { attr.config = PERF_COUNT_HW_INSTRUCTIONS; err = intel_pt_synth_event(session, "transactions", &attr, id); if (err) return err; pt->sample_transactions = true; pt->transactions_sample_type = attr.sample_type; pt->transactions_id = id; intel_pt_set_event_name(evlist, id, "transactions"); id += 1; } attr.type = PERF_TYPE_SYNTH; attr.sample_type |= PERF_SAMPLE_RAW; if (pt->synth_opts.ptwrites) { attr.config = PERF_SYNTH_INTEL_PTWRITE; err = intel_pt_synth_event(session, "ptwrite", &attr, id); if (err) return err; pt->sample_ptwrites = true; pt->ptwrites_sample_type = attr.sample_type; pt->ptwrites_id = id; intel_pt_set_event_name(evlist, id, "ptwrite"); id += 1; } if (pt->synth_opts.pwr_events) { pt->sample_pwr_events = true; pt->pwr_events_sample_type = attr.sample_type; attr.config = PERF_SYNTH_INTEL_CBR; err = intel_pt_synth_event(session, "cbr", &attr, id); if (err) return err; pt->cbr_id = id; intel_pt_set_event_name(evlist, id, "cbr"); id += 1; attr.config = PERF_SYNTH_INTEL_PSB; err = intel_pt_synth_event(session, "psb", &attr, id); if (err) return err; pt->psb_id = id; intel_pt_set_event_name(evlist, id, "psb"); id += 1; } if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) { attr.config = PERF_SYNTH_INTEL_MWAIT; err = intel_pt_synth_event(session, "mwait", &attr, id); if (err) return err; pt->mwait_id = id; intel_pt_set_event_name(evlist, id, "mwait"); id += 1; attr.config = PERF_SYNTH_INTEL_PWRE; err = intel_pt_synth_event(session, "pwre", &attr, id); if (err) return err; pt->pwre_id = id; intel_pt_set_event_name(evlist, id, "pwre"); id += 1; attr.config = PERF_SYNTH_INTEL_EXSTOP; err = intel_pt_synth_event(session, "exstop", &attr, id); if (err) return err; pt->exstop_id = id; intel_pt_set_event_name(evlist, id, "exstop"); id += 1; attr.config = PERF_SYNTH_INTEL_PWRX; err = intel_pt_synth_event(session, "pwrx", &attr, id); if (err) return err; pt->pwrx_id = id; intel_pt_set_event_name(evlist, id, "pwrx"); id += 1; } return 0; } static void intel_pt_setup_pebs_events(struct intel_pt *pt) { struct evsel *evsel; if (!pt->synth_opts.other_events) return; evlist__for_each_entry(pt->session->evlist, evsel) { if (evsel->core.attr.aux_output && evsel->core.id) { pt->sample_pebs = true; pt->pebs_evsel = evsel; return; } } } static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry_reverse(evlist, evsel) { const char *name = evsel__name(evsel); if (!strcmp(name, "sched:sched_switch")) return evsel; } return NULL; } static bool intel_pt_find_switch(struct evlist *evlist) { struct evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->core.attr.context_switch) return true; } return false; } static int intel_pt_perf_config(const char *var, const char *value, void *data) { struct intel_pt *pt = data; if (!strcmp(var, "intel-pt.mispred-all")) pt->mispred_all = perf_config_bool(var, value); if (!strcmp(var, "intel-pt.max-loops")) perf_config_int(&pt->max_loops, var, value); return 0; } /* Find least TSC which converts to ns or later */ static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt) { u64 tsc, tm; tsc = perf_time_to_tsc(ns, &pt->tc); while (1) { tm = tsc_to_perf_time(tsc, &pt->tc); if (tm < ns) break; tsc -= 1; } while (tm < ns) tm = tsc_to_perf_time(++tsc, &pt->tc); return tsc; } /* Find greatest TSC which converts to ns or earlier */ static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt) { u64 tsc, tm; tsc = perf_time_to_tsc(ns, &pt->tc); while (1) { tm = tsc_to_perf_time(tsc, &pt->tc); if (tm > ns) break; tsc += 1; } while (tm > ns) tm = tsc_to_perf_time(--tsc, &pt->tc); return tsc; } static int intel_pt_setup_time_ranges(struct intel_pt *pt, struct itrace_synth_opts *opts) { struct perf_time_interval *p = opts->ptime_range; int n = opts->range_num; int i; if (!n || !p || pt->timeless_decoding) return 0; pt->time_ranges = calloc(n, sizeof(struct range)); if (!pt->time_ranges) return -ENOMEM; pt->range_cnt = n; intel_pt_log("%s: %u range(s)\n", __func__, n); for (i = 0; i < n; i++) { struct range *r = &pt->time_ranges[i]; u64 ts = p[i].start; u64 te = p[i].end; /* * Take care to ensure the TSC range matches the perf-time range * when converted back to perf-time. */ r->start = ts ? intel_pt_tsc_start(ts, pt) : 0; r->end = te ? intel_pt_tsc_end(te, pt) : 0; intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n", i, ts, te); intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n", i, r->start, r->end); } return 0; } static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args) { struct intel_pt_vmcs_info *vmcs_info; u64 tsc_offset, vmcs; char *p = *args; errno = 0; p = skip_spaces(p); if (!*p) return 1; tsc_offset = strtoull(p, &p, 0); if (errno) return -errno; p = skip_spaces(p); if (*p != ':') { pt->dflt_tsc_offset = tsc_offset; *args = p; return 0; } p += 1; while (1) { vmcs = strtoull(p, &p, 0); if (errno) return -errno; if (!vmcs) return -EINVAL; vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset); if (!vmcs_info) return -ENOMEM; p = skip_spaces(p); if (*p != ',') break; p += 1; } *args = p; return 0; } static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt) { char *args = pt->synth_opts.vm_tm_corr_args; int ret; if (!args) return 0; do { ret = intel_pt_parse_vm_tm_corr_arg(pt, &args); } while (!ret); if (ret < 0) { pr_err("Failed to parse VM Time Correlation options\n"); return ret; } return 0; } static const char * const intel_pt_info_fmts[] = { [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", [INTEL_PT_MTC_FREQ_BITS] = " MTC freq bits %#"PRIx64"\n", [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n", [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n", }; static void intel_pt_print_info(__u64 *arr, int start, int finish) { int i; if (!dump_trace) return; for (i = start; i <= finish; i++) { const char *fmt = intel_pt_info_fmts[i]; if (fmt) fprintf(stdout, fmt, arr[i]); } } static void intel_pt_print_info_str(const char *name, const char *str) { if (!dump_trace) return; fprintf(stdout, " %-20s%s\n", name, str ? str : ""); } static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos) { return auxtrace_info->header.size >= sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1)); } int intel_pt_process_auxtrace_info(union perf_event *event, struct perf_session *session) { struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info; size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; struct intel_pt *pt; void *info_end; __u64 *info; int err; if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) + min_sz) return -EINVAL; pt = zalloc(sizeof(struct intel_pt)); if (!pt) return -ENOMEM; pt->vmcs_info = RB_ROOT; addr_filters__init(&pt->filts); err = perf_config(intel_pt_perf_config, pt); if (err) goto err_free; err = auxtrace_queues__init(&pt->queues); if (err) goto err_free; intel_pt_log_set_name(INTEL_PT_PMU_NAME); if (session->itrace_synth_opts->set) { pt->synth_opts = *session->itrace_synth_opts; } else { struct itrace_synth_opts *opts = session->itrace_synth_opts; itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample); if (!opts->default_no_sample && !opts->inject) { pt->synth_opts.branches = false; pt->synth_opts.callchain = true; pt->synth_opts.add_callchain = true; } pt->synth_opts.thread_stack = opts->thread_stack; } pt->session = session; pt->machine = &session->machines.host; /* No kvm support */ pt->auxtrace_type = auxtrace_info->type; pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, INTEL_PT_PER_CPU_MMAPS); if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) { pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, INTEL_PT_CYC_BIT); } if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) { pt->max_non_turbo_ratio = auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO]; intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MAX_NONTURBO_RATIO, INTEL_PT_MAX_NONTURBO_RATIO); } info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1; info_end = (void *)info + auxtrace_info->header.size; if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) { size_t len; len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN]; intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_FILTER_STR_LEN, INTEL_PT_FILTER_STR_LEN); if (len) { const char *filter = (const char *)info; len = roundup(len + 1, 8); info += len >> 3; if ((void *)info > info_end) { pr_err("%s: bad filter string length\n", __func__); err = -EINVAL; goto err_free_queues; } pt->filter = memdup(filter, len); if (!pt->filter) { err = -ENOMEM; goto err_free_queues; } if (session->header.needs_swap) mem_bswap_64(pt->filter, len); if (pt->filter[len - 1]) { pr_err("%s: filter string not null terminated\n", __func__); err = -EINVAL; goto err_free_queues; } err = addr_filters__parse_bare_filter(&pt->filts, filter); if (err) goto err_free_queues; } intel_pt_print_info_str("Filter string", pt->filter); } pt->timeless_decoding = intel_pt_timeless_decoding(pt); if (pt->timeless_decoding && !pt->tc.time_mult) pt->tc.time_mult = 1; pt->have_tsc = intel_pt_have_tsc(pt); pt->sampling_mode = intel_pt_sampling_mode(pt); pt->est_tsc = !pt->timeless_decoding; if (pt->synth_opts.vm_time_correlation) { if (pt->timeless_decoding) { pr_err("Intel PT has no time information for VM Time Correlation\n"); err = -EINVAL; goto err_free_queues; } if (session->itrace_synth_opts->ptime_range) { pr_err("Time ranges cannot be specified with VM Time Correlation\n"); err = -EINVAL; goto err_free_queues; } /* Currently TSC Offset is calculated using MTC packets */ if (!intel_pt_have_mtc(pt)) { pr_err("MTC packets must have been enabled for VM Time Correlation\n"); err = -EINVAL; goto err_free_queues; } err = intel_pt_parse_vm_tm_corr_args(pt); if (err) goto err_free_queues; } pt->unknown_thread = thread__new(999999999, 999999999); if (!pt->unknown_thread) { err = -ENOMEM; goto err_free_queues; } /* * Since this thread will not be kept in any rbtree not in a * list, initialize its list node so that at thread__put() the * current thread lifetime assumption is kept and we don't segfault * at list_del_init(). */ INIT_LIST_HEAD(&pt->unknown_thread->node); err = thread__set_comm(pt->unknown_thread, "unknown", 0); if (err) goto err_delete_thread; if (thread__init_maps(pt->unknown_thread, pt->machine)) { err = -ENOMEM; goto err_delete_thread; } pt->auxtrace.process_event = intel_pt_process_event; pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; pt->auxtrace.queue_data = intel_pt_queue_data; pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample; pt->auxtrace.flush_events = intel_pt_flush; pt->auxtrace.free_events = intel_pt_free_events; pt->auxtrace.free = intel_pt_free; pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace; session->auxtrace = &pt->auxtrace; if (dump_trace) return 0; if (pt->have_sched_switch == 1) { pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); if (!pt->switch_evsel) { pr_err("%s: missing sched_switch event\n", __func__); err = -EINVAL; goto err_delete_thread; } } else if (pt->have_sched_switch == 2 && !intel_pt_find_switch(session->evlist)) { pr_err("%s: missing context_switch attribute flag\n", __func__); err = -EINVAL; goto err_delete_thread; } if (pt->synth_opts.log) intel_pt_log_enable(); /* Maximum non-turbo ratio is TSC freq / 100 MHz */ if (pt->tc.time_mult) { u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); if (!pt->max_non_turbo_ratio) pt->max_non_turbo_ratio = (tsc_freq + 50000000) / 100000000; intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); intel_pt_log("Maximum non-turbo ratio %u\n", pt->max_non_turbo_ratio); pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000; } err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts); if (err) goto err_delete_thread; if (pt->synth_opts.calls) pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | PERF_IP_FLAG_TRACE_END; if (pt->synth_opts.returns) pt->branches_filter |= PERF_IP_FLAG_RETURN | PERF_IP_FLAG_TRACE_BEGIN; if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) && !symbol_conf.use_callchain) { symbol_conf.use_callchain = true; if (callchain_register_param(&callchain_param) < 0) { symbol_conf.use_callchain = false; pt->synth_opts.callchain = false; pt->synth_opts.add_callchain = false; } } if (pt->synth_opts.add_callchain) { err = intel_pt_callchain_init(pt); if (err) goto err_delete_thread; } if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) { pt->br_stack_sz = pt->synth_opts.last_branch_sz; pt->br_stack_sz_plus = pt->br_stack_sz; } if (pt->synth_opts.add_last_branch) { err = intel_pt_br_stack_init(pt); if (err) goto err_delete_thread; /* * Additional branch stack size to cater for tracing from the * actual sample ip to where the sample time is recorded. * Measured at about 200 branches, but generously set to 1024. * If kernel space is not being traced, then add just 1 for the * branch to kernel space. */ if (intel_pt_tracing_kernel(pt)) pt->br_stack_sz_plus += 1024; else pt->br_stack_sz_plus += 1; } pt->use_thread_stack = pt->synth_opts.callchain || pt->synth_opts.add_callchain || pt->synth_opts.thread_stack || pt->synth_opts.last_branch || pt->synth_opts.add_last_branch; pt->callstack = pt->synth_opts.callchain || pt->synth_opts.add_callchain || pt->synth_opts.thread_stack; err = intel_pt_synth_events(pt, session); if (err) goto err_delete_thread; intel_pt_setup_pebs_events(pt); if (perf_data__is_pipe(session->data)) { pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n" " The output cannot relied upon. In particular,\n" " timestamps and the order of events may be incorrect.\n"); } if (pt->sampling_mode || list_empty(&session->auxtrace_index)) err = auxtrace_queue_data(session, true, true); else err = auxtrace_queues__process_index(&pt->queues, session); if (err) goto err_delete_thread; if (pt->queues.populated) pt->data_queued = true; if (pt->timeless_decoding) pr_debug2("Intel PT decoding without timestamps\n"); return 0; err_delete_thread: zfree(&pt->chain); thread__zput(pt->unknown_thread); err_free_queues: intel_pt_log_disable(); auxtrace_queues__free(&pt->queues); session->auxtrace = NULL; err_free: addr_filters__exit(&pt->filts); zfree(&pt->filter); zfree(&pt->time_ranges); free(pt); return err; }