// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2020 Intel Corporation. */ /* * Some functions in this program are taken from * Linux kernel samples/bpf/xdpsock* and modified * for use. * * See test_xsk.sh for detailed information on test topology * and prerequisite network setup. * * This test program contains two threads, each thread is single socket with * a unique UMEM. It validates in-order packet delivery and packet content * by sending packets to each other. * * Tests Information: * ------------------ * These selftests test AF_XDP SKB and Native/DRV modes using veth * Virtual Ethernet interfaces. * * For each mode, the following tests are run: * a. nopoll - soft-irq processing * b. poll - using poll() syscall * c. Socket Teardown * Create a Tx and a Rx socket, Tx from one socket, Rx on another. Destroy * both sockets, then repeat multiple times. Only nopoll mode is used * d. Bi-directional sockets * Configure sockets as bi-directional tx/rx sockets, sets up fill and * completion rings on each socket, tx/rx in both directions. Only nopoll * mode is used * e. Statistics * Trigger some error conditions and ensure that the appropriate statistics * are incremented. Within this test, the following statistics are tested: * i. rx dropped * Increase the UMEM frame headroom to a value which results in * insufficient space in the rx buffer for both the packet and the headroom. * ii. tx invalid * Set the 'len' field of tx descriptors to an invalid value (umem frame * size + 1). * iii. rx ring full * Reduce the size of the RX ring to a fraction of the fill ring size. * iv. fill queue empty * Do not populate the fill queue and then try to receive pkts. * f. bpf_link resource persistence * Configure sockets at indexes 0 and 1, run a traffic on queue ids 0, * then remove xsk sockets from queue 0 on both veth interfaces and * finally run a traffic on queues ids 1 * * Total tests: 12 * * Flow: * ----- * - Single process spawns two threads: Tx and Rx * - Each of these two threads attach to a veth interface within their assigned * namespaces * - Each thread Creates one AF_XDP socket connected to a unique umem for each * veth interface * - Tx thread Transmits 10k packets from veth to veth * - Rx thread verifies if all 10k packets were received and delivered in-order, * and have the right content * * Enable/disable packet dump mode: * -------------------------- * To enable L2 - L4 headers and payload dump of each packet on STDOUT, add * parameter -D to params array in test_xsk.sh, i.e. params=("-S" "-D") */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xdpxceiver.h" #include "../kselftest.h" static const char *MAC1 = "\x00\x0A\x56\x9E\xEE\x62"; static const char *MAC2 = "\x00\x0A\x56\x9E\xEE\x61"; static const char *IP1 = "192.168.100.162"; static const char *IP2 = "192.168.100.161"; static const u16 UDP_PORT1 = 2020; static const u16 UDP_PORT2 = 2121; static void __exit_with_error(int error, const char *file, const char *func, int line) { ksft_test_result_fail("[%s:%s:%i]: ERROR: %d/\"%s\"\n", file, func, line, error, strerror(error)); ksft_exit_xfail(); } #define exit_with_error(error) __exit_with_error(error, __FILE__, __func__, __LINE__) #define print_ksft_result(void)\ (ksft_test_result_pass("PASS: %s %s %s%s%s%s\n", configured_mode ? "DRV" : "SKB",\ test_type == TEST_TYPE_POLL ? "POLL" : "NOPOLL",\ test_type == TEST_TYPE_TEARDOWN ? "Socket Teardown" : "",\ test_type == TEST_TYPE_BIDI ? "Bi-directional Sockets" : "",\ test_type == TEST_TYPE_STATS ? "Stats" : "",\ test_type == TEST_TYPE_BPF_RES ? "BPF RES" : "")) static void memset32_htonl(void *dest, u32 val, u32 size) { u32 *ptr = (u32 *)dest; int i; val = htonl(val); for (i = 0; i < (size & (~0x3)); i += 4) ptr[i >> 2] = val; } /* * Fold a partial checksum * This function code has been taken from * Linux kernel include/asm-generic/checksum.h */ static __u16 csum_fold(__u32 csum) { u32 sum = (__force u32)csum; sum = (sum & 0xffff) + (sum >> 16); sum = (sum & 0xffff) + (sum >> 16); return (__force __u16)~sum; } /* * This function code has been taken from * Linux kernel lib/checksum.c */ static u32 from64to32(u64 x) { /* add up 32-bit and 32-bit for 32+c bit */ x = (x & 0xffffffff) + (x >> 32); /* add up carry.. */ x = (x & 0xffffffff) + (x >> 32); return (u32)x; } /* * This function code has been taken from * Linux kernel lib/checksum.c */ static __u32 csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __u32 sum) { unsigned long long s = (__force u32)sum; s += (__force u32)saddr; s += (__force u32)daddr; #ifdef __BIG_ENDIAN__ s += proto + len; #else s += (proto + len) << 8; #endif return (__force __u32)from64to32(s); } /* * This function has been taken from * Linux kernel include/asm-generic/checksum.h */ static __u16 csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __u32 sum) { return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum)); } static u16 udp_csum(u32 saddr, u32 daddr, u32 len, u8 proto, u16 *udp_pkt) { u32 csum = 0; u32 cnt = 0; /* udp hdr and data */ for (; cnt < len; cnt += 2) csum += udp_pkt[cnt >> 1]; return csum_tcpudp_magic(saddr, daddr, len, proto, csum); } static void gen_eth_hdr(struct ifobject *ifobject, struct ethhdr *eth_hdr) { memcpy(eth_hdr->h_dest, ifobject->dst_mac, ETH_ALEN); memcpy(eth_hdr->h_source, ifobject->src_mac, ETH_ALEN); eth_hdr->h_proto = htons(ETH_P_IP); } static void gen_ip_hdr(struct ifobject *ifobject, struct iphdr *ip_hdr) { ip_hdr->version = IP_PKT_VER; ip_hdr->ihl = 0x5; ip_hdr->tos = IP_PKT_TOS; ip_hdr->tot_len = htons(IP_PKT_SIZE); ip_hdr->id = 0; ip_hdr->frag_off = 0; ip_hdr->ttl = IPDEFTTL; ip_hdr->protocol = IPPROTO_UDP; ip_hdr->saddr = ifobject->src_ip; ip_hdr->daddr = ifobject->dst_ip; ip_hdr->check = 0; } static void gen_udp_hdr(u32 payload, void *pkt, struct ifobject *ifobject, struct udphdr *udp_hdr) { udp_hdr->source = htons(ifobject->src_port); udp_hdr->dest = htons(ifobject->dst_port); udp_hdr->len = htons(UDP_PKT_SIZE); memset32_htonl(pkt + PKT_HDR_SIZE, payload, UDP_PKT_DATA_SIZE); } static void gen_udp_csum(struct udphdr *udp_hdr, struct iphdr *ip_hdr) { udp_hdr->check = 0; udp_hdr->check = udp_csum(ip_hdr->saddr, ip_hdr->daddr, UDP_PKT_SIZE, IPPROTO_UDP, (u16 *)udp_hdr); } static void xsk_configure_umem(struct ifobject *data, void *buffer, u64 size, int idx) { struct xsk_umem_config cfg = { .fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS, .comp_size = XSK_RING_CONS__DEFAULT_NUM_DESCS, .frame_size = XSK_UMEM__DEFAULT_FRAME_SIZE, .frame_headroom = frame_headroom, .flags = XSK_UMEM__DEFAULT_FLAGS }; struct xsk_umem_info *umem; int ret; umem = calloc(1, sizeof(struct xsk_umem_info)); if (!umem) exit_with_error(errno); ret = xsk_umem__create(&umem->umem, buffer, size, &umem->fq, &umem->cq, &cfg); if (ret) exit_with_error(-ret); umem->buffer = buffer; data->umem_arr[idx] = umem; } static void xsk_populate_fill_ring(struct xsk_umem_info *umem) { int ret, i; u32 idx = 0; ret = xsk_ring_prod__reserve(&umem->fq, XSK_RING_PROD__DEFAULT_NUM_DESCS, &idx); if (ret != XSK_RING_PROD__DEFAULT_NUM_DESCS) exit_with_error(-ret); for (i = 0; i < XSK_RING_PROD__DEFAULT_NUM_DESCS; i++) *xsk_ring_prod__fill_addr(&umem->fq, idx++) = i * XSK_UMEM__DEFAULT_FRAME_SIZE; xsk_ring_prod__submit(&umem->fq, XSK_RING_PROD__DEFAULT_NUM_DESCS); } static int xsk_configure_socket(struct ifobject *ifobject, int idx) { struct xsk_socket_config cfg; struct xsk_socket_info *xsk; struct xsk_ring_cons *rxr; struct xsk_ring_prod *txr; int ret; xsk = calloc(1, sizeof(struct xsk_socket_info)); if (!xsk) exit_with_error(errno); xsk->umem = ifobject->umem; cfg.rx_size = rxqsize; cfg.tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS; cfg.libbpf_flags = 0; cfg.xdp_flags = xdp_flags; cfg.bind_flags = xdp_bind_flags; if (test_type != TEST_TYPE_BIDI) { rxr = (ifobject->fv.vector == rx) ? &xsk->rx : NULL; txr = (ifobject->fv.vector == tx) ? &xsk->tx : NULL; } else { rxr = &xsk->rx; txr = &xsk->tx; } ret = xsk_socket__create(&xsk->xsk, ifobject->ifname, idx, ifobject->umem->umem, rxr, txr, &cfg); if (ret) return 1; ifobject->xsk_arr[idx] = xsk; return 0; } static struct option long_options[] = { {"interface", required_argument, 0, 'i'}, {"queue", optional_argument, 0, 'q'}, {"dump-pkts", optional_argument, 0, 'D'}, {"verbose", no_argument, 0, 'v'}, {0, 0, 0, 0} }; static void usage(const char *prog) { const char *str = " Usage: %s [OPTIONS]\n" " Options:\n" " -i, --interface Use interface\n" " -q, --queue=n Use queue n (default 0)\n" " -D, --dump-pkts Dump packets L2 - L5\n" " -v, --verbose Verbose output\n"; ksft_print_msg(str, prog); } static int switch_namespace(const char *nsname) { char fqns[26] = "/var/run/netns/"; int nsfd; if (!nsname || strlen(nsname) == 0) return -1; strncat(fqns, nsname, sizeof(fqns) - strlen(fqns) - 1); nsfd = open(fqns, O_RDONLY); if (nsfd == -1) exit_with_error(errno); if (setns(nsfd, 0) == -1) exit_with_error(errno); print_verbose("NS switched: %s\n", nsname); return nsfd; } static int validate_interfaces(void) { bool ret = true; for (int i = 0; i < MAX_INTERFACES; i++) { if (!strcmp(ifdict[i]->ifname, "")) { ret = false; ksft_test_result_fail("ERROR: interfaces: -i , -i ,."); } } return ret; } static void parse_command_line(int argc, char **argv) { int option_index, interface_index = 0, c; opterr = 0; for (;;) { c = getopt_long(argc, argv, "i:Dv", long_options, &option_index); if (c == -1) break; switch (c) { case 'i': if (interface_index == MAX_INTERFACES) break; char *sptr, *token; sptr = strndupa(optarg, strlen(optarg)); memcpy(ifdict[interface_index]->ifname, strsep(&sptr, ","), MAX_INTERFACE_NAME_CHARS); token = strsep(&sptr, ","); if (token) memcpy(ifdict[interface_index]->nsname, token, MAX_INTERFACES_NAMESPACE_CHARS); interface_index++; break; case 'D': opt_pkt_dump = true; break; case 'v': opt_verbose = true; break; default: usage(basename(argv[0])); ksft_exit_xfail(); } } if (!validate_interfaces()) { usage(basename(argv[0])); ksft_exit_xfail(); } } static struct pkt *pkt_stream_get_pkt(struct pkt_stream *pkt_stream, u32 pkt_nb) { if (pkt_nb >= pkt_stream->nb_pkts) return NULL; return &pkt_stream->pkts[pkt_nb]; } static struct pkt_stream *pkt_stream_generate(u32 nb_pkts, u32 pkt_len) { struct pkt_stream *pkt_stream; u32 i; pkt_stream = malloc(sizeof(*pkt_stream)); if (!pkt_stream) exit_with_error(ENOMEM); pkt_stream->pkts = calloc(nb_pkts, sizeof(*pkt_stream->pkts)); if (!pkt_stream->pkts) exit_with_error(ENOMEM); pkt_stream->nb_pkts = nb_pkts; for (i = 0; i < nb_pkts; i++) { pkt_stream->pkts[i].addr = (i % num_frames) * XSK_UMEM__DEFAULT_FRAME_SIZE; pkt_stream->pkts[i].len = pkt_len; pkt_stream->pkts[i].payload = i; } return pkt_stream; } static struct pkt *pkt_generate(struct ifobject *ifobject, u32 pkt_nb) { struct pkt *pkt = pkt_stream_get_pkt(ifobject->pkt_stream, pkt_nb); struct udphdr *udp_hdr; struct ethhdr *eth_hdr; struct iphdr *ip_hdr; void *data; if (!pkt) return NULL; data = xsk_umem__get_data(ifobject->umem->buffer, pkt->addr); udp_hdr = (struct udphdr *)(data + sizeof(struct ethhdr) + sizeof(struct iphdr)); ip_hdr = (struct iphdr *)(data + sizeof(struct ethhdr)); eth_hdr = (struct ethhdr *)data; gen_udp_hdr(pkt_nb, data, ifobject, udp_hdr); gen_ip_hdr(ifobject, ip_hdr); gen_udp_csum(udp_hdr, ip_hdr); gen_eth_hdr(ifobject, eth_hdr); return pkt; } static void pkt_dump(void *pkt, u32 len) { char s[INET_ADDRSTRLEN]; struct ethhdr *ethhdr; struct udphdr *udphdr; struct iphdr *iphdr; int payload, i; ethhdr = pkt; iphdr = pkt + sizeof(*ethhdr); udphdr = pkt + sizeof(*ethhdr) + sizeof(*iphdr); /*extract L2 frame */ fprintf(stdout, "DEBUG>> L2: dst mac: "); for (i = 0; i < ETH_ALEN; i++) fprintf(stdout, "%02X", ethhdr->h_dest[i]); fprintf(stdout, "\nDEBUG>> L2: src mac: "); for (i = 0; i < ETH_ALEN; i++) fprintf(stdout, "%02X", ethhdr->h_source[i]); /*extract L3 frame */ fprintf(stdout, "\nDEBUG>> L3: ip_hdr->ihl: %02X\n", iphdr->ihl); fprintf(stdout, "DEBUG>> L3: ip_hdr->saddr: %s\n", inet_ntop(AF_INET, &iphdr->saddr, s, sizeof(s))); fprintf(stdout, "DEBUG>> L3: ip_hdr->daddr: %s\n", inet_ntop(AF_INET, &iphdr->daddr, s, sizeof(s))); /*extract L4 frame */ fprintf(stdout, "DEBUG>> L4: udp_hdr->src: %d\n", ntohs(udphdr->source)); fprintf(stdout, "DEBUG>> L4: udp_hdr->dst: %d\n", ntohs(udphdr->dest)); /*extract L5 frame */ payload = *((uint32_t *)(pkt + PKT_HDR_SIZE)); fprintf(stdout, "DEBUG>> L5: payload: %d\n", payload); fprintf(stdout, "---------------------------------------\n"); } static bool is_pkt_valid(struct pkt *pkt, void *buffer, const struct xdp_desc *desc) { void *data = xsk_umem__get_data(buffer, desc->addr); struct iphdr *iphdr = (struct iphdr *)(data + sizeof(struct ethhdr)); if (!pkt) { ksft_test_result_fail("ERROR: [%s] too many packets received\n", __func__); return false; } if (iphdr->version == IP_PKT_VER && iphdr->tos == IP_PKT_TOS) { u32 seqnum = ntohl(*((u32 *)(data + PKT_HDR_SIZE))); if (opt_pkt_dump && test_type != TEST_TYPE_STATS) pkt_dump(data, PKT_SIZE); if (pkt->len != desc->len) { ksft_test_result_fail ("ERROR: [%s] expected length [%d], got length [%d]\n", __func__, pkt->len, desc->len); return false; } if (pkt->payload != seqnum) { ksft_test_result_fail ("ERROR: [%s] expected seqnum [%d], got seqnum [%d]\n", __func__, pkt->payload, seqnum); return false; } } else { ksft_print_msg("Invalid frame received: "); ksft_print_msg("[IP_PKT_VER: %02X], [IP_PKT_TOS: %02X]\n", iphdr->version, iphdr->tos); return false; } return true; } static void kick_tx(struct xsk_socket_info *xsk) { int ret; ret = sendto(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0); if (ret >= 0 || errno == ENOBUFS || errno == EAGAIN || errno == EBUSY || errno == ENETDOWN) return; exit_with_error(errno); } static void complete_pkts(struct xsk_socket_info *xsk, int batch_size) { unsigned int rcvd; u32 idx; if (!xsk->outstanding_tx) return; if (xsk_ring_prod__needs_wakeup(&xsk->tx)) kick_tx(xsk); rcvd = xsk_ring_cons__peek(&xsk->umem->cq, batch_size, &idx); if (rcvd) { xsk_ring_cons__release(&xsk->umem->cq, rcvd); xsk->outstanding_tx -= rcvd; } } static void receive_pkts(struct pkt_stream *pkt_stream, struct xsk_socket_info *xsk, struct pollfd *fds) { u32 idx_rx = 0, idx_fq = 0, rcvd, i, pkt_count = 0; struct pkt *pkt; int ret; pkt = pkt_stream_get_pkt(pkt_stream, pkt_count++); while (pkt) { rcvd = xsk_ring_cons__peek(&xsk->rx, BATCH_SIZE, &idx_rx); if (!rcvd) { if (xsk_ring_prod__needs_wakeup(&xsk->umem->fq)) { ret = poll(fds, 1, POLL_TMOUT); if (ret < 0) exit_with_error(-ret); } continue; } ret = xsk_ring_prod__reserve(&xsk->umem->fq, rcvd, &idx_fq); while (ret != rcvd) { if (ret < 0) exit_with_error(-ret); if (xsk_ring_prod__needs_wakeup(&xsk->umem->fq)) { ret = poll(fds, 1, POLL_TMOUT); if (ret < 0) exit_with_error(-ret); } ret = xsk_ring_prod__reserve(&xsk->umem->fq, rcvd, &idx_fq); } for (i = 0; i < rcvd; i++) { const struct xdp_desc *desc = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx++); u64 addr = desc->addr, orig; orig = xsk_umem__extract_addr(addr); addr = xsk_umem__add_offset_to_addr(addr); if (!is_pkt_valid(pkt, xsk->umem->buffer, desc)) return; *xsk_ring_prod__fill_addr(&xsk->umem->fq, idx_fq++) = orig; pkt = pkt_stream_get_pkt(pkt_stream, pkt_count++); } xsk_ring_prod__submit(&xsk->umem->fq, rcvd); xsk_ring_cons__release(&xsk->rx, rcvd); } } static u32 __send_pkts(struct ifobject *ifobject, u32 pkt_nb) { struct xsk_socket_info *xsk = ifobject->xsk; u32 i, idx; while (xsk_ring_prod__reserve(&xsk->tx, BATCH_SIZE, &idx) < BATCH_SIZE) complete_pkts(xsk, BATCH_SIZE); for (i = 0; i < BATCH_SIZE; i++) { struct xdp_desc *tx_desc = xsk_ring_prod__tx_desc(&xsk->tx, idx + i); struct pkt *pkt = pkt_generate(ifobject, pkt_nb); if (!pkt) break; tx_desc->addr = pkt->addr; tx_desc->len = pkt->len; pkt_nb++; } xsk_ring_prod__submit(&xsk->tx, i); if (stat_test_type != STAT_TEST_TX_INVALID) xsk->outstanding_tx += i; else if (xsk_ring_prod__needs_wakeup(&xsk->tx)) kick_tx(xsk); complete_pkts(xsk, i); return i; } static void wait_for_tx_completion(struct xsk_socket_info *xsk) { while (xsk->outstanding_tx) complete_pkts(xsk, BATCH_SIZE); } static void send_pkts(struct ifobject *ifobject) { struct pollfd fds[MAX_SOCKS] = { }; u32 pkt_cnt = 0; fds[0].fd = xsk_socket__fd(ifobject->xsk->xsk); fds[0].events = POLLOUT; while (pkt_cnt < ifobject->pkt_stream->nb_pkts) { u32 sent; if (test_type == TEST_TYPE_POLL) { int ret; ret = poll(fds, 1, POLL_TMOUT); if (ret <= 0) continue; if (!(fds[0].revents & POLLOUT)) continue; } sent = __send_pkts(ifobject, pkt_cnt); pkt_cnt += sent; usleep(10); } wait_for_tx_completion(ifobject->xsk); } static bool rx_stats_are_valid(struct ifobject *ifobject) { u32 xsk_stat = 0, expected_stat = ifobject->pkt_stream->nb_pkts; struct xsk_socket *xsk = ifobject->xsk->xsk; int fd = xsk_socket__fd(xsk); struct xdp_statistics stats; socklen_t optlen; int err; optlen = sizeof(stats); err = getsockopt(fd, SOL_XDP, XDP_STATISTICS, &stats, &optlen); if (err) { ksft_test_result_fail("ERROR: [%s] getsockopt(XDP_STATISTICS) error %u %s\n", __func__, -err, strerror(-err)); return true; } if (optlen == sizeof(struct xdp_statistics)) { switch (stat_test_type) { case STAT_TEST_RX_DROPPED: xsk_stat = stats.rx_dropped; break; case STAT_TEST_TX_INVALID: return true; case STAT_TEST_RX_FULL: xsk_stat = stats.rx_ring_full; expected_stat -= RX_FULL_RXQSIZE; break; case STAT_TEST_RX_FILL_EMPTY: xsk_stat = stats.rx_fill_ring_empty_descs; break; default: break; } if (xsk_stat == expected_stat) return true; } return false; } static void tx_stats_validate(struct ifobject *ifobject) { struct xsk_socket *xsk = ifobject->xsk->xsk; int fd = xsk_socket__fd(xsk); struct xdp_statistics stats; socklen_t optlen; int err; optlen = sizeof(stats); err = getsockopt(fd, SOL_XDP, XDP_STATISTICS, &stats, &optlen); if (err) { ksft_test_result_fail("ERROR: [%s] getsockopt(XDP_STATISTICS) error %u %s\n", __func__, -err, strerror(-err)); return; } if (stats.tx_invalid_descs == ifobject->pkt_stream->nb_pkts) return; ksft_test_result_fail("ERROR: [%s] tx_invalid_descs incorrect. Got [%u] expected [%u]\n", __func__, stats.tx_invalid_descs, ifobject->pkt_stream->nb_pkts); } static void thread_common_ops(struct ifobject *ifobject, void *bufs) { u64 umem_sz = num_frames * XSK_UMEM__DEFAULT_FRAME_SIZE; int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE; size_t mmap_sz = umem_sz; int ctr = 0; int ret; ifobject->ns_fd = switch_namespace(ifobject->nsname); if (test_type == TEST_TYPE_BPF_RES) mmap_sz *= 2; bufs = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, mmap_flags, -1, 0); if (bufs == MAP_FAILED) exit_with_error(errno); while (ctr++ < SOCK_RECONF_CTR) { xsk_configure_umem(ifobject, bufs, umem_sz, 0); ifobject->umem = ifobject->umem_arr[0]; ret = xsk_configure_socket(ifobject, 0); if (!ret) break; /* Retry Create Socket if it fails as xsk_socket__create() is asynchronous */ usleep(USLEEP_MAX); if (ctr >= SOCK_RECONF_CTR) exit_with_error(-ret); } ifobject->umem = ifobject->umem_arr[0]; ifobject->xsk = ifobject->xsk_arr[0]; if (test_type == TEST_TYPE_BPF_RES) { xsk_configure_umem(ifobject, (u8 *)bufs + umem_sz, umem_sz, 1); ifobject->umem = ifobject->umem_arr[1]; ret = xsk_configure_socket(ifobject, 1); } ifobject->umem = ifobject->umem_arr[0]; ifobject->xsk = ifobject->xsk_arr[0]; print_verbose("Interface [%s] vector [%s]\n", ifobject->ifname, ifobject->fv.vector == tx ? "Tx" : "Rx"); } static bool testapp_is_test_two_stepped(void) { return (test_type != TEST_TYPE_BIDI && test_type != TEST_TYPE_BPF_RES) || second_step; } static void testapp_cleanup_xsk_res(struct ifobject *ifobj) { if (testapp_is_test_two_stepped()) { xsk_socket__delete(ifobj->xsk->xsk); (void)xsk_umem__delete(ifobj->umem->umem); } } static void *worker_testapp_validate_tx(void *arg) { struct ifobject *ifobject = (struct ifobject *)arg; void *bufs = NULL; if (!second_step) thread_common_ops(ifobject, bufs); print_verbose("Sending %d packets on interface %s\n", ifobject->pkt_stream->nb_pkts, ifobject->ifname); send_pkts(ifobject); if (stat_test_type == STAT_TEST_TX_INVALID) tx_stats_validate(ifobject); testapp_cleanup_xsk_res(ifobject); pthread_exit(NULL); } static void *worker_testapp_validate_rx(void *arg) { struct ifobject *ifobject = (struct ifobject *)arg; struct pollfd fds[MAX_SOCKS] = { }; void *bufs = NULL; if (!second_step) thread_common_ops(ifobject, bufs); if (stat_test_type != STAT_TEST_RX_FILL_EMPTY) xsk_populate_fill_ring(ifobject->umem); fds[0].fd = xsk_socket__fd(ifobject->xsk->xsk); fds[0].events = POLLIN; pthread_barrier_wait(&barr); if (test_type == TEST_TYPE_STATS) while (!rx_stats_are_valid(ifobject)) continue; else receive_pkts(ifobject->pkt_stream, ifobject->xsk, fds); if (test_type == TEST_TYPE_TEARDOWN) print_verbose("Destroying socket\n"); testapp_cleanup_xsk_res(ifobject); pthread_exit(NULL); } static void testapp_validate(void) { bool bidi = test_type == TEST_TYPE_BIDI; bool bpf = test_type == TEST_TYPE_BPF_RES; struct pkt_stream *pkt_stream; if (pthread_barrier_init(&barr, NULL, 2)) exit_with_error(errno); if (stat_test_type == STAT_TEST_TX_INVALID) pkt_stream = pkt_stream_generate(DEFAULT_PKT_CNT, XSK_UMEM__INVALID_FRAME_SIZE); else pkt_stream = pkt_stream_generate(DEFAULT_PKT_CNT, PKT_SIZE); ifdict_tx->pkt_stream = pkt_stream; ifdict_rx->pkt_stream = pkt_stream; /*Spawn RX thread */ pthread_create(&t0, NULL, ifdict_rx->func_ptr, ifdict_rx); pthread_barrier_wait(&barr); if (pthread_barrier_destroy(&barr)) exit_with_error(errno); /*Spawn TX thread */ pthread_create(&t1, NULL, ifdict_tx->func_ptr, ifdict_tx); pthread_join(t1, NULL); pthread_join(t0, NULL); if (!(test_type == TEST_TYPE_TEARDOWN) && !bidi && !bpf && !(test_type == TEST_TYPE_STATS)) print_ksft_result(); } static void testapp_teardown(void) { int i; for (i = 0; i < MAX_TEARDOWN_ITER; i++) { print_verbose("Creating socket\n"); testapp_validate(); } print_ksft_result(); } static void swap_vectors(struct ifobject *ifobj1, struct ifobject *ifobj2) { void *(*tmp_func_ptr)(void *) = ifobj1->func_ptr; enum fvector tmp_vector = ifobj1->fv.vector; ifobj1->func_ptr = ifobj2->func_ptr; ifobj1->fv.vector = ifobj2->fv.vector; ifobj2->func_ptr = tmp_func_ptr; ifobj2->fv.vector = tmp_vector; ifdict_tx = ifobj1; ifdict_rx = ifobj2; } static void testapp_bidi(void) { for (int i = 0; i < MAX_BIDI_ITER; i++) { print_verbose("Creating socket\n"); testapp_validate(); if (!second_step) { print_verbose("Switching Tx/Rx vectors\n"); swap_vectors(ifdict[1], ifdict[0]); } second_step = true; } swap_vectors(ifdict[0], ifdict[1]); print_ksft_result(); } static void swap_xsk_res(void) { xsk_socket__delete(ifdict_tx->xsk->xsk); xsk_umem__delete(ifdict_tx->umem->umem); xsk_socket__delete(ifdict_rx->xsk->xsk); xsk_umem__delete(ifdict_rx->umem->umem); ifdict_tx->umem = ifdict_tx->umem_arr[1]; ifdict_tx->xsk = ifdict_tx->xsk_arr[1]; ifdict_rx->umem = ifdict_rx->umem_arr[1]; ifdict_rx->xsk = ifdict_rx->xsk_arr[1]; } static void testapp_bpf_res(void) { int i; for (i = 0; i < MAX_BPF_ITER; i++) { print_verbose("Creating socket\n"); testapp_validate(); if (!second_step) swap_xsk_res(); second_step = true; } print_ksft_result(); } static void testapp_stats(void) { for (int i = 0; i < STAT_TEST_TYPE_MAX; i++) { stat_test_type = i; /* reset defaults */ rxqsize = XSK_RING_CONS__DEFAULT_NUM_DESCS; frame_headroom = XSK_UMEM__DEFAULT_FRAME_HEADROOM; switch (stat_test_type) { case STAT_TEST_RX_DROPPED: frame_headroom = XSK_UMEM__DEFAULT_FRAME_SIZE - XDP_PACKET_HEADROOM - 1; break; case STAT_TEST_RX_FULL: rxqsize = RX_FULL_RXQSIZE; break; case STAT_TEST_TX_INVALID: continue; default: break; } testapp_validate(); } print_ksft_result(); } static void init_iface(struct ifobject *ifobj, const char *dst_mac, const char *src_mac, const char *dst_ip, const char *src_ip, const u16 dst_port, const u16 src_port, enum fvector vector) { struct in_addr ip; memcpy(ifobj->dst_mac, dst_mac, ETH_ALEN); memcpy(ifobj->src_mac, src_mac, ETH_ALEN); inet_aton(dst_ip, &ip); ifobj->dst_ip = ip.s_addr; inet_aton(src_ip, &ip); ifobj->src_ip = ip.s_addr; ifobj->dst_port = dst_port; ifobj->src_port = src_port; if (vector == tx) { ifobj->fv.vector = tx; ifobj->func_ptr = worker_testapp_validate_tx; ifdict_tx = ifobj; } else { ifobj->fv.vector = rx; ifobj->func_ptr = worker_testapp_validate_rx; ifdict_rx = ifobj; } } static void run_pkt_test(int mode, int type) { test_type = type; /* reset defaults after potential previous test */ xdp_flags = XDP_FLAGS_UPDATE_IF_NOEXIST; second_step = 0; stat_test_type = -1; rxqsize = XSK_RING_CONS__DEFAULT_NUM_DESCS; frame_headroom = XSK_UMEM__DEFAULT_FRAME_HEADROOM; configured_mode = mode; switch (mode) { case (TEST_MODE_SKB): xdp_flags |= XDP_FLAGS_SKB_MODE; break; case (TEST_MODE_DRV): xdp_flags |= XDP_FLAGS_DRV_MODE; break; default: break; } switch (test_type) { case TEST_TYPE_STATS: testapp_stats(); break; case TEST_TYPE_TEARDOWN: testapp_teardown(); break; case TEST_TYPE_BIDI: testapp_bidi(); break; case TEST_TYPE_BPF_RES: testapp_bpf_res(); break; default: testapp_validate(); break; } } static struct ifobject *ifobject_create(void) { struct ifobject *ifobj; ifobj = calloc(1, sizeof(struct ifobject)); if (!ifobj) return NULL; ifobj->xsk_arr = calloc(2, sizeof(struct xsk_socket_info *)); if (!ifobj->xsk_arr) goto out_xsk_arr; ifobj->umem_arr = calloc(2, sizeof(struct xsk_umem_info *)); if (!ifobj->umem_arr) goto out_umem_arr; return ifobj; out_umem_arr: free(ifobj->xsk_arr); out_xsk_arr: free(ifobj); return NULL; } static void ifobject_delete(struct ifobject *ifobj) { free(ifobj->umem_arr); free(ifobj->xsk_arr); free(ifobj); } int main(int argc, char **argv) { struct rlimit _rlim = { RLIM_INFINITY, RLIM_INFINITY }; int i, j; if (setrlimit(RLIMIT_MEMLOCK, &_rlim)) exit_with_error(errno); for (i = 0; i < MAX_INTERFACES; i++) { ifdict[i] = ifobject_create(); if (!ifdict[i]) exit_with_error(ENOMEM); } setlocale(LC_ALL, ""); parse_command_line(argc, argv); init_iface(ifdict[tx], MAC1, MAC2, IP1, IP2, UDP_PORT1, UDP_PORT2, tx); init_iface(ifdict[rx], MAC2, MAC1, IP2, IP1, UDP_PORT2, UDP_PORT1, rx); ksft_set_plan(TEST_MODE_MAX * TEST_TYPE_MAX); for (i = 0; i < TEST_MODE_MAX; i++) for (j = 0; j < TEST_TYPE_MAX; j++) { run_pkt_test(i, j); usleep(USLEEP_MAX); } for (i = 0; i < MAX_INTERFACES; i++) ifobject_delete(ifdict[i]); ksft_exit_pass(); return 0; }