/* A Bison parser, made by GNU Bison 3.7.4. */ /* Bison implementation for Yacc-like parsers in C Copyright (C) 1984, 1989-1990, 2000-2015, 2018-2020 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* As a special exception, you may create a larger work that contains part or all of the Bison parser skeleton and distribute that work under terms of your choice, so long as that work isn't itself a parser generator using the skeleton or a modified version thereof as a parser skeleton. Alternatively, if you modify or redistribute the parser skeleton itself, you may (at your option) remove this special exception, which will cause the skeleton and the resulting Bison output files to be licensed under the GNU General Public License without this special exception. This special exception was added by the Free Software Foundation in version 2.2 of Bison. */ /* C LALR(1) parser skeleton written by Richard Stallman, by simplifying the original so-called "semantic" parser. */ /* DO NOT RELY ON FEATURES THAT ARE NOT DOCUMENTED in the manual, especially those whose name start with YY_ or yy_. They are private implementation details that can be changed or removed. */ /* All symbols defined below should begin with yy or YY, to avoid infringing on user name space. This should be done even for local variables, as they might otherwise be expanded by user macros. There are some unavoidable exceptions within include files to define necessary library symbols; they are noted "INFRINGES ON USER NAME SPACE" below. */ /* Identify Bison output, and Bison version. */ #define YYBISON 30704 /* Bison version string. */ #define YYBISON_VERSION "3.7.4" /* Skeleton name. */ #define YYSKELETON_NAME "yacc.c" /* Pure parsers. */ #define YYPURE 1 /* Push parsers. */ #define YYPUSH 0 /* Pull parsers. */ #define YYPULL 1 /* First part of user prologue. */ #line 1 "sys-utils/hwclock-parse-date.y" /** * SPDX-License-Identifier: GPL-3.0-or-later * * Parse a string into an internal timestamp. * * This file is based on gnulib parse-datetime.y-dd7a871 with * the other gnulib dependencies removed for use in util-linux. * * Copyright (C) 1999-2000, 2002-2017 Free Software Foundation, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Originally written by Steven M. Bellovin while * at the University of North Carolina at Chapel Hill. Later tweaked by * a couple of people on Usenet. Completely overhauled by Rich $alz * and Jim Berets in August, 1990. * * Modified by Paul Eggert in August 1999 to do * the right thing about local DST. Also modified by Paul Eggert * in February 2004 to support * nanosecond-resolution timestamps, and in October 2004 to support * TZ strings in dates. */ /** * FIXME: Check for arithmetic overflow in all cases, not just * some of them. */ #include #include #include "c.h" #include "timeutils.h" #include "hwclock.h" /** * There's no need to extend the stack, so there's no need to involve * alloca. */ #define YYSTACK_USE_ALLOCA 0 /** * Tell Bison how much stack space is needed. 20 should be plenty for * this grammar, which is not right recursive. Beware setting it too * high, since that might cause problems on machines whose * implementations have lame stack-overflow checking. */ #define YYMAXDEPTH 20 #define YYINITDEPTH YYMAXDEPTH /** * Since the code of parse-datetime.y is not included in the Emacs executable * itself, there is no need to #define static in this file. Even if * the code were included in the Emacs executable, it probably * wouldn't do any harm to #undef it here; this will only cause * problems if we try to write to a static variable, which I don't * think this code needs to do. */ #ifdef emacs # undef static #endif #include #include #include #include #include #include #include "cctype.h" #include "nls.h" /** * Bison's skeleton tests _STDLIB_H, while some stdlib.h headers * use _STDLIB_H_ as witness. Map the latter to the one bison uses. * FIXME: this is temporary. Remove when we have a mechanism to ensure * that the version we're using is fixed, too. */ #ifdef _STDLIB_H_ # undef _STDLIB_H # define _STDLIB_H 1 #endif /** * Shift A right by B bits portably, by dividing A by 2**B and * truncating towards minus infinity. A and B should be free of side * effects, and B should be in the range 0 <= B <= INT_BITS - 2, where * INT_BITS is the number of useful bits in an int. GNU code can * assume that INT_BITS is at least 32. * * ISO C99 says that A >> B is implementation-defined if A < 0. Some * implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift * right in the usual way when A < 0, so SHR falls back on division if * ordinary A >> B doesn't seem to be the usual signed shift. */ #define SHR(a, b) \ (-1 >> 1 == -1 \ ? (a) >> (b) \ : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0)) #define TM_YEAR_BASE 1900 #define HOUR(x) ((x) * 60) #define STREQ(a, b) (strcmp (a, b) == 0) /** * Convert a possibly-signed character to an unsigned character. This is * a bit safer than casting to unsigned char, since it catches some type * errors that the cast doesn't. */ static unsigned char to_uchar (char ch) { return ch; } /** * FIXME: It also assumes that signed integer overflow silently wraps around, * but this is not true any more with recent versions of GCC 4. */ /** * An integer value, and the number of digits in its textual * representation. */ typedef struct { int negative; intmax_t value; size_t digits; } textint; /* An entry in the lexical lookup table. */ typedef struct { char const *name; int type; int value; } table; /* Meridian: am, pm, or 24-hour style. */ enum { MERam, MERpm, MER24 }; enum { BILLION = 1000000000, LOG10_BILLION = 9 }; /* Relative year, month, day, hour, minutes, seconds, and nanoseconds. */ typedef struct { intmax_t year; intmax_t month; intmax_t day; intmax_t hour; intmax_t minutes; time_t seconds; long ns; } relative_time; #if HAVE_COMPOUND_LITERALS # define RELATIVE_TIME_0 ((relative_time) { 0, 0, 0, 0, 0, 0, 0 }) #else static relative_time const RELATIVE_TIME_0; #endif /* Information passed to and from the parser. */ typedef struct { /* The input string remaining to be parsed. */ const char *input; /* N, if this is the Nth Tuesday. */ intmax_t day_ordinal; /* Day of week; Sunday is 0. */ int day_number; /* tm_isdst flag for the local zone. */ int local_isdst; /* Time zone, in minutes east of UTC. */ int time_zone; /* Style used for time. */ int meridian; /* Gregorian year, month, day, hour, minutes, seconds, and ns. */ textint year; intmax_t month; intmax_t day; intmax_t hour; intmax_t minutes; struct timespec seconds; /* includes nanoseconds */ /* Relative year, month, day, hour, minutes, seconds, and ns. */ relative_time rel; /* Presence or counts of some nonterminals parsed so far. */ int timespec_seen; int rels_seen; size_t dates_seen; size_t days_seen; size_t local_zones_seen; size_t dsts_seen; size_t times_seen; size_t zones_seen; /* Table of local time zone abbreviations, null terminated. */ table local_time_zone_table[3]; } parser_control; union YYSTYPE; static int yylex (union YYSTYPE *, parser_control *); static int yyerror (parser_control const *, char const *); static int time_zone_hhmm (parser_control *, textint, textint); /** * Extract into *PC any date and time info from a string of digits * of the form e.g., YYYYMMDD, YYMMDD, HHMM, HH (and sometimes YYY, * YYYY, ...). */ static void digits_to_date_time(parser_control *pc, textint text_int) { if (pc->dates_seen && ! pc->year.digits && ! pc->rels_seen && (pc->times_seen || 2 < text_int.digits)) { pc->year = text_int; } else { if (4 < text_int.digits) { pc->dates_seen++; pc->day = text_int.value % 100; pc->month = (text_int.value / 100) % 100; pc->year.value = text_int.value / 10000; pc->year.digits = text_int.digits - 4; } else { pc->times_seen++; if (text_int.digits <= 2) { pc->hour = text_int.value; pc->minutes = 0; } else { pc->hour = text_int.value / 100; pc->minutes = text_int.value % 100; } pc->seconds.tv_sec = 0; pc->seconds.tv_nsec = 0; pc->meridian = MER24; } } } /* Increment PC->rel by FACTOR * REL (FACTOR is 1 or -1). */ static void apply_relative_time(parser_control *pc, relative_time rel, int factor) { pc->rel.ns += factor * rel.ns; pc->rel.seconds += factor * rel.seconds; pc->rel.minutes += factor * rel.minutes; pc->rel.hour += factor * rel.hour; pc->rel.day += factor * rel.day; pc->rel.month += factor * rel.month; pc->rel.year += factor * rel.year; pc->rels_seen = 1; } /* Set PC-> hour, minutes, seconds and nanoseconds members from arguments. */ static void set_hhmmss(parser_control *pc, intmax_t hour, intmax_t minutes, time_t sec, long nsec) { pc->hour = hour; pc->minutes = minutes; pc->seconds.tv_sec = sec; pc->seconds.tv_nsec = nsec; } #line 353 "sys-utils/hwclock-parse-date.c" # ifndef YY_CAST # ifdef __cplusplus # define YY_CAST(Type, Val) static_cast (Val) # define YY_REINTERPRET_CAST(Type, Val) reinterpret_cast (Val) # else # define YY_CAST(Type, Val) ((Type) (Val)) # define YY_REINTERPRET_CAST(Type, Val) ((Type) (Val)) # endif # endif # ifndef YY_NULLPTR # if defined __cplusplus # if 201103L <= __cplusplus # define YY_NULLPTR nullptr # else # define YY_NULLPTR 0 # endif # else # define YY_NULLPTR ((void*)0) # endif # endif /* Debug traces. */ #ifndef YYDEBUG # define YYDEBUG 0 #endif #if YYDEBUG extern int yydebug; #endif /* Token kinds. */ #ifndef YYTOKENTYPE # define YYTOKENTYPE enum yytokentype { YYEMPTY = -2, YYEOF = 0, /* "end of file" */ YYerror = 256, /* error */ YYUNDEF = 257, /* "invalid token" */ tAGO = 258, /* tAGO */ tDST = 259, /* tDST */ tYEAR_UNIT = 260, /* tYEAR_UNIT */ tMONTH_UNIT = 261, /* tMONTH_UNIT */ tHOUR_UNIT = 262, /* tHOUR_UNIT */ tMINUTE_UNIT = 263, /* tMINUTE_UNIT */ tSEC_UNIT = 264, /* tSEC_UNIT */ tDAY_UNIT = 265, /* tDAY_UNIT */ tDAY_SHIFT = 266, /* tDAY_SHIFT */ tDAY = 267, /* tDAY */ tDAYZONE = 268, /* tDAYZONE */ tLOCAL_ZONE = 269, /* tLOCAL_ZONE */ tMERIDIAN = 270, /* tMERIDIAN */ tMONTH = 271, /* tMONTH */ tORDINAL = 272, /* tORDINAL */ tZONE = 273, /* tZONE */ tSNUMBER = 274, /* tSNUMBER */ tUNUMBER = 275, /* tUNUMBER */ tSDECIMAL_NUMBER = 276, /* tSDECIMAL_NUMBER */ tUDECIMAL_NUMBER = 277 /* tUDECIMAL_NUMBER */ }; typedef enum yytokentype yytoken_kind_t; #endif /* Token kinds. */ #define YYEMPTY -2 #define YYEOF 0 #define YYerror 256 #define YYUNDEF 257 #define tAGO 258 #define tDST 259 #define tYEAR_UNIT 260 #define tMONTH_UNIT 261 #define tHOUR_UNIT 262 #define tMINUTE_UNIT 263 #define tSEC_UNIT 264 #define tDAY_UNIT 265 #define tDAY_SHIFT 266 #define tDAY 267 #define tDAYZONE 268 #define tLOCAL_ZONE 269 #define tMERIDIAN 270 #define tMONTH 271 #define tORDINAL 272 #define tZONE 273 #define tSNUMBER 274 #define tUNUMBER 275 #define tSDECIMAL_NUMBER 276 #define tUDECIMAL_NUMBER 277 /* Value type. */ #if ! defined YYSTYPE && ! defined YYSTYPE_IS_DECLARED union YYSTYPE { #line 294 "sys-utils/hwclock-parse-date.y" intmax_t intval; textint textintval; struct timespec timespec; relative_time rel; #line 454 "sys-utils/hwclock-parse-date.c" }; typedef union YYSTYPE YYSTYPE; # define YYSTYPE_IS_TRIVIAL 1 # define YYSTYPE_IS_DECLARED 1 #endif int yyparse (parser_control *pc); /* Symbol kind. */ enum yysymbol_kind_t { YYSYMBOL_YYEMPTY = -2, YYSYMBOL_YYEOF = 0, /* "end of file" */ YYSYMBOL_YYerror = 1, /* error */ YYSYMBOL_YYUNDEF = 2, /* "invalid token" */ YYSYMBOL_tAGO = 3, /* tAGO */ YYSYMBOL_tDST = 4, /* tDST */ YYSYMBOL_tYEAR_UNIT = 5, /* tYEAR_UNIT */ YYSYMBOL_tMONTH_UNIT = 6, /* tMONTH_UNIT */ YYSYMBOL_tHOUR_UNIT = 7, /* tHOUR_UNIT */ YYSYMBOL_tMINUTE_UNIT = 8, /* tMINUTE_UNIT */ YYSYMBOL_tSEC_UNIT = 9, /* tSEC_UNIT */ YYSYMBOL_tDAY_UNIT = 10, /* tDAY_UNIT */ YYSYMBOL_tDAY_SHIFT = 11, /* tDAY_SHIFT */ YYSYMBOL_tDAY = 12, /* tDAY */ YYSYMBOL_tDAYZONE = 13, /* tDAYZONE */ YYSYMBOL_tLOCAL_ZONE = 14, /* tLOCAL_ZONE */ YYSYMBOL_tMERIDIAN = 15, /* tMERIDIAN */ YYSYMBOL_tMONTH = 16, /* tMONTH */ YYSYMBOL_tORDINAL = 17, /* tORDINAL */ YYSYMBOL_tZONE = 18, /* tZONE */ YYSYMBOL_tSNUMBER = 19, /* tSNUMBER */ YYSYMBOL_tUNUMBER = 20, /* tUNUMBER */ YYSYMBOL_tSDECIMAL_NUMBER = 21, /* tSDECIMAL_NUMBER */ YYSYMBOL_tUDECIMAL_NUMBER = 22, /* tUDECIMAL_NUMBER */ YYSYMBOL_23_ = 23, /* '@' */ YYSYMBOL_24_T_ = 24, /* 'T' */ YYSYMBOL_25_ = 25, /* ':' */ YYSYMBOL_26_ = 26, /* ',' */ YYSYMBOL_27_ = 27, /* '/' */ YYSYMBOL_YYACCEPT = 28, /* $accept */ YYSYMBOL_spec = 29, /* spec */ YYSYMBOL_timespec = 30, /* timespec */ YYSYMBOL_items = 31, /* items */ YYSYMBOL_item = 32, /* item */ YYSYMBOL_datetime = 33, /* datetime */ YYSYMBOL_iso_8601_datetime = 34, /* iso_8601_datetime */ YYSYMBOL_time = 35, /* time */ YYSYMBOL_iso_8601_time = 36, /* iso_8601_time */ YYSYMBOL_o_zone_offset = 37, /* o_zone_offset */ YYSYMBOL_zone_offset = 38, /* zone_offset */ YYSYMBOL_local_zone = 39, /* local_zone */ YYSYMBOL_zone = 40, /* zone */ YYSYMBOL_day = 41, /* day */ YYSYMBOL_date = 42, /* date */ YYSYMBOL_iso_8601_date = 43, /* iso_8601_date */ YYSYMBOL_rel = 44, /* rel */ YYSYMBOL_relunit = 45, /* relunit */ YYSYMBOL_relunit_snumber = 46, /* relunit_snumber */ YYSYMBOL_dayshift = 47, /* dayshift */ YYSYMBOL_seconds = 48, /* seconds */ YYSYMBOL_signed_seconds = 49, /* signed_seconds */ YYSYMBOL_unsigned_seconds = 50, /* unsigned_seconds */ YYSYMBOL_number = 51, /* number */ YYSYMBOL_hybrid = 52, /* hybrid */ YYSYMBOL_o_colon_minutes = 53 /* o_colon_minutes */ }; typedef enum yysymbol_kind_t yysymbol_kind_t; #ifdef short # undef short #endif /* On compilers that do not define __PTRDIFF_MAX__ etc., make sure and (if available) are included so that the code can choose integer types of a good width. */ #ifndef __PTRDIFF_MAX__ # include /* INFRINGES ON USER NAME SPACE */ # if defined __STDC_VERSION__ && 199901 <= __STDC_VERSION__ # include /* INFRINGES ON USER NAME SPACE */ # define YY_STDINT_H # endif #endif /* Narrow types that promote to a signed type and that can represent a signed or unsigned integer of at least N bits. In tables they can save space and decrease cache pressure. Promoting to a signed type helps avoid bugs in integer arithmetic. */ #ifdef __INT_LEAST8_MAX__ typedef __INT_LEAST8_TYPE__ yytype_int8; #elif defined YY_STDINT_H typedef int_least8_t yytype_int8; #else typedef signed char yytype_int8; #endif #ifdef __INT_LEAST16_MAX__ typedef __INT_LEAST16_TYPE__ yytype_int16; #elif defined YY_STDINT_H typedef int_least16_t yytype_int16; #else typedef short yytype_int16; #endif #if defined __UINT_LEAST8_MAX__ && __UINT_LEAST8_MAX__ <= __INT_MAX__ typedef __UINT_LEAST8_TYPE__ yytype_uint8; #elif (!defined __UINT_LEAST8_MAX__ && defined YY_STDINT_H \ && UINT_LEAST8_MAX <= INT_MAX) typedef uint_least8_t yytype_uint8; #elif !defined __UINT_LEAST8_MAX__ && UCHAR_MAX <= INT_MAX typedef unsigned char yytype_uint8; #else typedef short yytype_uint8; #endif #if defined __UINT_LEAST16_MAX__ && __UINT_LEAST16_MAX__ <= __INT_MAX__ typedef __UINT_LEAST16_TYPE__ yytype_uint16; #elif (!defined __UINT_LEAST16_MAX__ && defined YY_STDINT_H \ && UINT_LEAST16_MAX <= INT_MAX) typedef uint_least16_t yytype_uint16; #elif !defined __UINT_LEAST16_MAX__ && USHRT_MAX <= INT_MAX typedef unsigned short yytype_uint16; #else typedef int yytype_uint16; #endif #ifndef YYPTRDIFF_T # if defined __PTRDIFF_TYPE__ && defined __PTRDIFF_MAX__ # define YYPTRDIFF_T __PTRDIFF_TYPE__ # define YYPTRDIFF_MAXIMUM __PTRDIFF_MAX__ # elif defined PTRDIFF_MAX # ifndef ptrdiff_t # include /* INFRINGES ON USER NAME SPACE */ # endif # define YYPTRDIFF_T ptrdiff_t # define YYPTRDIFF_MAXIMUM PTRDIFF_MAX # else # define YYPTRDIFF_T long # define YYPTRDIFF_MAXIMUM LONG_MAX # endif #endif #ifndef YYSIZE_T # ifdef __SIZE_TYPE__ # define YYSIZE_T __SIZE_TYPE__ # elif defined size_t # define YYSIZE_T size_t # elif defined __STDC_VERSION__ && 199901 <= __STDC_VERSION__ # include /* INFRINGES ON USER NAME SPACE */ # define YYSIZE_T size_t # else # define YYSIZE_T unsigned # endif #endif #define YYSIZE_MAXIMUM \ YY_CAST (YYPTRDIFF_T, \ (YYPTRDIFF_MAXIMUM < YY_CAST (YYSIZE_T, -1) \ ? YYPTRDIFF_MAXIMUM \ : YY_CAST (YYSIZE_T, -1))) #define YYSIZEOF(X) YY_CAST (YYPTRDIFF_T, sizeof (X)) /* Stored state numbers (used for stacks). */ typedef yytype_int8 yy_state_t; /* State numbers in computations. */ typedef int yy_state_fast_t; #ifndef YY_ # if defined YYENABLE_NLS && YYENABLE_NLS # if ENABLE_NLS # include /* INFRINGES ON USER NAME SPACE */ # define YY_(Msgid) dgettext ("bison-runtime", Msgid) # endif # endif # ifndef YY_ # define YY_(Msgid) Msgid # endif #endif #ifndef YY_ATTRIBUTE_PURE # if defined __GNUC__ && 2 < __GNUC__ + (96 <= __GNUC_MINOR__) # define YY_ATTRIBUTE_PURE __attribute__ ((__pure__)) # else # define YY_ATTRIBUTE_PURE # endif #endif #ifndef YY_ATTRIBUTE_UNUSED # if defined __GNUC__ && 2 < __GNUC__ + (7 <= __GNUC_MINOR__) # define YY_ATTRIBUTE_UNUSED __attribute__ ((__unused__)) # else # define YY_ATTRIBUTE_UNUSED # endif #endif /* Suppress unused-variable warnings by "using" E. */ #if ! defined lint || defined __GNUC__ # define YYUSE(E) ((void) (E)) #else # define YYUSE(E) /* empty */ #endif #if defined __GNUC__ && ! defined __ICC && 407 <= __GNUC__ * 100 + __GNUC_MINOR__ /* Suppress an incorrect diagnostic about yylval being uninitialized. */ # define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN \ _Pragma ("GCC diagnostic push") \ _Pragma ("GCC diagnostic ignored \"-Wuninitialized\"") \ _Pragma ("GCC diagnostic ignored \"-Wmaybe-uninitialized\"") # define YY_IGNORE_MAYBE_UNINITIALIZED_END \ _Pragma ("GCC diagnostic pop") #else # define YY_INITIAL_VALUE(Value) Value #endif #ifndef YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN # define YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN # define YY_IGNORE_MAYBE_UNINITIALIZED_END #endif #ifndef YY_INITIAL_VALUE # define YY_INITIAL_VALUE(Value) /* Nothing. */ #endif #if defined __cplusplus && defined __GNUC__ && ! defined __ICC && 6 <= __GNUC__ # define YY_IGNORE_USELESS_CAST_BEGIN \ _Pragma ("GCC diagnostic push") \ _Pragma ("GCC diagnostic ignored \"-Wuseless-cast\"") # define YY_IGNORE_USELESS_CAST_END \ _Pragma ("GCC diagnostic pop") #endif #ifndef YY_IGNORE_USELESS_CAST_BEGIN # define YY_IGNORE_USELESS_CAST_BEGIN # define YY_IGNORE_USELESS_CAST_END #endif #define YY_ASSERT(E) ((void) (0 && (E))) #if !defined yyoverflow /* The parser invokes alloca or malloc; define the necessary symbols. */ # ifdef YYSTACK_USE_ALLOCA # if YYSTACK_USE_ALLOCA # ifdef __GNUC__ # define YYSTACK_ALLOC __builtin_alloca # elif defined __BUILTIN_VA_ARG_INCR # include /* INFRINGES ON USER NAME SPACE */ # elif defined _AIX # define YYSTACK_ALLOC __alloca # elif defined _MSC_VER # include /* INFRINGES ON USER NAME SPACE */ # define alloca _alloca # else # define YYSTACK_ALLOC alloca # if ! defined _ALLOCA_H && ! defined EXIT_SUCCESS # include /* INFRINGES ON USER NAME SPACE */ /* Use EXIT_SUCCESS as a witness for stdlib.h. */ # ifndef EXIT_SUCCESS # define EXIT_SUCCESS 0 # endif # endif # endif # endif # endif # ifdef YYSTACK_ALLOC /* Pacify GCC's 'empty if-body' warning. */ # define YYSTACK_FREE(Ptr) do { /* empty */; } while (0) # ifndef YYSTACK_ALLOC_MAXIMUM /* The OS might guarantee only one guard page at the bottom of the stack, and a page size can be as small as 4096 bytes. So we cannot safely invoke alloca (N) if N exceeds 4096. Use a slightly smaller number to allow for a few compiler-allocated temporary stack slots. */ # define YYSTACK_ALLOC_MAXIMUM 4032 /* reasonable circa 2006 */ # endif # else # define YYSTACK_ALLOC YYMALLOC # define YYSTACK_FREE YYFREE # ifndef YYSTACK_ALLOC_MAXIMUM # define YYSTACK_ALLOC_MAXIMUM YYSIZE_MAXIMUM # endif # if (defined __cplusplus && ! defined EXIT_SUCCESS \ && ! ((defined YYMALLOC || defined malloc) \ && (defined YYFREE || defined free))) # include /* INFRINGES ON USER NAME SPACE */ # ifndef EXIT_SUCCESS # define EXIT_SUCCESS 0 # endif # endif # ifndef YYMALLOC # define YYMALLOC malloc # if ! defined malloc && ! defined EXIT_SUCCESS void *malloc (YYSIZE_T); /* INFRINGES ON USER NAME SPACE */ # endif # endif # ifndef YYFREE # define YYFREE free # if ! defined free && ! defined EXIT_SUCCESS void free (void *); /* INFRINGES ON USER NAME SPACE */ # endif # endif # endif #endif /* !defined yyoverflow */ #if (! defined yyoverflow \ && (! defined __cplusplus \ || (defined YYSTYPE_IS_TRIVIAL && YYSTYPE_IS_TRIVIAL))) /* A type that is properly aligned for any stack member. */ union yyalloc { yy_state_t yyss_alloc; YYSTYPE yyvs_alloc; }; /* The size of the maximum gap between one aligned stack and the next. */ # define YYSTACK_GAP_MAXIMUM (YYSIZEOF (union yyalloc) - 1) /* The size of an array large to enough to hold all stacks, each with N elements. */ # define YYSTACK_BYTES(N) \ ((N) * (YYSIZEOF (yy_state_t) + YYSIZEOF (YYSTYPE)) \ + YYSTACK_GAP_MAXIMUM) # define YYCOPY_NEEDED 1 /* Relocate STACK from its old location to the new one. The local variables YYSIZE and YYSTACKSIZE give the old and new number of elements in the stack, and YYPTR gives the new location of the stack. Advance YYPTR to a properly aligned location for the next stack. */ # define YYSTACK_RELOCATE(Stack_alloc, Stack) \ do \ { \ YYPTRDIFF_T yynewbytes; \ YYCOPY (&yyptr->Stack_alloc, Stack, yysize); \ Stack = &yyptr->Stack_alloc; \ yynewbytes = yystacksize * YYSIZEOF (*Stack) + YYSTACK_GAP_MAXIMUM; \ yyptr += yynewbytes / YYSIZEOF (*yyptr); \ } \ while (0) #endif #if defined YYCOPY_NEEDED && YYCOPY_NEEDED /* Copy COUNT objects from SRC to DST. The source and destination do not overlap. */ # ifndef YYCOPY # if defined __GNUC__ && 1 < __GNUC__ # define YYCOPY(Dst, Src, Count) \ __builtin_memcpy (Dst, Src, YY_CAST (YYSIZE_T, (Count)) * sizeof (*(Src))) # else # define YYCOPY(Dst, Src, Count) \ do \ { \ YYPTRDIFF_T yyi; \ for (yyi = 0; yyi < (Count); yyi++) \ (Dst)[yyi] = (Src)[yyi]; \ } \ while (0) # endif # endif #endif /* !YYCOPY_NEEDED */ /* YYFINAL -- State number of the termination state. */ #define YYFINAL 12 /* YYLAST -- Last index in YYTABLE. */ #define YYLAST 112 /* YYNTOKENS -- Number of terminals. */ #define YYNTOKENS 28 /* YYNNTS -- Number of nonterminals. */ #define YYNNTS 26 /* YYNRULES -- Number of rules. */ #define YYNRULES 91 /* YYNSTATES -- Number of states. */ #define YYNSTATES 114 /* YYMAXUTOK -- Last valid token kind. */ #define YYMAXUTOK 277 /* YYTRANSLATE(TOKEN-NUM) -- Symbol number corresponding to TOKEN-NUM as returned by yylex, with out-of-bounds checking. */ #define YYTRANSLATE(YYX) \ (0 <= (YYX) && (YYX) <= YYMAXUTOK \ ? YY_CAST (yysymbol_kind_t, yytranslate[YYX]) \ : YYSYMBOL_YYUNDEF) /* YYTRANSLATE[TOKEN-NUM] -- Symbol number corresponding to TOKEN-NUM as returned by yylex. */ static const yytype_int8 yytranslate[] = { 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 2, 2, 27, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 25, 2, 2, 2, 2, 2, 23, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 24, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 }; #if YYDEBUG /* YYRLINE[YYN] -- Source line where rule number YYN was defined. */ static const yytype_int16 yyrline[] = { 0, 321, 321, 322, 326, 332, 334, 338, 341, 344, 347, 350, 353, 356, 357, 358, 362, 366, 370, 374, 378, 382, 386, 390, 394, 400, 402, 406, 431, 435, 446, 449, 452, 456, 460, 464, 467, 473, 477, 481, 485, 492, 496, 514, 521, 528, 532, 537, 541, 546, 550, 559, 561, 563, 568, 570, 572, 574, 576, 578, 580, 582, 584, 586, 588, 590, 592, 594, 596, 598, 600, 602, 607, 612, 614, 618, 620, 622, 624, 626, 628, 633, 637, 637, 640, 641, 646, 647, 652, 657, 669, 670 }; #endif /** Accessing symbol of state STATE. */ #define YY_ACCESSING_SYMBOL(State) YY_CAST (yysymbol_kind_t, yystos[State]) #if YYDEBUG || 0 /* The user-facing name of the symbol whose (internal) number is YYSYMBOL. No bounds checking. */ static const char *yysymbol_name (yysymbol_kind_t yysymbol) YY_ATTRIBUTE_UNUSED; /* YYTNAME[SYMBOL-NUM] -- String name of the symbol SYMBOL-NUM. First, the terminals, then, starting at YYNTOKENS, nonterminals. */ static const char *const yytname[] = { "\"end of file\"", "error", "\"invalid token\"", "tAGO", "tDST", "tYEAR_UNIT", "tMONTH_UNIT", "tHOUR_UNIT", "tMINUTE_UNIT", "tSEC_UNIT", "tDAY_UNIT", "tDAY_SHIFT", "tDAY", "tDAYZONE", "tLOCAL_ZONE", "tMERIDIAN", "tMONTH", "tORDINAL", "tZONE", "tSNUMBER", "tUNUMBER", "tSDECIMAL_NUMBER", "tUDECIMAL_NUMBER", "'@'", "'T'", "':'", "','", "'/'", "$accept", "spec", "timespec", "items", "item", "datetime", "iso_8601_datetime", "time", "iso_8601_time", "o_zone_offset", "zone_offset", "local_zone", "zone", "day", "date", "iso_8601_date", "rel", "relunit", "relunit_snumber", "dayshift", "seconds", "signed_seconds", "unsigned_seconds", "number", "hybrid", "o_colon_minutes", YY_NULLPTR }; static const char * yysymbol_name (yysymbol_kind_t yysymbol) { return yytname[yysymbol]; } #endif #ifdef YYPRINT /* YYTOKNUM[NUM] -- (External) token number corresponding to the (internal) symbol number NUM (which must be that of a token). */ static const yytype_int16 yytoknum[] = { 0, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 64, 84, 58, 44, 47 }; #endif #define YYPACT_NINF (-93) #define yypact_value_is_default(Yyn) \ ((Yyn) == YYPACT_NINF) #define YYTABLE_NINF (-1) #define yytable_value_is_error(Yyn) \ 0 /* YYPACT[STATE-NUM] -- Index in YYTABLE of the portion describing STATE-NUM. */ static const yytype_int8 yypact[] = { 38, 27, 77, -93, 46, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, 62, -93, 82, -3, 66, 3, 74, -4, 83, 84, 75, -93, -93, -93, -93, -93, -93, -93, -93, -93, 71, -93, 93, -93, -93, -93, -93, -93, -93, 78, 72, -93, -93, -93, -93, -93, -93, -93, -93, 25, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, -93, 21, 19, 79, 80, -93, -93, -93, -93, -93, 81, -93, -93, 85, 86, -93, -93, -93, -93, -93, -6, 76, 17, -93, -93, -93, -93, 87, 69, -93, -93, 88, 89, -1, -93, 18, -93, -93, 69, 91 }; /* YYDEFACT[STATE-NUM] -- Default reduction number in state STATE-NUM. Performed when YYTABLE does not specify something else to do. Zero means the default is an error. */ static const yytype_int8 yydefact[] = { 5, 0, 0, 2, 3, 85, 87, 84, 86, 4, 82, 83, 1, 56, 59, 65, 68, 73, 62, 81, 37, 35, 28, 0, 0, 30, 0, 88, 0, 0, 31, 6, 7, 16, 8, 21, 9, 10, 12, 11, 49, 13, 52, 74, 53, 14, 15, 38, 29, 0, 45, 54, 57, 63, 66, 69, 60, 39, 36, 90, 32, 75, 76, 78, 79, 80, 77, 55, 58, 64, 67, 70, 61, 40, 18, 47, 90, 0, 0, 22, 89, 71, 72, 33, 0, 51, 44, 0, 0, 34, 43, 48, 50, 27, 25, 41, 0, 17, 46, 91, 19, 90, 0, 23, 26, 0, 0, 25, 42, 25, 20, 24, 0, 25 }; /* YYPGOTO[NTERM-NUM]. */ static const yytype_int8 yypgoto[] = { -93, -93, -93, -93, -93, -93, -93, -93, 20, -68, -27, -93, -93, -93, -93, -93, -93, -93, 60, -93, -93, -93, -92, -93, -93, 43 }; /* YYDEFGOTO[NTERM-NUM]. */ static const yytype_int8 yydefgoto[] = { -1, 2, 3, 4, 31, 32, 33, 34, 35, 103, 104, 36, 37, 38, 39, 40, 41, 42, 43, 44, 9, 10, 11, 45, 46, 93 }; /* YYTABLE[YYPACT[STATE-NUM]] -- What to do in state STATE-NUM. If positive, shift that token. If negative, reduce the rule whose number is the opposite. If YYTABLE_NINF, syntax error. */ static const yytype_int8 yytable[] = { 79, 67, 68, 69, 70, 71, 72, 58, 73, 100, 107, 74, 75, 101, 110, 76, 49, 50, 101, 102, 113, 77, 59, 78, 61, 62, 63, 64, 65, 66, 61, 62, 63, 64, 65, 66, 101, 101, 92, 111, 90, 91, 106, 112, 88, 111, 5, 6, 7, 8, 88, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 1, 23, 24, 25, 26, 27, 28, 29, 79, 30, 51, 52, 53, 54, 55, 56, 12, 57, 61, 62, 63, 64, 65, 66, 60, 48, 80, 47, 6, 83, 8, 81, 82, 26, 84, 85, 86, 87, 94, 95, 96, 89, 105, 97, 98, 99, 0, 108, 109, 101, 0, 88 }; static const yytype_int8 yycheck[] = { 27, 5, 6, 7, 8, 9, 10, 4, 12, 15, 102, 15, 16, 19, 15, 19, 19, 20, 19, 25, 112, 25, 19, 27, 5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 19, 19, 19, 107, 19, 20, 25, 25, 25, 113, 19, 20, 21, 22, 25, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 16, 17, 18, 19, 20, 21, 22, 96, 24, 5, 6, 7, 8, 9, 10, 0, 12, 5, 6, 7, 8, 9, 10, 25, 4, 27, 26, 20, 30, 22, 9, 9, 19, 24, 3, 19, 26, 20, 20, 20, 59, 27, 84, 20, 20, -1, 20, 20, 19, -1, 25 }; /* YYSTOS[STATE-NUM] -- The (internal number of the) accessing symbol of state STATE-NUM. */ static const yytype_int8 yystos[] = { 0, 23, 29, 30, 31, 19, 20, 21, 22, 48, 49, 50, 0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 26, 4, 19, 20, 5, 6, 7, 8, 9, 10, 12, 4, 19, 46, 5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 12, 15, 16, 19, 25, 27, 38, 46, 9, 9, 46, 24, 3, 19, 26, 25, 53, 19, 20, 19, 53, 20, 20, 20, 36, 20, 20, 15, 19, 25, 37, 38, 27, 25, 50, 20, 20, 15, 37, 25, 50 }; /* YYR1[YYN] -- Symbol number of symbol that rule YYN derives. */ static const yytype_int8 yyr1[] = { 0, 28, 29, 29, 30, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 34, 35, 35, 35, 35, 36, 36, 36, 37, 37, 38, 39, 39, 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 42, 42, 42, 43, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 46, 47, 48, 48, 49, 49, 50, 50, 51, 52, 53, 53 }; /* YYR2[YYN] -- Number of symbols on the right hand side of rule YYN. */ static const yytype_int8 yyr2[] = { 0, 2, 1, 1, 2, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 4, 6, 1, 2, 4, 6, 0, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 3, 5, 3, 3, 2, 4, 2, 3, 1, 3, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2 }; enum { YYENOMEM = -2 }; #define yyerrok (yyerrstatus = 0) #define yyclearin (yychar = YYEMPTY) #define YYACCEPT goto yyacceptlab #define YYABORT goto yyabortlab #define YYERROR goto yyerrorlab #define YYRECOVERING() (!!yyerrstatus) #define YYBACKUP(Token, Value) \ do \ if (yychar == YYEMPTY) \ { \ yychar = (Token); \ yylval = (Value); \ YYPOPSTACK (yylen); \ yystate = *yyssp; \ goto yybackup; \ } \ else \ { \ yyerror (pc, YY_("syntax error: cannot back up")); \ YYERROR; \ } \ while (0) /* Backward compatibility with an undocumented macro. Use YYerror or YYUNDEF. */ #define YYERRCODE YYUNDEF /* Enable debugging if requested. */ #if YYDEBUG # ifndef YYFPRINTF # include /* INFRINGES ON USER NAME SPACE */ # define YYFPRINTF fprintf # endif # define YYDPRINTF(Args) \ do { \ if (yydebug) \ YYFPRINTF Args; \ } while (0) /* This macro is provided for backward compatibility. */ # ifndef YY_LOCATION_PRINT # define YY_LOCATION_PRINT(File, Loc) ((void) 0) # endif # define YY_SYMBOL_PRINT(Title, Kind, Value, Location) \ do { \ if (yydebug) \ { \ YYFPRINTF (stderr, "%s ", Title); \ yy_symbol_print (stderr, \ Kind, Value, pc); \ YYFPRINTF (stderr, "\n"); \ } \ } while (0) /*-----------------------------------. | Print this symbol's value on YYO. | `-----------------------------------*/ static void yy_symbol_value_print (FILE *yyo, yysymbol_kind_t yykind, YYSTYPE const * const yyvaluep, parser_control *pc) { FILE *yyoutput = yyo; YYUSE (yyoutput); YYUSE (pc); if (!yyvaluep) return; # ifdef YYPRINT if (yykind < YYNTOKENS) YYPRINT (yyo, yytoknum[yykind], *yyvaluep); # endif YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN YYUSE (yykind); YY_IGNORE_MAYBE_UNINITIALIZED_END } /*---------------------------. | Print this symbol on YYO. | `---------------------------*/ static void yy_symbol_print (FILE *yyo, yysymbol_kind_t yykind, YYSTYPE const * const yyvaluep, parser_control *pc) { YYFPRINTF (yyo, "%s %s (", yykind < YYNTOKENS ? "token" : "nterm", yysymbol_name (yykind)); yy_symbol_value_print (yyo, yykind, yyvaluep, pc); YYFPRINTF (yyo, ")"); } /*------------------------------------------------------------------. | yy_stack_print -- Print the state stack from its BOTTOM up to its | | TOP (included). | `------------------------------------------------------------------*/ static void yy_stack_print (yy_state_t *yybottom, yy_state_t *yytop) { YYFPRINTF (stderr, "Stack now"); for (; yybottom <= yytop; yybottom++) { int yybot = *yybottom; YYFPRINTF (stderr, " %d", yybot); } YYFPRINTF (stderr, "\n"); } # define YY_STACK_PRINT(Bottom, Top) \ do { \ if (yydebug) \ yy_stack_print ((Bottom), (Top)); \ } while (0) /*------------------------------------------------. | Report that the YYRULE is going to be reduced. | `------------------------------------------------*/ static void yy_reduce_print (yy_state_t *yyssp, YYSTYPE *yyvsp, int yyrule, parser_control *pc) { int yylno = yyrline[yyrule]; int yynrhs = yyr2[yyrule]; int yyi; YYFPRINTF (stderr, "Reducing stack by rule %d (line %d):\n", yyrule - 1, yylno); /* The symbols being reduced. */ for (yyi = 0; yyi < yynrhs; yyi++) { YYFPRINTF (stderr, " $%d = ", yyi + 1); yy_symbol_print (stderr, YY_ACCESSING_SYMBOL (+yyssp[yyi + 1 - yynrhs]), &yyvsp[(yyi + 1) - (yynrhs)], pc); YYFPRINTF (stderr, "\n"); } } # define YY_REDUCE_PRINT(Rule) \ do { \ if (yydebug) \ yy_reduce_print (yyssp, yyvsp, Rule, pc); \ } while (0) /* Nonzero means print parse trace. It is left uninitialized so that multiple parsers can coexist. */ int yydebug; #else /* !YYDEBUG */ # define YYDPRINTF(Args) ((void) 0) # define YY_SYMBOL_PRINT(Title, Kind, Value, Location) # define YY_STACK_PRINT(Bottom, Top) # define YY_REDUCE_PRINT(Rule) #endif /* !YYDEBUG */ /* YYINITDEPTH -- initial size of the parser's stacks. */ #ifndef YYINITDEPTH # define YYINITDEPTH 200 #endif /* YYMAXDEPTH -- maximum size the stacks can grow to (effective only if the built-in stack extension method is used). Do not make this value too large; the results are undefined if YYSTACK_ALLOC_MAXIMUM < YYSTACK_BYTES (YYMAXDEPTH) evaluated with infinite-precision integer arithmetic. */ #ifndef YYMAXDEPTH # define YYMAXDEPTH 10000 #endif /*-----------------------------------------------. | Release the memory associated to this symbol. | `-----------------------------------------------*/ static void yydestruct (const char *yymsg, yysymbol_kind_t yykind, YYSTYPE *yyvaluep, parser_control *pc) { YYUSE (yyvaluep); YYUSE (pc); if (!yymsg) yymsg = "Deleting"; YY_SYMBOL_PRINT (yymsg, yykind, yyvaluep, yylocationp); YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN YYUSE (yykind); YY_IGNORE_MAYBE_UNINITIALIZED_END } /*----------. | yyparse. | `----------*/ int yyparse (parser_control *pc) { /* Lookahead token kind. */ int yychar; /* The semantic value of the lookahead symbol. */ /* Default value used for initialization, for pacifying older GCCs or non-GCC compilers. */ YY_INITIAL_VALUE (static YYSTYPE yyval_default;) YYSTYPE yylval YY_INITIAL_VALUE (= yyval_default); /* Number of syntax errors so far. */ int yynerrs = 0; yy_state_fast_t yystate = 0; /* Number of tokens to shift before error messages enabled. */ int yyerrstatus = 0; /* Refer to the stacks through separate pointers, to allow yyoverflow to reallocate them elsewhere. */ /* Their size. */ YYPTRDIFF_T yystacksize = YYINITDEPTH; /* The state stack: array, bottom, top. */ yy_state_t yyssa[YYINITDEPTH]; yy_state_t *yyss = yyssa; yy_state_t *yyssp = yyss; /* The semantic value stack: array, bottom, top. */ YYSTYPE yyvsa[YYINITDEPTH]; YYSTYPE *yyvs = yyvsa; YYSTYPE *yyvsp = yyvs; int yyn; /* The return value of yyparse. */ int yyresult; /* Lookahead symbol kind. */ yysymbol_kind_t yytoken = YYSYMBOL_YYEMPTY; /* The variables used to return semantic value and location from the action routines. */ YYSTYPE yyval; #define YYPOPSTACK(N) (yyvsp -= (N), yyssp -= (N)) /* The number of symbols on the RHS of the reduced rule. Keep to zero when no symbol should be popped. */ int yylen = 0; YYDPRINTF ((stderr, "Starting parse\n")); yychar = YYEMPTY; /* Cause a token to be read. */ goto yysetstate; /*------------------------------------------------------------. | yynewstate -- push a new state, which is found in yystate. | `------------------------------------------------------------*/ yynewstate: /* In all cases, when you get here, the value and location stacks have just been pushed. So pushing a state here evens the stacks. */ yyssp++; /*--------------------------------------------------------------------. | yysetstate -- set current state (the top of the stack) to yystate. | `--------------------------------------------------------------------*/ yysetstate: YYDPRINTF ((stderr, "Entering state %d\n", yystate)); YY_ASSERT (0 <= yystate && yystate < YYNSTATES); YY_IGNORE_USELESS_CAST_BEGIN *yyssp = YY_CAST (yy_state_t, yystate); YY_IGNORE_USELESS_CAST_END YY_STACK_PRINT (yyss, yyssp); if (yyss + yystacksize - 1 <= yyssp) #if !defined yyoverflow && !defined YYSTACK_RELOCATE goto yyexhaustedlab; #else { /* Get the current used size of the three stacks, in elements. */ YYPTRDIFF_T yysize = yyssp - yyss + 1; # if defined yyoverflow { /* Give user a chance to reallocate the stack. Use copies of these so that the &'s don't force the real ones into memory. */ yy_state_t *yyss1 = yyss; YYSTYPE *yyvs1 = yyvs; /* Each stack pointer address is followed by the size of the data in use in that stack, in bytes. This used to be a conditional around just the two extra args, but that might be undefined if yyoverflow is a macro. */ yyoverflow (YY_("memory exhausted"), &yyss1, yysize * YYSIZEOF (*yyssp), &yyvs1, yysize * YYSIZEOF (*yyvsp), &yystacksize); yyss = yyss1; yyvs = yyvs1; } # else /* defined YYSTACK_RELOCATE */ /* Extend the stack our own way. */ if (YYMAXDEPTH <= yystacksize) goto yyexhaustedlab; yystacksize *= 2; if (YYMAXDEPTH < yystacksize) yystacksize = YYMAXDEPTH; { yy_state_t *yyss1 = yyss; union yyalloc *yyptr = YY_CAST (union yyalloc *, YYSTACK_ALLOC (YY_CAST (YYSIZE_T, YYSTACK_BYTES (yystacksize)))); if (! yyptr) goto yyexhaustedlab; YYSTACK_RELOCATE (yyss_alloc, yyss); YYSTACK_RELOCATE (yyvs_alloc, yyvs); # undef YYSTACK_RELOCATE if (yyss1 != yyssa) YYSTACK_FREE (yyss1); } # endif yyssp = yyss + yysize - 1; yyvsp = yyvs + yysize - 1; YY_IGNORE_USELESS_CAST_BEGIN YYDPRINTF ((stderr, "Stack size increased to %ld\n", YY_CAST (long, yystacksize))); YY_IGNORE_USELESS_CAST_END if (yyss + yystacksize - 1 <= yyssp) YYABORT; } #endif /* !defined yyoverflow && !defined YYSTACK_RELOCATE */ if (yystate == YYFINAL) YYACCEPT; goto yybackup; /*-----------. | yybackup. | `-----------*/ yybackup: /* Do appropriate processing given the current state. Read a lookahead token if we need one and don't already have one. */ /* First try to decide what to do without reference to lookahead token. */ yyn = yypact[yystate]; if (yypact_value_is_default (yyn)) goto yydefault; /* Not known => get a lookahead token if don't already have one. */ /* YYCHAR is either empty, or end-of-input, or a valid lookahead. */ if (yychar == YYEMPTY) { YYDPRINTF ((stderr, "Reading a token\n")); yychar = yylex (&yylval, pc); } if (yychar <= YYEOF) { yychar = YYEOF; yytoken = YYSYMBOL_YYEOF; YYDPRINTF ((stderr, "Now at end of input.\n")); } else if (yychar == YYerror) { /* The scanner already issued an error message, process directly to error recovery. But do not keep the error token as lookahead, it is too special and may lead us to an endless loop in error recovery. */ yychar = YYUNDEF; yytoken = YYSYMBOL_YYerror; goto yyerrlab1; } else { yytoken = YYTRANSLATE (yychar); YY_SYMBOL_PRINT ("Next token is", yytoken, &yylval, &yylloc); } /* If the proper action on seeing token YYTOKEN is to reduce or to detect an error, take that action. */ yyn += yytoken; if (yyn < 0 || YYLAST < yyn || yycheck[yyn] != yytoken) goto yydefault; yyn = yytable[yyn]; if (yyn <= 0) { if (yytable_value_is_error (yyn)) goto yyerrlab; yyn = -yyn; goto yyreduce; } /* Count tokens shifted since error; after three, turn off error status. */ if (yyerrstatus) yyerrstatus--; /* Shift the lookahead token. */ YY_SYMBOL_PRINT ("Shifting", yytoken, &yylval, &yylloc); yystate = yyn; YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN *++yyvsp = yylval; YY_IGNORE_MAYBE_UNINITIALIZED_END /* Discard the shifted token. */ yychar = YYEMPTY; goto yynewstate; /*-----------------------------------------------------------. | yydefault -- do the default action for the current state. | `-----------------------------------------------------------*/ yydefault: yyn = yydefact[yystate]; if (yyn == 0) goto yyerrlab; goto yyreduce; /*-----------------------------. | yyreduce -- do a reduction. | `-----------------------------*/ yyreduce: /* yyn is the number of a rule to reduce with. */ yylen = yyr2[yyn]; /* If YYLEN is nonzero, implement the default value of the action: '$$ = $1'. Otherwise, the following line sets YYVAL to garbage. This behavior is undocumented and Bison users should not rely upon it. Assigning to YYVAL unconditionally makes the parser a bit smaller, and it avoids a GCC warning that YYVAL may be used uninitialized. */ yyval = yyvsp[1-yylen]; YY_REDUCE_PRINT (yyn); switch (yyn) { case 4: /* timespec: '@' seconds */ #line 326 "sys-utils/hwclock-parse-date.y" { pc->seconds = (yyvsp[0].timespec); pc->timespec_seen = 1; } #line 1574 "sys-utils/hwclock-parse-date.c" break; case 7: /* item: datetime */ #line 338 "sys-utils/hwclock-parse-date.y" { pc->times_seen++; pc->dates_seen++; } #line 1582 "sys-utils/hwclock-parse-date.c" break; case 8: /* item: time */ #line 341 "sys-utils/hwclock-parse-date.y" { pc->times_seen++; } #line 1590 "sys-utils/hwclock-parse-date.c" break; case 9: /* item: local_zone */ #line 344 "sys-utils/hwclock-parse-date.y" { pc->local_zones_seen++; } #line 1598 "sys-utils/hwclock-parse-date.c" break; case 10: /* item: zone */ #line 347 "sys-utils/hwclock-parse-date.y" { pc->zones_seen++; } #line 1606 "sys-utils/hwclock-parse-date.c" break; case 11: /* item: date */ #line 350 "sys-utils/hwclock-parse-date.y" { pc->dates_seen++; } #line 1614 "sys-utils/hwclock-parse-date.c" break; case 12: /* item: day */ #line 353 "sys-utils/hwclock-parse-date.y" { pc->days_seen++; } #line 1622 "sys-utils/hwclock-parse-date.c" break; case 18: /* time: tUNUMBER tMERIDIAN */ #line 370 "sys-utils/hwclock-parse-date.y" { set_hhmmss (pc, (yyvsp[-1].textintval).value, 0, 0, 0); pc->meridian = (yyvsp[0].intval); } #line 1631 "sys-utils/hwclock-parse-date.c" break; case 19: /* time: tUNUMBER ':' tUNUMBER tMERIDIAN */ #line 374 "sys-utils/hwclock-parse-date.y" { set_hhmmss (pc, (yyvsp[-3].textintval).value, (yyvsp[-1].textintval).value, 0, 0); pc->meridian = (yyvsp[0].intval); } #line 1640 "sys-utils/hwclock-parse-date.c" break; case 20: /* time: tUNUMBER ':' tUNUMBER ':' unsigned_seconds tMERIDIAN */ #line 378 "sys-utils/hwclock-parse-date.y" { set_hhmmss (pc, (yyvsp[-5].textintval).value, (yyvsp[-3].textintval).value, (yyvsp[-1].timespec).tv_sec, (yyvsp[-1].timespec).tv_nsec); pc->meridian = (yyvsp[0].intval); } #line 1649 "sys-utils/hwclock-parse-date.c" break; case 22: /* iso_8601_time: tUNUMBER zone_offset */ #line 386 "sys-utils/hwclock-parse-date.y" { set_hhmmss (pc, (yyvsp[-1].textintval).value, 0, 0, 0); pc->meridian = MER24; } #line 1658 "sys-utils/hwclock-parse-date.c" break; case 23: /* iso_8601_time: tUNUMBER ':' tUNUMBER o_zone_offset */ #line 390 "sys-utils/hwclock-parse-date.y" { set_hhmmss (pc, (yyvsp[-3].textintval).value, (yyvsp[-1].textintval).value, 0, 0); pc->meridian = MER24; } #line 1667 "sys-utils/hwclock-parse-date.c" break; case 24: /* iso_8601_time: tUNUMBER ':' tUNUMBER ':' unsigned_seconds o_zone_offset */ #line 394 "sys-utils/hwclock-parse-date.y" { set_hhmmss (pc, (yyvsp[-5].textintval).value, (yyvsp[-3].textintval).value, (yyvsp[-1].timespec).tv_sec, (yyvsp[-1].timespec).tv_nsec); pc->meridian = MER24; } #line 1676 "sys-utils/hwclock-parse-date.c" break; case 27: /* zone_offset: tSNUMBER o_colon_minutes */ #line 406 "sys-utils/hwclock-parse-date.y" { pc->zones_seen++; if (! time_zone_hhmm (pc, (yyvsp[-1].textintval), (yyvsp[0].textintval))) YYABORT; } #line 1685 "sys-utils/hwclock-parse-date.c" break; case 28: /* local_zone: tLOCAL_ZONE */ #line 431 "sys-utils/hwclock-parse-date.y" { pc->local_isdst = (yyvsp[0].intval); pc->dsts_seen += (0 < (yyvsp[0].intval)); } #line 1694 "sys-utils/hwclock-parse-date.c" break; case 29: /* local_zone: tLOCAL_ZONE tDST */ #line 435 "sys-utils/hwclock-parse-date.y" { pc->local_isdst = 1; pc->dsts_seen += (0 < (yyvsp[-1].intval)) + 1; } #line 1703 "sys-utils/hwclock-parse-date.c" break; case 30: /* zone: tZONE */ #line 446 "sys-utils/hwclock-parse-date.y" { pc->time_zone = (yyvsp[0].intval); } #line 1711 "sys-utils/hwclock-parse-date.c" break; case 31: /* zone: 'T' */ #line 449 "sys-utils/hwclock-parse-date.y" { pc->time_zone = HOUR(7); } #line 1719 "sys-utils/hwclock-parse-date.c" break; case 32: /* zone: tZONE relunit_snumber */ #line 452 "sys-utils/hwclock-parse-date.y" { pc->time_zone = (yyvsp[-1].intval); apply_relative_time (pc, (yyvsp[0].rel), 1); } #line 1728 "sys-utils/hwclock-parse-date.c" break; case 33: /* zone: 'T' relunit_snumber */ #line 456 "sys-utils/hwclock-parse-date.y" { pc->time_zone = HOUR(7); apply_relative_time (pc, (yyvsp[0].rel), 1); } #line 1737 "sys-utils/hwclock-parse-date.c" break; case 34: /* zone: tZONE tSNUMBER o_colon_minutes */ #line 460 "sys-utils/hwclock-parse-date.y" { if (! time_zone_hhmm (pc, (yyvsp[-1].textintval), (yyvsp[0].textintval))) YYABORT; pc->time_zone += (yyvsp[-2].intval); } #line 1746 "sys-utils/hwclock-parse-date.c" break; case 35: /* zone: tDAYZONE */ #line 464 "sys-utils/hwclock-parse-date.y" { pc->time_zone = (yyvsp[0].intval) + 60; } #line 1754 "sys-utils/hwclock-parse-date.c" break; case 36: /* zone: tZONE tDST */ #line 467 "sys-utils/hwclock-parse-date.y" { pc->time_zone = (yyvsp[-1].intval) + 60; } #line 1762 "sys-utils/hwclock-parse-date.c" break; case 37: /* day: tDAY */ #line 473 "sys-utils/hwclock-parse-date.y" { pc->day_ordinal = 0; pc->day_number = (yyvsp[0].intval); } #line 1771 "sys-utils/hwclock-parse-date.c" break; case 38: /* day: tDAY ',' */ #line 477 "sys-utils/hwclock-parse-date.y" { pc->day_ordinal = 0; pc->day_number = (yyvsp[-1].intval); } #line 1780 "sys-utils/hwclock-parse-date.c" break; case 39: /* day: tORDINAL tDAY */ #line 481 "sys-utils/hwclock-parse-date.y" { pc->day_ordinal = (yyvsp[-1].intval); pc->day_number = (yyvsp[0].intval); } #line 1789 "sys-utils/hwclock-parse-date.c" break; case 40: /* day: tUNUMBER tDAY */ #line 485 "sys-utils/hwclock-parse-date.y" { pc->day_ordinal = (yyvsp[-1].textintval).value; pc->day_number = (yyvsp[0].intval); } #line 1798 "sys-utils/hwclock-parse-date.c" break; case 41: /* date: tUNUMBER '/' tUNUMBER */ #line 492 "sys-utils/hwclock-parse-date.y" { pc->month = (yyvsp[-2].textintval).value; pc->day = (yyvsp[0].textintval).value; } #line 1807 "sys-utils/hwclock-parse-date.c" break; case 42: /* date: tUNUMBER '/' tUNUMBER '/' tUNUMBER */ #line 496 "sys-utils/hwclock-parse-date.y" { /** * Interpret as YYYY/MM/DD if the first value has 4 or more digits, * otherwise as MM/DD/YY. * The goal in recognizing YYYY/MM/DD is solely to support legacy * machine-generated dates like those in an RCS log listing. If * you want portability, use the ISO 8601 format. */ if (4 <= (yyvsp[-4].textintval).digits) { pc->year = (yyvsp[-4].textintval); pc->month = (yyvsp[-2].textintval).value; pc->day = (yyvsp[0].textintval).value; } else { pc->month = (yyvsp[-4].textintval).value; pc->day = (yyvsp[-2].textintval).value; pc->year = (yyvsp[0].textintval); } } #line 1830 "sys-utils/hwclock-parse-date.c" break; case 43: /* date: tUNUMBER tMONTH tSNUMBER */ #line 514 "sys-utils/hwclock-parse-date.y" { /* e.g. 17-JUN-1992. */ pc->day = (yyvsp[-2].textintval).value; pc->month = (yyvsp[-1].intval); pc->year.value = -(yyvsp[0].textintval).value; pc->year.digits = (yyvsp[0].textintval).digits; } #line 1842 "sys-utils/hwclock-parse-date.c" break; case 44: /* date: tMONTH tSNUMBER tSNUMBER */ #line 521 "sys-utils/hwclock-parse-date.y" { /* e.g. JUN-17-1992. */ pc->month = (yyvsp[-2].intval); pc->day = -(yyvsp[-1].textintval).value; pc->year.value = -(yyvsp[0].textintval).value; pc->year.digits = (yyvsp[0].textintval).digits; } #line 1854 "sys-utils/hwclock-parse-date.c" break; case 45: /* date: tMONTH tUNUMBER */ #line 528 "sys-utils/hwclock-parse-date.y" { pc->month = (yyvsp[-1].intval); pc->day = (yyvsp[0].textintval).value; } #line 1863 "sys-utils/hwclock-parse-date.c" break; case 46: /* date: tMONTH tUNUMBER ',' tUNUMBER */ #line 532 "sys-utils/hwclock-parse-date.y" { pc->month = (yyvsp[-3].intval); pc->day = (yyvsp[-2].textintval).value; pc->year = (yyvsp[0].textintval); } #line 1873 "sys-utils/hwclock-parse-date.c" break; case 47: /* date: tUNUMBER tMONTH */ #line 537 "sys-utils/hwclock-parse-date.y" { pc->day = (yyvsp[-1].textintval).value; pc->month = (yyvsp[0].intval); } #line 1882 "sys-utils/hwclock-parse-date.c" break; case 48: /* date: tUNUMBER tMONTH tUNUMBER */ #line 541 "sys-utils/hwclock-parse-date.y" { pc->day = (yyvsp[-2].textintval).value; pc->month = (yyvsp[-1].intval); pc->year = (yyvsp[0].textintval); } #line 1892 "sys-utils/hwclock-parse-date.c" break; case 50: /* iso_8601_date: tUNUMBER tSNUMBER tSNUMBER */ #line 550 "sys-utils/hwclock-parse-date.y" { /* ISO 8601 format.YYYY-MM-DD. */ pc->year = (yyvsp[-2].textintval); pc->month = -(yyvsp[-1].textintval).value; pc->day = -(yyvsp[0].textintval).value; } #line 1903 "sys-utils/hwclock-parse-date.c" break; case 51: /* rel: relunit tAGO */ #line 560 "sys-utils/hwclock-parse-date.y" { apply_relative_time (pc, (yyvsp[-1].rel), (yyvsp[0].intval)); } #line 1909 "sys-utils/hwclock-parse-date.c" break; case 52: /* rel: relunit */ #line 562 "sys-utils/hwclock-parse-date.y" { apply_relative_time (pc, (yyvsp[0].rel), 1); } #line 1915 "sys-utils/hwclock-parse-date.c" break; case 53: /* rel: dayshift */ #line 564 "sys-utils/hwclock-parse-date.y" { apply_relative_time (pc, (yyvsp[0].rel), 1); } #line 1921 "sys-utils/hwclock-parse-date.c" break; case 54: /* relunit: tORDINAL tYEAR_UNIT */ #line 569 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = (yyvsp[-1].intval); } #line 1927 "sys-utils/hwclock-parse-date.c" break; case 55: /* relunit: tUNUMBER tYEAR_UNIT */ #line 571 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = (yyvsp[-1].textintval).value; } #line 1933 "sys-utils/hwclock-parse-date.c" break; case 56: /* relunit: tYEAR_UNIT */ #line 573 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = 1; } #line 1939 "sys-utils/hwclock-parse-date.c" break; case 57: /* relunit: tORDINAL tMONTH_UNIT */ #line 575 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = (yyvsp[-1].intval); } #line 1945 "sys-utils/hwclock-parse-date.c" break; case 58: /* relunit: tUNUMBER tMONTH_UNIT */ #line 577 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = (yyvsp[-1].textintval).value; } #line 1951 "sys-utils/hwclock-parse-date.c" break; case 59: /* relunit: tMONTH_UNIT */ #line 579 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = 1; } #line 1957 "sys-utils/hwclock-parse-date.c" break; case 60: /* relunit: tORDINAL tDAY_UNIT */ #line 581 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[-1].intval) * (yyvsp[0].intval); } #line 1963 "sys-utils/hwclock-parse-date.c" break; case 61: /* relunit: tUNUMBER tDAY_UNIT */ #line 583 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[-1].textintval).value * (yyvsp[0].intval); } #line 1969 "sys-utils/hwclock-parse-date.c" break; case 62: /* relunit: tDAY_UNIT */ #line 585 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[0].intval); } #line 1975 "sys-utils/hwclock-parse-date.c" break; case 63: /* relunit: tORDINAL tHOUR_UNIT */ #line 587 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = (yyvsp[-1].intval); } #line 1981 "sys-utils/hwclock-parse-date.c" break; case 64: /* relunit: tUNUMBER tHOUR_UNIT */ #line 589 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = (yyvsp[-1].textintval).value; } #line 1987 "sys-utils/hwclock-parse-date.c" break; case 65: /* relunit: tHOUR_UNIT */ #line 591 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = 1; } #line 1993 "sys-utils/hwclock-parse-date.c" break; case 66: /* relunit: tORDINAL tMINUTE_UNIT */ #line 593 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = (yyvsp[-1].intval); } #line 1999 "sys-utils/hwclock-parse-date.c" break; case 67: /* relunit: tUNUMBER tMINUTE_UNIT */ #line 595 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = (yyvsp[-1].textintval).value; } #line 2005 "sys-utils/hwclock-parse-date.c" break; case 68: /* relunit: tMINUTE_UNIT */ #line 597 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = 1; } #line 2011 "sys-utils/hwclock-parse-date.c" break; case 69: /* relunit: tORDINAL tSEC_UNIT */ #line 599 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].intval); } #line 2017 "sys-utils/hwclock-parse-date.c" break; case 70: /* relunit: tUNUMBER tSEC_UNIT */ #line 601 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].textintval).value; } #line 2023 "sys-utils/hwclock-parse-date.c" break; case 71: /* relunit: tSDECIMAL_NUMBER tSEC_UNIT */ #line 602 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].timespec).tv_sec; (yyval.rel).ns = (yyvsp[-1].timespec).tv_nsec; } #line 2033 "sys-utils/hwclock-parse-date.c" break; case 72: /* relunit: tUDECIMAL_NUMBER tSEC_UNIT */ #line 607 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].timespec).tv_sec; (yyval.rel).ns = (yyvsp[-1].timespec).tv_nsec; } #line 2043 "sys-utils/hwclock-parse-date.c" break; case 73: /* relunit: tSEC_UNIT */ #line 613 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = 1; } #line 2049 "sys-utils/hwclock-parse-date.c" break; case 75: /* relunit_snumber: tSNUMBER tYEAR_UNIT */ #line 619 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).year = (yyvsp[-1].textintval).value; } #line 2055 "sys-utils/hwclock-parse-date.c" break; case 76: /* relunit_snumber: tSNUMBER tMONTH_UNIT */ #line 621 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).month = (yyvsp[-1].textintval).value; } #line 2061 "sys-utils/hwclock-parse-date.c" break; case 77: /* relunit_snumber: tSNUMBER tDAY_UNIT */ #line 623 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[-1].textintval).value * (yyvsp[0].intval); } #line 2067 "sys-utils/hwclock-parse-date.c" break; case 78: /* relunit_snumber: tSNUMBER tHOUR_UNIT */ #line 625 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).hour = (yyvsp[-1].textintval).value; } #line 2073 "sys-utils/hwclock-parse-date.c" break; case 79: /* relunit_snumber: tSNUMBER tMINUTE_UNIT */ #line 627 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).minutes = (yyvsp[-1].textintval).value; } #line 2079 "sys-utils/hwclock-parse-date.c" break; case 80: /* relunit_snumber: tSNUMBER tSEC_UNIT */ #line 629 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).seconds = (yyvsp[-1].textintval).value; } #line 2085 "sys-utils/hwclock-parse-date.c" break; case 81: /* dayshift: tDAY_SHIFT */ #line 634 "sys-utils/hwclock-parse-date.y" { (yyval.rel) = RELATIVE_TIME_0; (yyval.rel).day = (yyvsp[0].intval); } #line 2091 "sys-utils/hwclock-parse-date.c" break; case 85: /* signed_seconds: tSNUMBER */ #line 642 "sys-utils/hwclock-parse-date.y" { (yyval.timespec).tv_sec = (yyvsp[0].textintval).value; (yyval.timespec).tv_nsec = 0; } #line 2097 "sys-utils/hwclock-parse-date.c" break; case 87: /* unsigned_seconds: tUNUMBER */ #line 648 "sys-utils/hwclock-parse-date.y" { (yyval.timespec).tv_sec = (yyvsp[0].textintval).value; (yyval.timespec).tv_nsec = 0; } #line 2103 "sys-utils/hwclock-parse-date.c" break; case 88: /* number: tUNUMBER */ #line 653 "sys-utils/hwclock-parse-date.y" { digits_to_date_time (pc, (yyvsp[0].textintval)); } #line 2109 "sys-utils/hwclock-parse-date.c" break; case 89: /* hybrid: tUNUMBER relunit_snumber */ #line 657 "sys-utils/hwclock-parse-date.y" { /** * Hybrid all-digit and relative offset, so that we accept e.g., * "YYYYMMDD +N days" as well as "YYYYMMDD N days". */ digits_to_date_time (pc, (yyvsp[-1].textintval)); apply_relative_time (pc, (yyvsp[0].rel), 1); } #line 2122 "sys-utils/hwclock-parse-date.c" break; case 90: /* o_colon_minutes: %empty */ #line 669 "sys-utils/hwclock-parse-date.y" { (yyval.textintval).value = (yyval.textintval).digits = 0; } #line 2128 "sys-utils/hwclock-parse-date.c" break; case 91: /* o_colon_minutes: ':' tUNUMBER */ #line 670 "sys-utils/hwclock-parse-date.y" { (yyval.textintval) = (yyvsp[0].textintval); } #line 2136 "sys-utils/hwclock-parse-date.c" break; #line 2140 "sys-utils/hwclock-parse-date.c" default: break; } /* User semantic actions sometimes alter yychar, and that requires that yytoken be updated with the new translation. We take the approach of translating immediately before every use of yytoken. One alternative is translating here after every semantic action, but that translation would be missed if the semantic action invokes YYABORT, YYACCEPT, or YYERROR immediately after altering yychar or if it invokes YYBACKUP. In the case of YYABORT or YYACCEPT, an incorrect destructor might then be invoked immediately. In the case of YYERROR or YYBACKUP, subsequent parser actions might lead to an incorrect destructor call or verbose syntax error message before the lookahead is translated. */ YY_SYMBOL_PRINT ("-> $$ =", YY_CAST (yysymbol_kind_t, yyr1[yyn]), &yyval, &yyloc); YYPOPSTACK (yylen); yylen = 0; *++yyvsp = yyval; /* Now 'shift' the result of the reduction. Determine what state that goes to, based on the state we popped back to and the rule number reduced by. */ { const int yylhs = yyr1[yyn] - YYNTOKENS; const int yyi = yypgoto[yylhs] + *yyssp; yystate = (0 <= yyi && yyi <= YYLAST && yycheck[yyi] == *yyssp ? yytable[yyi] : yydefgoto[yylhs]); } goto yynewstate; /*--------------------------------------. | yyerrlab -- here on detecting error. | `--------------------------------------*/ yyerrlab: /* Make sure we have latest lookahead translation. See comments at user semantic actions for why this is necessary. */ yytoken = yychar == YYEMPTY ? YYSYMBOL_YYEMPTY : YYTRANSLATE (yychar); /* If not already recovering from an error, report this error. */ if (!yyerrstatus) { ++yynerrs; yyerror (pc, YY_("syntax error")); } if (yyerrstatus == 3) { /* If just tried and failed to reuse lookahead token after an error, discard it. */ if (yychar <= YYEOF) { /* Return failure if at end of input. */ if (yychar == YYEOF) YYABORT; } else { yydestruct ("Error: discarding", yytoken, &yylval, pc); yychar = YYEMPTY; } } /* Else will try to reuse lookahead token after shifting the error token. */ goto yyerrlab1; /*---------------------------------------------------. | yyerrorlab -- error raised explicitly by YYERROR. | `---------------------------------------------------*/ yyerrorlab: /* Pacify compilers when the user code never invokes YYERROR and the label yyerrorlab therefore never appears in user code. */ if (0) YYERROR; /* Do not reclaim the symbols of the rule whose action triggered this YYERROR. */ YYPOPSTACK (yylen); yylen = 0; YY_STACK_PRINT (yyss, yyssp); yystate = *yyssp; goto yyerrlab1; /*-------------------------------------------------------------. | yyerrlab1 -- common code for both syntax error and YYERROR. | `-------------------------------------------------------------*/ yyerrlab1: yyerrstatus = 3; /* Each real token shifted decrements this. */ /* Pop stack until we find a state that shifts the error token. */ for (;;) { yyn = yypact[yystate]; if (!yypact_value_is_default (yyn)) { yyn += YYSYMBOL_YYerror; if (0 <= yyn && yyn <= YYLAST && yycheck[yyn] == YYSYMBOL_YYerror) { yyn = yytable[yyn]; if (0 < yyn) break; } } /* Pop the current state because it cannot handle the error token. */ if (yyssp == yyss) YYABORT; yydestruct ("Error: popping", YY_ACCESSING_SYMBOL (yystate), yyvsp, pc); YYPOPSTACK (1); yystate = *yyssp; YY_STACK_PRINT (yyss, yyssp); } YY_IGNORE_MAYBE_UNINITIALIZED_BEGIN *++yyvsp = yylval; YY_IGNORE_MAYBE_UNINITIALIZED_END /* Shift the error token. */ YY_SYMBOL_PRINT ("Shifting", YY_ACCESSING_SYMBOL (yyn), yyvsp, yylsp); yystate = yyn; goto yynewstate; /*-------------------------------------. | yyacceptlab -- YYACCEPT comes here. | `-------------------------------------*/ yyacceptlab: yyresult = 0; goto yyreturn; /*-----------------------------------. | yyabortlab -- YYABORT comes here. | `-----------------------------------*/ yyabortlab: yyresult = 1; goto yyreturn; #if !defined yyoverflow /*-------------------------------------------------. | yyexhaustedlab -- memory exhaustion comes here. | `-------------------------------------------------*/ yyexhaustedlab: yyerror (pc, YY_("memory exhausted")); yyresult = 2; goto yyreturn; #endif /*-------------------------------------------------------. | yyreturn -- parsing is finished, clean up and return. | `-------------------------------------------------------*/ yyreturn: if (yychar != YYEMPTY) { /* Make sure we have latest lookahead translation. See comments at user semantic actions for why this is necessary. */ yytoken = YYTRANSLATE (yychar); yydestruct ("Cleanup: discarding lookahead", yytoken, &yylval, pc); } /* Do not reclaim the symbols of the rule whose action triggered this YYABORT or YYACCEPT. */ YYPOPSTACK (yylen); YY_STACK_PRINT (yyss, yyssp); while (yyssp != yyss) { yydestruct ("Cleanup: popping", YY_ACCESSING_SYMBOL (+*yyssp), yyvsp, pc); YYPOPSTACK (1); } #ifndef yyoverflow if (yyss != yyssa) YYSTACK_FREE (yyss); #endif return yyresult; } #line 675 "sys-utils/hwclock-parse-date.y" static table const meridian_table[] = { { "AM", tMERIDIAN, MERam }, { "A.M.", tMERIDIAN, MERam }, { "PM", tMERIDIAN, MERpm }, { "P.M.", tMERIDIAN, MERpm }, { NULL, 0, 0 } }; static table const dst_table[] = { { "DST", tDST, 0 } }; static table const month_and_day_table[] = { { "JANUARY", tMONTH, 1 }, { "FEBRUARY", tMONTH, 2 }, { "MARCH", tMONTH, 3 }, { "APRIL", tMONTH, 4 }, { "MAY", tMONTH, 5 }, { "JUNE", tMONTH, 6 }, { "JULY", tMONTH, 7 }, { "AUGUST", tMONTH, 8 }, { "SEPTEMBER",tMONTH, 9 }, { "SEPT", tMONTH, 9 }, { "OCTOBER", tMONTH, 10 }, { "NOVEMBER", tMONTH, 11 }, { "DECEMBER", tMONTH, 12 }, { "SUNDAY", tDAY, 0 }, { "MONDAY", tDAY, 1 }, { "TUESDAY", tDAY, 2 }, { "TUES", tDAY, 2 }, { "WEDNESDAY",tDAY, 3 }, { "WEDNES", tDAY, 3 }, { "THURSDAY", tDAY, 4 }, { "THUR", tDAY, 4 }, { "THURS", tDAY, 4 }, { "FRIDAY", tDAY, 5 }, { "SATURDAY", tDAY, 6 }, { NULL, 0, 0 } }; static table const time_units_table[] = { { "YEAR", tYEAR_UNIT, 1 }, { "MONTH", tMONTH_UNIT, 1 }, { "FORTNIGHT",tDAY_UNIT, 14 }, { "WEEK", tDAY_UNIT, 7 }, { "DAY", tDAY_UNIT, 1 }, { "HOUR", tHOUR_UNIT, 1 }, { "MINUTE", tMINUTE_UNIT, 1 }, { "MIN", tMINUTE_UNIT, 1 }, { "SECOND", tSEC_UNIT, 1 }, { "SEC", tSEC_UNIT, 1 }, { NULL, 0, 0 } }; /* Assorted relative-time words. */ static table const relative_time_table[] = { { "TOMORROW", tDAY_SHIFT, 1 }, { "YESTERDAY",tDAY_SHIFT, -1 }, { "TODAY", tDAY_SHIFT, 0 }, { "NOW", tDAY_SHIFT, 0 }, { "LAST", tORDINAL, -1 }, { "THIS", tORDINAL, 0 }, { "NEXT", tORDINAL, 1 }, { "FIRST", tORDINAL, 1 }, /*{ "SECOND", tORDINAL, 2 }, */ { "THIRD", tORDINAL, 3 }, { "FOURTH", tORDINAL, 4 }, { "FIFTH", tORDINAL, 5 }, { "SIXTH", tORDINAL, 6 }, { "SEVENTH", tORDINAL, 7 }, { "EIGHTH", tORDINAL, 8 }, { "NINTH", tORDINAL, 9 }, { "TENTH", tORDINAL, 10 }, { "ELEVENTH", tORDINAL, 11 }, { "TWELFTH", tORDINAL, 12 }, { "AGO", tAGO, -1 }, { "HENCE", tAGO, 1 }, { NULL, 0, 0 } }; /** * The universal time zone table. These labels can be used even for * timestamps that would not otherwise be valid, e.g., GMT timestamps * in London during summer. */ static table const universal_time_zone_table[] = { { "GMT", tZONE, HOUR ( 0) }, /* Greenwich Mean */ { "UT", tZONE, HOUR ( 0) }, /* Universal (Coordinated) */ { "UTC", tZONE, HOUR ( 0) }, { NULL, 0, 0 } }; /** * The time zone table. This table is necessarily incomplete, as time * zone abbreviations are ambiguous; e.g. Australians interpret "EST" * as Eastern time in Australia, not as US Eastern Standard Time. * You cannot rely on parse_date to handle arbitrary time zone * abbreviations; use numeric abbreviations like "-0500" instead. */ static table const time_zone_table[] = { { "WET", tZONE, HOUR ( 0) }, /* Western European */ { "WEST", tDAYZONE, HOUR ( 0) }, /* Western European Summer */ { "BST", tDAYZONE, HOUR ( 0) }, /* British Summer */ { "ART", tZONE, -HOUR ( 3) }, /* Argentina */ { "BRT", tZONE, -HOUR ( 3) }, /* Brazil */ { "BRST", tDAYZONE, -HOUR ( 3) }, /* Brazil Summer */ { "NST", tZONE, -(HOUR ( 3) + 30) }, /* Newfoundland Standard */ { "NDT", tDAYZONE,-(HOUR ( 3) + 30) }, /* Newfoundland Daylight */ { "AST", tZONE, -HOUR ( 4) }, /* Atlantic Standard */ { "ADT", tDAYZONE, -HOUR ( 4) }, /* Atlantic Daylight */ { "CLT", tZONE, -HOUR ( 4) }, /* Chile */ { "CLST", tDAYZONE, -HOUR ( 4) }, /* Chile Summer */ { "EST", tZONE, -HOUR ( 5) }, /* Eastern Standard */ { "EDT", tDAYZONE, -HOUR ( 5) }, /* Eastern Daylight */ { "CST", tZONE, -HOUR ( 6) }, /* Central Standard */ { "CDT", tDAYZONE, -HOUR ( 6) }, /* Central Daylight */ { "MST", tZONE, -HOUR ( 7) }, /* Mountain Standard */ { "MDT", tDAYZONE, -HOUR ( 7) }, /* Mountain Daylight */ { "PST", tZONE, -HOUR ( 8) }, /* Pacific Standard */ { "PDT", tDAYZONE, -HOUR ( 8) }, /* Pacific Daylight */ { "AKST", tZONE, -HOUR ( 9) }, /* Alaska Standard */ { "AKDT", tDAYZONE, -HOUR ( 9) }, /* Alaska Daylight */ { "HST", tZONE, -HOUR (10) }, /* Hawaii Standard */ { "HAST", tZONE, -HOUR (10) }, /* Hawaii-Aleutian Standard */ { "HADT", tDAYZONE, -HOUR (10) }, /* Hawaii-Aleutian Daylight */ { "SST", tZONE, -HOUR (12) }, /* Samoa Standard */ { "WAT", tZONE, HOUR ( 1) }, /* West Africa */ { "CET", tZONE, HOUR ( 1) }, /* Central European */ { "CEST", tDAYZONE, HOUR ( 1) }, /* Central European Summer */ { "MET", tZONE, HOUR ( 1) }, /* Middle European */ { "MEZ", tZONE, HOUR ( 1) }, /* Middle European */ { "MEST", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */ { "MESZ", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */ { "EET", tZONE, HOUR ( 2) }, /* Eastern European */ { "EEST", tDAYZONE, HOUR ( 2) }, /* Eastern European Summer */ { "CAT", tZONE, HOUR ( 2) }, /* Central Africa */ { "SAST", tZONE, HOUR ( 2) }, /* South Africa Standard */ { "EAT", tZONE, HOUR ( 3) }, /* East Africa */ { "MSK", tZONE, HOUR ( 3) }, /* Moscow */ { "MSD", tDAYZONE, HOUR ( 3) }, /* Moscow Daylight */ { "IST", tZONE, (HOUR ( 5) + 30) }, /* India Standard */ { "SGT", tZONE, HOUR ( 8) }, /* Singapore */ { "KST", tZONE, HOUR ( 9) }, /* Korea Standard */ { "JST", tZONE, HOUR ( 9) }, /* Japan Standard */ { "GST", tZONE, HOUR (10) }, /* Guam Standard */ { "NZST", tZONE, HOUR (12) }, /* New Zealand Standard */ { "NZDT", tDAYZONE, HOUR (12) }, /* New Zealand Daylight */ { NULL, 0, 0 } }; /** * Military time zone table. * * Note 'T' is a special case, as it is used as the separator in ISO * 8601 date and time of day representation. */ static table const military_table[] = { { "A", tZONE, -HOUR ( 1) }, { "B", tZONE, -HOUR ( 2) }, { "C", tZONE, -HOUR ( 3) }, { "D", tZONE, -HOUR ( 4) }, { "E", tZONE, -HOUR ( 5) }, { "F", tZONE, -HOUR ( 6) }, { "G", tZONE, -HOUR ( 7) }, { "H", tZONE, -HOUR ( 8) }, { "I", tZONE, -HOUR ( 9) }, { "K", tZONE, -HOUR (10) }, { "L", tZONE, -HOUR (11) }, { "M", tZONE, -HOUR (12) }, { "N", tZONE, HOUR ( 1) }, { "O", tZONE, HOUR ( 2) }, { "P", tZONE, HOUR ( 3) }, { "Q", tZONE, HOUR ( 4) }, { "R", tZONE, HOUR ( 5) }, { "S", tZONE, HOUR ( 6) }, { "T", 'T', 0 }, { "U", tZONE, HOUR ( 8) }, { "V", tZONE, HOUR ( 9) }, { "W", tZONE, HOUR (10) }, { "X", tZONE, HOUR (11) }, { "Y", tZONE, HOUR (12) }, { "Z", tZONE, HOUR ( 0) }, { NULL, 0, 0 } }; /** * Convert a time offset expressed as HH:MM or HHMM into an integer count of * minutes. If hh is more than 2 digits then it is of the form HHMM and must be * delimited; in that case 'mm' is required to be absent. Otherwise, hh and mm * are used ('mm' contains digits that were prefixed with a colon). * * POSIX TZ and ISO 8601 both define the maximum offset as 24:59. POSIX also * allows seconds, but currently the parser rejects them. Both require minutes * to be zero padded (2 digits). ISO requires hours to be zero padded, POSIX * does not, either is accepted; which means an invalid ISO offset could pass. */ static int time_zone_hhmm(parser_control *pc, textint hh, textint mm) { int h, m; if (hh.digits > 2 && hh.digits < 5 && mm.digits == 0) { h = hh.value / 100; m = hh.value % 100; } else if (hh.digits < 3 && (mm.digits == 0 || mm.digits == 2)) { h = hh.value; m = hh.negative ? -mm.value : mm.value; } else return 0; if (abs(h) > 24 || abs(m) > 59) return 0; pc->time_zone = h * 60 + m; return 1; } static int to_hour(intmax_t hours, int meridian) { switch (meridian) { default: /* Pacify GCC. */ case MER24: return 0 <= hours && hours < 24 ? hours : -1; case MERam: return 0 < hours && hours < 12 ? hours : hours == 12 ? 0 : -1; case MERpm: return 0 < hours && hours < 12 ? hours + 12 : hours == 12 ? 12 : -1; } } static long int to_year(textint textyear) { intmax_t year = textyear.value; if (year < 0) year = -year; /** * XPG4 suggests that years 00-68 map to 2000-2068, and * years 69-99 map to 1969-1999. */ else if (textyear.digits == 2) year += year < 69 ? 2000 : 1900; return year; } static table const * lookup_zone(parser_control const *pc, char const *name) { table const *tp; for (tp = universal_time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; /** * Try local zone abbreviations before those in time_zone_table, as * the local ones are more likely to be right. */ for (tp = pc->local_time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; for (tp = time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; return NULL; } #if ! HAVE_TM_GMTOFF /** * Yield the difference between *A and *B, * measured in seconds, ignoring leap seconds. * The body of this function is taken directly from the GNU C Library; * see src/strftime.c. */ static int tm_diff(struct tm const *a, struct tm const *b) { /** * Compute intervening leap days correctly even if year is negative. * Take care to avoid int overflow in leap day calculations. */ int a4 = SHR (a->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (a->tm_year & 3); int b4 = SHR (b->tm_year, 2) + SHR (TM_YEAR_BASE, 2) - ! (b->tm_year & 3); int a100 = a4 / 25 - (a4 % 25 < 0); int b100 = b4 / 25 - (b4 % 25 < 0); int a400 = SHR (a100, 2); int b400 = SHR (b100, 2); int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); int years = a->tm_year - b->tm_year; int days = (365 * years + intervening_leap_days + (a->tm_yday - b->tm_yday)); return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour)) + (a->tm_min - b->tm_min)) + (a->tm_sec - b->tm_sec)); } #endif /* ! HAVE_TM_GMTOFF */ static table const * lookup_word(parser_control const *pc, char *word) { char *p; char *q; size_t wordlen; table const *tp; int period_found; int abbrev; /* Make it uppercase. */ for (p = word; *p; p++) *p = c_toupper (to_uchar (*p)); for (tp = meridian_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* See if we have an abbreviation for a month. */ wordlen = strlen (word); abbrev = wordlen == 3 || (wordlen == 4 && word[3] == '.'); for (tp = month_and_day_table; tp->name; tp++) if ((abbrev ? strncmp (word, tp->name, 3) : strcmp (word, tp->name)) == 0) return tp; if ((tp = lookup_zone (pc, word))) return tp; if (strcmp (word, dst_table[0].name) == 0) return dst_table; for (tp = time_units_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* Strip off any plural and try the units table again. */ if (word[wordlen - 1] == 'S') { word[wordlen - 1] = '\0'; for (tp = time_units_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; word[wordlen - 1] = 'S'; /* For "this" in relative_time_table. */ } for (tp = relative_time_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* Military time zones. */ if (wordlen == 1) for (tp = military_table; tp->name; tp++) if (word[0] == tp->name[0]) return tp; /* Drop out any periods and try the time zone table again. */ for (period_found = 0, p = q = word; (*p = *q); q++) if (*q == '.') period_found = 1; else p++; if (period_found && (tp = lookup_zone (pc, word))) return tp; return NULL; } static int yylex (union YYSTYPE *lvalp, parser_control *pc) { unsigned char c; size_t count; for (;;) { while (c = *pc->input, c_isspace (c)) pc->input++; if (c_isdigit (c) || c == '-' || c == '+') { char const *p; int sign; uintmax_t value; if (c == '-' || c == '+') { sign = c == '-' ? -1 : 1; while (c = *++pc->input, c_isspace (c)) continue; if (! c_isdigit (c)) /* skip the '-' sign */ continue; } else sign = 0; p = pc->input; for (value = 0; ; value *= 10) { uintmax_t value1 = value + (c - '0'); if (value1 < value) return '?'; value = value1; c = *++p; if (! c_isdigit (c)) break; if (UINTMAX_MAX / 10 < value) return '?'; } if ((c == '.' || c == ',') && c_isdigit (p[1])) { time_t s; long ns; int digits; uintmax_t value1; /* Check for overflow when converting value to * time_t. */ if (sign < 0) { s = - value; if (0 < s) return '?'; value1 = -s; } else { s = value; if (s < 0) return '?'; value1 = s; } if (value != value1) return '?'; /* Accumulate fraction, to ns precision. */ p++; ns = *p++ - '0'; for (digits = 2; digits <= LOG10_BILLION; digits++) { ns *= 10; if (c_isdigit (*p)) ns += *p++ - '0'; } /* Skip excess digits, truncating toward * -Infinity. */ if (sign < 0) for (; c_isdigit (*p); p++) if (*p != '0') { ns++; break; } while (c_isdigit (*p)) p++; /* Adjust to the timespec convention, which is * that tv_nsec is always a positive offset even * if tv_sec is negative. */ if (sign < 0 && ns) { s--; if (! (s < 0)) return '?'; ns = BILLION - ns; } lvalp->timespec.tv_sec = s; lvalp->timespec.tv_nsec = ns; pc->input = p; return sign ? tSDECIMAL_NUMBER : tUDECIMAL_NUMBER; } else { lvalp->textintval.negative = sign < 0; if (sign < 0) { lvalp->textintval.value = - value; if (0 < lvalp->textintval.value) return '?'; } else { lvalp->textintval.value = value; if (lvalp->textintval.value < 0) return '?'; } lvalp->textintval.digits = p - pc->input; pc->input = p; return sign ? tSNUMBER : tUNUMBER; } } if (c_isalpha (c)) { char buff[20]; char *p = buff; table const *tp; do { if (p < buff + sizeof buff - 1) *p++ = c; c = *++pc->input; } while (c_isalpha (c) || c == '.'); *p = '\0'; tp = lookup_word (pc, buff); if (! tp) { return '?'; } lvalp->intval = tp->value; return tp->type; } if (c != '(') return to_uchar (*pc->input++); count = 0; do { c = *pc->input++; if (c == '\0') return c; if (c == '(') count++; else if (c == ')') count--; } while (count != 0); } } /* Do nothing if the parser reports an error. */ static int yyerror(parser_control const *pc __attribute__((__unused__)), char const *s __attribute__((__unused__))) { return 0; } /** * If *TM0 is the old and *TM1 is the new value of a struct tm after * passing it to mktime, return 1 if it's OK that mktime returned T. * It's not OK if *TM0 has out-of-range members. */ static int mktime_ok(struct tm const *tm0, struct tm const *tm1, time_t t) { if (t == (time_t) -1) { /** * Guard against falsely reporting an error when parsing a * timestamp that happens to equal (time_t) -1, on a host that * supports such a timestamp. */ tm1 = localtime (&t); if (!tm1) return 0; } return ! ((tm0->tm_sec ^ tm1->tm_sec) | (tm0->tm_min ^ tm1->tm_min) | (tm0->tm_hour ^ tm1->tm_hour) | (tm0->tm_mday ^ tm1->tm_mday) | (tm0->tm_mon ^ tm1->tm_mon) | (tm0->tm_year ^ tm1->tm_year)); } /** * A reasonable upper bound for the size of ordinary TZ strings. * Use heap allocation if TZ's length exceeds this. */ enum { TZBUFSIZE = 100 }; /** * Return a copy of TZ, stored in TZBUF if it fits, and heap-allocated * otherwise. */ static char * get_tz(char tzbuf[TZBUFSIZE]) { char *tz = getenv ("TZ"); if (tz) { size_t tzsize = strlen (tz) + 1; tz = (tzsize <= TZBUFSIZE ? memcpy (tzbuf, tz, tzsize) : strdup (tz)); } return tz; } /** * Parse a date/time string, storing the resulting time value into *result. * The string itself is pointed to by *p. Return 1 if successful. * *p can be an incomplete or relative time specification; if so, use * *now as the basis for the returned time. */ int parse_date(struct timespec *result, char const *p, struct timespec const *now) { time_t Start; intmax_t Start_ns; struct tm const *tmp; struct tm tm; struct tm tm0; parser_control pc; struct timespec gettime_buffer; unsigned char c; int tz_was_altered = 0; char *tz0 = NULL; char tz0buf[TZBUFSIZE]; int ok = 1; struct timeval tv; if (! now) { gettimeofday (&tv, NULL); gettime_buffer.tv_sec = tv.tv_sec; gettime_buffer.tv_nsec = tv.tv_usec * 1000; now = &gettime_buffer; } Start = now->tv_sec; Start_ns = now->tv_nsec; tmp = localtime (&now->tv_sec); if (! tmp) return 0; while (c = *p, c_isspace (c)) p++; if (strncmp (p, "TZ=\"", 4) == 0) { char const *tzbase = p + 4; size_t tzsize = 1; char const *s; for (s = tzbase; *s; s++, tzsize++) if (*s == '\\') { s++; if (! (*s == '\\' || *s == '"')) break; } else if (*s == '"') { char *z; char *tz1 = NULL; char tz1buf[TZBUFSIZE] = { '\0' }; int large_tz = TZBUFSIZE < tzsize; int setenv_ok; tz0 = get_tz (tz0buf); if (!tz0) goto fail; if (large_tz) { z = tz1 = malloc (tzsize); if (!tz1) goto fail; } else z = tz1 = tz1buf; for (s = tzbase; *s != '"'; s++) *z++ = *(s += *s == '\\'); *z = '\0'; setenv_ok = setenv ("TZ", tz1, 1) == 0; if (large_tz) free (tz1); if (!setenv_ok) goto fail; tz_was_altered = 1; p = s + 1; while (c = *p, c_isspace (c)) p++; break; } } /** * As documented, be careful to treat the empty string just like * a date string of "0". Without this, an empty string would be * declared invalid when parsed during a DST transition. */ if (*p == '\0') p = "0"; pc.input = p; pc.year.value = tmp->tm_year; pc.year.value += TM_YEAR_BASE; pc.year.digits = 0; pc.month = tmp->tm_mon + 1; pc.day = tmp->tm_mday; pc.hour = tmp->tm_hour; pc.minutes = tmp->tm_min; pc.seconds.tv_sec = tmp->tm_sec; pc.seconds.tv_nsec = Start_ns; tm.tm_isdst = tmp->tm_isdst; pc.meridian = MER24; pc.rel = RELATIVE_TIME_0; pc.timespec_seen = 0; pc.rels_seen = 0; pc.dates_seen = 0; pc.days_seen = 0; pc.times_seen = 0; pc.local_zones_seen = 0; pc.dsts_seen = 0; pc.zones_seen = 0; #if HAVE_STRUCT_TM_TM_ZONE pc.local_time_zone_table[0].name = tmp->tm_zone; pc.local_time_zone_table[0].type = tLOCAL_ZONE; pc.local_time_zone_table[0].value = tmp->tm_isdst; pc.local_time_zone_table[1].name = NULL; /** * Probe the names used in the next three calendar quarters, looking * for a tm_isdst different from the one we already have. */ { int quarter; for (quarter = 1; quarter <= 3; quarter++) { time_t probe = Start + quarter * (90 * 24 * 60 * 60); struct tm const *probe_tm = localtime (&probe); if (probe_tm && probe_tm->tm_zone && probe_tm->tm_isdst != pc.local_time_zone_table[0].value) { { pc.local_time_zone_table[1].name = probe_tm->tm_zone; pc.local_time_zone_table[1].type = tLOCAL_ZONE; pc.local_time_zone_table[1].value = probe_tm->tm_isdst; pc.local_time_zone_table[2].name = NULL; } break; } } } #else #if HAVE_TZNAME { # if !HAVE_DECL_TZNAME extern char *tzname[]; # endif int i; for (i = 0; i < 2; i++) { pc.local_time_zone_table[i].name = tzname[i]; pc.local_time_zone_table[i].type = tLOCAL_ZONE; pc.local_time_zone_table[i].value = i; } pc.local_time_zone_table[i].name = NULL; } #else pc.local_time_zone_table[0].name = NULL; #endif #endif if (pc.local_time_zone_table[0].name && pc.local_time_zone_table[1].name && ! strcmp (pc.local_time_zone_table[0].name, pc.local_time_zone_table[1].name)) { /** * This locale uses the same abbreviation for standard and * daylight times. So if we see that abbreviation, we don't * know whether it's daylight time. */ pc.local_time_zone_table[0].value = -1; pc.local_time_zone_table[1].name = NULL; } if (yyparse (&pc) != 0) { goto fail; } if (pc.timespec_seen) *result = pc.seconds; else { if (1 < (pc.times_seen | pc.dates_seen | pc.days_seen | pc.dsts_seen | (pc.local_zones_seen + pc.zones_seen))) { goto fail; } tm.tm_year = to_year (pc.year) - TM_YEAR_BASE; tm.tm_mon = pc.month - 1; tm.tm_mday = pc.day; if (pc.times_seen || (pc.rels_seen && ! pc.dates_seen && ! pc.days_seen)) { tm.tm_hour = to_hour (pc.hour, pc.meridian); if (tm.tm_hour < 0) { goto fail; } tm.tm_min = pc.minutes; tm.tm_sec = pc.seconds.tv_sec; } else { tm.tm_hour = tm.tm_min = tm.tm_sec = 0; pc.seconds.tv_nsec = 0; } /** * Let mktime deduce tm_isdst if we have an absolute timestamp. */ if (pc.dates_seen | pc.days_seen | pc.times_seen) tm.tm_isdst = -1; /** * But if the input explicitly specifies local time with or * without DST, give mktime that information. */ if (pc.local_zones_seen) tm.tm_isdst = pc.local_isdst; tm0 = tm; Start = mktime (&tm); if (! mktime_ok (&tm0, &tm, Start)) { if (! pc.zones_seen) { goto fail; } else { /** Guard against falsely reporting errors near * the time_t boundaries when parsing times in * other time zones. For example, suppose the * input string "1969-12-31 23:00:00 -0100", the * current time zone is 8 hours ahead of UTC, * and the min time_t value is 1970-01-01 * 00:00:00 UTC. Then the min localtime value * is 1970-01-01 08:00:00, and mktime will * therefore fail on 1969-12-31 23:00:00. To * work around the problem, set the time zone to * 1 hour behind UTC temporarily by setting * TZ="XXX1:00" and try mktime again. */ intmax_t time_zone = pc.time_zone; intmax_t abs_time_zone = time_zone < 0 ? - time_zone : time_zone; intmax_t abs_time_zone_hour = abs_time_zone / 60; int abs_time_zone_min = abs_time_zone % 60; char tz1buf[sizeof "XXX+0:00" + sizeof pc.time_zone * CHAR_BIT / 3]; if (!tz_was_altered) tz0 = get_tz (tz0buf); sprintf (tz1buf, "XXX%s%jd:%02d", &"-"[time_zone < 0], abs_time_zone_hour, abs_time_zone_min); if (setenv ("TZ", tz1buf, 1) != 0) { goto fail; } tz_was_altered = 1; tm = tm0; Start = mktime (&tm); if (! mktime_ok (&tm0, &tm, Start)) { goto fail; } } } if (pc.days_seen && ! pc.dates_seen) { tm.tm_mday += ((pc.day_number - tm.tm_wday + 7) % 7 + 7 * (pc.day_ordinal - (0 < pc.day_ordinal && tm.tm_wday != pc.day_number))); tm.tm_isdst = -1; Start = mktime (&tm); if (Start == (time_t) -1) { goto fail; } } /* Add relative date. */ if (pc.rel.year | pc.rel.month | pc.rel.day) { int year = tm.tm_year + pc.rel.year; int month = tm.tm_mon + pc.rel.month; int day = tm.tm_mday + pc.rel.day; if (((year < tm.tm_year) ^ (pc.rel.year < 0)) | ((month < tm.tm_mon) ^ (pc.rel.month < 0)) | ((day < tm.tm_mday) ^ (pc.rel.day < 0))) { goto fail; } tm.tm_year = year; tm.tm_mon = month; tm.tm_mday = day; tm.tm_hour = tm0.tm_hour; tm.tm_min = tm0.tm_min; tm.tm_sec = tm0.tm_sec; tm.tm_isdst = tm0.tm_isdst; Start = mktime (&tm); if (Start == (time_t) -1) { goto fail; } } /** * The only "output" of this if-block is an updated Start value, * so this block must follow others that clobber Start. */ if (pc.zones_seen) { intmax_t delta = pc.time_zone * 60; time_t t1; #ifdef HAVE_TM_GMTOFF delta -= tm.tm_gmtoff; #else time_t t = Start; struct tm const *gmt = gmtime (&t); if (! gmt) { goto fail; } delta -= tm_diff (&tm, gmt); #endif t1 = Start - delta; if ((Start < t1) != (delta < 0)) { goto fail; /* time_t overflow */ } Start = t1; } /** * Add relative hours, minutes, and seconds. On hosts that * support leap seconds, ignore the possibility of leap seconds; * e.g., "+ 10 minutes" adds 600 seconds, even if one of them is * a leap second. Typically this is not what the user wants, * but it's too hard to do it the other way, because the time * zone indicator must be applied before relative times, and if * mktime is applied again the time zone will be lost. */ intmax_t sum_ns = pc.seconds.tv_nsec + pc.rel.ns; intmax_t normalized_ns = (sum_ns % BILLION + BILLION) % BILLION; time_t t0 = Start; intmax_t d1 = 60 * 60 * pc.rel.hour; time_t t1 = t0 + d1; intmax_t d2 = 60 * pc.rel.minutes; time_t t2 = t1 + d2; time_t d3 = pc.rel.seconds; time_t t3 = t2 + d3; intmax_t d4 = (sum_ns - normalized_ns) / BILLION; time_t t4 = t3 + d4; time_t t5 = t4; if ((d1 / (60 * 60) ^ pc.rel.hour) | (d2 / 60 ^ pc.rel.minutes) | ((t1 < t0) ^ (d1 < 0)) | ((t2 < t1) ^ (d2 < 0)) | ((t3 < t2) ^ (d3 < 0)) | ((t4 < t3) ^ (d4 < 0)) | (t5 != t4)) { goto fail; } result->tv_sec = t5; result->tv_nsec = normalized_ns; } goto done; fail: ok = 0; done: if (tz_was_altered) ok &= (tz0 ? setenv ("TZ", tz0, 1) : unsetenv ("TZ")) == 0; if (tz0 != tz0buf) free (tz0); return ok; }