/* mount.c (22.10.09) exFAT file system implementation library. Free exFAT implementation. Copyright (C) 2010-2018 Andrew Nayenko This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "exfat.h" #include #include #include #include #include #include static uint64_t rootdir_size(const struct exfat* ef) { uint32_t clusters = 0; uint32_t clusters_max = le32_to_cpu(ef->sb->cluster_count); cluster_t rootdir_cluster = le32_to_cpu(ef->sb->rootdir_cluster); /* Iterate all clusters of the root directory to calculate its size. It can't be contiguous because there is no flag to indicate this. */ do { if (clusters == clusters_max) /* infinite loop detected */ { exfat_error("root directory cannot occupy all %d clusters", clusters); return 0; } if (CLUSTER_INVALID(*ef->sb, rootdir_cluster)) { exfat_error("bad cluster %#x while reading root directory", rootdir_cluster); return 0; } rootdir_cluster = exfat_next_cluster(ef, ef->root, rootdir_cluster); clusters++; } while (rootdir_cluster != EXFAT_CLUSTER_END); return (uint64_t) clusters * CLUSTER_SIZE(*ef->sb); } static const char* get_option(const char* options, const char* option_name) { const char* p; size_t length = strlen(option_name); for (p = strstr(options, option_name); p; p = strstr(p + 1, option_name)) if ((p == options || p[-1] == ',') && p[length] == '=') return p + length + 1; return NULL; } static int get_int_option(const char* options, const char* option_name, int base, int default_value) { const char* p = get_option(options, option_name); if (p == NULL) return default_value; return strtol(p, NULL, base); } static bool match_option(const char* options, const char* option_name) { const char* p; size_t length = strlen(option_name); for (p = strstr(options, option_name); p; p = strstr(p + 1, option_name)) if ((p == options || p[-1] == ',') && (p[length] == ',' || p[length] == '\0')) return true; return false; } static void parse_options(struct exfat* ef, const char* options) { int opt_umask; opt_umask = get_int_option(options, "umask", 8, 0); ef->dmask = get_int_option(options, "dmask", 8, opt_umask); ef->fmask = get_int_option(options, "fmask", 8, opt_umask); ef->uid = get_int_option(options, "uid", 10, geteuid()); ef->gid = get_int_option(options, "gid", 10, getegid()); ef->noatime = match_option(options, "noatime"); switch (get_int_option(options, "repair", 10, 0)) { case 1: ef->repair = EXFAT_REPAIR_ASK; break; case 2: ef->repair = EXFAT_REPAIR_YES; break; default: ef->repair = EXFAT_REPAIR_NO; break; } } static bool verify_vbr_checksum(const struct exfat* ef, void* sector) { off_t sector_size = SECTOR_SIZE(*ef->sb); uint32_t vbr_checksum; int i; if (exfat_pread(ef->dev, sector, sector_size, 0) < 0) { exfat_error("failed to read boot sector"); return false; } vbr_checksum = exfat_vbr_start_checksum(sector, sector_size); for (i = 1; i < 11; i++) { if (exfat_pread(ef->dev, sector, sector_size, i * sector_size) < 0) { exfat_error("failed to read VBR sector"); return false; } vbr_checksum = exfat_vbr_add_checksum(sector, sector_size, vbr_checksum); } if (exfat_pread(ef->dev, sector, sector_size, i * sector_size) < 0) { exfat_error("failed to read VBR checksum sector"); return false; } for (i = 0; i < sector_size / sizeof(vbr_checksum); i++) if (le32_to_cpu(((const le32_t*) sector)[i]) != vbr_checksum) { exfat_error("invalid VBR checksum 0x%x (expected 0x%x)", le32_to_cpu(((const le32_t*) sector)[i]), vbr_checksum); if (!EXFAT_REPAIR(invalid_vbr_checksum, ef, sector, vbr_checksum)) return false; } return true; } static int commit_super_block(const struct exfat* ef) { if (exfat_pwrite(ef->dev, ef->sb, sizeof(struct exfat_super_block), 0) < 0) { exfat_error("failed to write super block"); return 1; } return exfat_fsync(ef->dev); } static int prepare_super_block(const struct exfat* ef) { if (le16_to_cpu(ef->sb->volume_state) & EXFAT_STATE_MOUNTED) exfat_warn("volume was not unmounted cleanly"); if (ef->ro) return 0; ef->sb->volume_state = cpu_to_le16( le16_to_cpu(ef->sb->volume_state) | EXFAT_STATE_MOUNTED); return commit_super_block(ef); } static void exfat_free(struct exfat* ef) { exfat_close(ef->dev); /* first of all, close the descriptor */ ef->dev = NULL; /* struct exfat_dev is freed by exfat_close() */ free(ef->root); ef->root = NULL; free(ef->zero_cluster); ef->zero_cluster = NULL; free(ef->cmap.chunk); ef->cmap.chunk = NULL; free(ef->upcase); ef->upcase = NULL; free(ef->sb); ef->sb = NULL; } int exfat_mount(struct exfat* ef, const char* spec, const char* options) { int rc; enum exfat_mode mode; exfat_tzset(); memset(ef, 0, sizeof(struct exfat)); parse_options(ef, options); if (match_option(options, "ro")) mode = EXFAT_MODE_RO; else if (match_option(options, "ro_fallback")) mode = EXFAT_MODE_ANY; else mode = EXFAT_MODE_RW; ef->dev = exfat_open(spec, mode); if (ef->dev == NULL) return -EIO; if (exfat_get_mode(ef->dev) == EXFAT_MODE_RO) { if (mode == EXFAT_MODE_ANY) ef->ro = -1; else ef->ro = 1; } ef->sb = malloc(sizeof(struct exfat_super_block)); if (ef->sb == NULL) { exfat_error("failed to allocate memory for the super block"); exfat_free(ef); return -ENOMEM; } memset(ef->sb, 0, sizeof(struct exfat_super_block)); if (exfat_pread(ef->dev, ef->sb, sizeof(struct exfat_super_block), 0) < 0) { exfat_error("failed to read boot sector"); exfat_free(ef); return -EIO; } if (memcmp(ef->sb->oem_name, "EXFAT ", 8) != 0) { exfat_error("exFAT file system is not found"); exfat_free(ef); return -EIO; } /* sector cannot be smaller than 512 bytes */ if (ef->sb->sector_bits < 9) { exfat_error("too small sector size: 2^%hhd", ef->sb->sector_bits); exfat_free(ef); return -EIO; } /* officially exFAT supports cluster size up to 32 MB */ if ((int) ef->sb->sector_bits + (int) ef->sb->spc_bits > 25) { exfat_error("too big cluster size: 2^(%hhd+%hhd)", ef->sb->sector_bits, ef->sb->spc_bits); exfat_free(ef); return -EIO; } ef->zero_cluster = malloc(CLUSTER_SIZE(*ef->sb)); if (ef->zero_cluster == NULL) { exfat_error("failed to allocate zero sector"); exfat_free(ef); return -ENOMEM; } /* use zero_cluster as a temporary buffer for VBR checksum verification */ if (!verify_vbr_checksum(ef, ef->zero_cluster)) { exfat_free(ef); return -EIO; } memset(ef->zero_cluster, 0, CLUSTER_SIZE(*ef->sb)); if (ef->sb->version.major != 1 || ef->sb->version.minor != 0) { exfat_error("unsupported exFAT version: %hhu.%hhu", ef->sb->version.major, ef->sb->version.minor); exfat_free(ef); return -EIO; } if (ef->sb->fat_count != 1) { exfat_error("unsupported FAT count: %hhu", ef->sb->fat_count); exfat_free(ef); return -EIO; } if (le64_to_cpu(ef->sb->sector_count) * SECTOR_SIZE(*ef->sb) > exfat_get_size(ef->dev)) { /* this can cause I/O errors later but we don't fail mounting to let user rescue data */ exfat_warn("file system in sectors is larger than device: " "%"PRIu64" * %d > %"PRIu64, le64_to_cpu(ef->sb->sector_count), SECTOR_SIZE(*ef->sb), exfat_get_size(ef->dev)); } if ((off_t) le32_to_cpu(ef->sb->cluster_count) * CLUSTER_SIZE(*ef->sb) > exfat_get_size(ef->dev)) { exfat_error("file system in clusters is larger than device: " "%u * %d > %"PRIu64, le32_to_cpu(ef->sb->cluster_count), CLUSTER_SIZE(*ef->sb), exfat_get_size(ef->dev)); exfat_free(ef); return -EIO; } ef->root = malloc(sizeof(struct exfat_node)); if (ef->root == NULL) { exfat_error("failed to allocate root node"); exfat_free(ef); return -ENOMEM; } memset(ef->root, 0, sizeof(struct exfat_node)); ef->root->attrib = EXFAT_ATTRIB_DIR; ef->root->start_cluster = le32_to_cpu(ef->sb->rootdir_cluster); ef->root->fptr_cluster = ef->root->start_cluster; ef->root->name[0] = cpu_to_le16('\0'); ef->root->size = rootdir_size(ef); if (ef->root->size == 0) { exfat_free(ef); return -EIO; } /* exFAT does not have time attributes for the root directory */ ef->root->mtime = 0; ef->root->atime = 0; /* always keep at least 1 reference to the root node */ exfat_get_node(ef->root); rc = exfat_cache_directory(ef, ef->root); if (rc != 0) goto error; if (ef->upcase == NULL) { exfat_error("upcase table is not found"); goto error; } if (ef->cmap.chunk == NULL) { exfat_error("clusters bitmap is not found"); goto error; } if (prepare_super_block(ef) != 0) goto error; return 0; error: exfat_put_node(ef, ef->root); exfat_reset_cache(ef); exfat_free(ef); return -EIO; } static void finalize_super_block(struct exfat* ef) { if (ef->ro) return; ef->sb->volume_state = cpu_to_le16( le16_to_cpu(ef->sb->volume_state) & ~EXFAT_STATE_MOUNTED); /* Some implementations set the percentage of allocated space to 0xff on FS creation and never update it. In this case leave it as is. */ if (ef->sb->allocated_percent != 0xff) { uint32_t free, total; free = exfat_count_free_clusters(ef); total = le32_to_cpu(ef->sb->cluster_count); ef->sb->allocated_percent = ((total - free) * 100 + total / 2) / total; } commit_super_block(ef); /* ignore return code */ } void exfat_unmount(struct exfat* ef) { exfat_flush_nodes(ef); /* ignore return code */ exfat_flush(ef); /* ignore return code */ exfat_put_node(ef, ef->root); exfat_reset_cache(ef); finalize_super_block(ef); exfat_free(ef); /* will close the descriptor */ }