#ifndef _LINUX_SIGNAL_H #define _LINUX_SIGNAL_H #include #include #ifdef __KERNEL__ /* * Real Time signals may be queued. */ struct sigqueue { struct sigqueue *next; siginfo_t info; }; struct sigpending { struct sigqueue *head, **tail; sigset_t signal; }; /* * Define some primitives to manipulate sigset_t. */ #ifndef __HAVE_ARCH_SIG_BITOPS #include /* We don't use for these because there is no need to be atomic. */ static inline void sigaddset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] |= 1UL << sig; else set->sig[sig / _NSIG_BPW] |= 1UL << (sig % _NSIG_BPW); } static inline void sigdelset(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) set->sig[0] &= ~(1UL << sig); else set->sig[sig / _NSIG_BPW] &= ~(1UL << (sig % _NSIG_BPW)); } static inline int sigismember(sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_NSIG_WORDS == 1) return 1 & (set->sig[0] >> sig); else return 1 & (set->sig[sig / _NSIG_BPW] >> (sig % _NSIG_BPW)); } static inline int sigfindinword(unsigned long word) { return ffz(~word); } #define sigmask(sig) (1UL << ((sig) - 1)) #endif /* __HAVE_ARCH_SIG_BITOPS */ #ifndef __HAVE_ARCH_SIG_SETOPS #include #define _SIG_SET_BINOP(name, op) \ static inline void name(sigset_t *r, const sigset_t *a, const sigset_t *b) \ { \ unsigned long a0, a1, a2, a3, b0, b1, b2, b3; \ unsigned long i; \ \ for (i = 0; i < _NSIG_WORDS/4; ++i) { \ a0 = a->sig[4*i+0]; a1 = a->sig[4*i+1]; \ a2 = a->sig[4*i+2]; a3 = a->sig[4*i+3]; \ b0 = b->sig[4*i+0]; b1 = b->sig[4*i+1]; \ b2 = b->sig[4*i+2]; b3 = b->sig[4*i+3]; \ r->sig[4*i+0] = op(a0, b0); \ r->sig[4*i+1] = op(a1, b1); \ r->sig[4*i+2] = op(a2, b2); \ r->sig[4*i+3] = op(a3, b3); \ } \ switch (_NSIG_WORDS % 4) { \ case 3: \ a0 = a->sig[4*i+0]; a1 = a->sig[4*i+1]; a2 = a->sig[4*i+2]; \ b0 = b->sig[4*i+0]; b1 = b->sig[4*i+1]; b2 = b->sig[4*i+2]; \ r->sig[4*i+0] = op(a0, b0); \ r->sig[4*i+1] = op(a1, b1); \ r->sig[4*i+2] = op(a2, b2); \ break; \ case 2: \ a0 = a->sig[4*i+0]; a1 = a->sig[4*i+1]; \ b0 = b->sig[4*i+0]; b1 = b->sig[4*i+1]; \ r->sig[4*i+0] = op(a0, b0); \ r->sig[4*i+1] = op(a1, b1); \ break; \ case 1: \ a0 = a->sig[4*i+0]; b0 = b->sig[4*i+0]; \ r->sig[4*i+0] = op(a0, b0); \ break; \ } \ } #define _sig_or(x,y) ((x) | (y)) _SIG_SET_BINOP(sigorsets, _sig_or) #define _sig_and(x,y) ((x) & (y)) _SIG_SET_BINOP(sigandsets, _sig_and) #define _sig_nand(x,y) ((x) & ~(y)) _SIG_SET_BINOP(signandsets, _sig_nand) #undef _SIG_SET_BINOP #undef _sig_or #undef _sig_and #undef _sig_nand #define _SIG_SET_OP(name, op) \ static inline void name(sigset_t *set) \ { \ unsigned long i; \ \ for (i = 0; i < _NSIG_WORDS/4; ++i) { \ set->sig[4*i+0] = op(set->sig[4*i+0]); \ set->sig[4*i+1] = op(set->sig[4*i+1]); \ set->sig[4*i+2] = op(set->sig[4*i+2]); \ set->sig[4*i+3] = op(set->sig[4*i+3]); \ } \ switch (_NSIG_WORDS % 4) { \ case 3: set->sig[4*i+2] = op(set->sig[4*i+2]); \ case 2: set->sig[4*i+1] = op(set->sig[4*i+1]); \ case 1: set->sig[4*i+0] = op(set->sig[4*i+0]); \ } \ } #define _sig_not(x) (~(x)) _SIG_SET_OP(signotset, _sig_not) #undef _SIG_SET_OP #undef _sig_not static inline void sigemptyset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, 0, sizeof(sigset_t)); break; case 2: set->sig[1] = 0; case 1: set->sig[0] = 0; break; } } static inline void sigfillset(sigset_t *set) { switch (_NSIG_WORDS) { default: memset(set, -1, sizeof(sigset_t)); break; case 2: set->sig[1] = -1; case 1: set->sig[0] = -1; break; } } extern char * render_sigset_t(sigset_t *set, char *buffer); /* Some extensions for manipulating the low 32 signals in particular. */ static inline void sigaddsetmask(sigset_t *set, unsigned long mask) { set->sig[0] |= mask; } static inline void sigdelsetmask(sigset_t *set, unsigned long mask) { set->sig[0] &= ~mask; } static inline int sigtestsetmask(sigset_t *set, unsigned long mask) { return (set->sig[0] & mask) != 0; } static inline void siginitset(sigset_t *set, unsigned long mask) { set->sig[0] = mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], 0, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = 0; case 1: ; } } static inline void siginitsetinv(sigset_t *set, unsigned long mask) { set->sig[0] = ~mask; switch (_NSIG_WORDS) { default: memset(&set->sig[1], -1, sizeof(long)*(_NSIG_WORDS-1)); break; case 2: set->sig[1] = -1; case 1: ; } } #endif /* __HAVE_ARCH_SIG_SETOPS */ static inline void init_sigpending(struct sigpending *sig) { sigemptyset(&sig->signal); sig->head = NULL; sig->tail = &sig->head; } extern long do_sigpending(void *, unsigned long); /* * We would like the asm/signal.h code to define these so that the using * function can call do_signal(). In loo of that, we define a genaric * version that pretends that do_signal() was called and delivered a signal. * To see how this is used, see nano_sleep() in timer.c and the i386 version * in asm_i386/signal.h. */ #ifndef PT_REGS_ENTRY #define PT_REGS_ENTRY(type,name,p1_type,p1, p2_type,p2) \ type name(p1_type p1,p2_type p2)\ { #endif #ifndef _do_signal #define _do_signal() 1 #endif #ifndef NANOSLEEP_ENTRY #define NANOSLEEP_ENTRY(a) asmlinkage long sys_nanosleep( struct timespec* rqtp, \ struct timespec * rmtp) \ { #endif #ifndef CLOCK_NANOSLEEP_ENTRY #define CLOCK_NANOSLEEP_ENTRY(a) asmlinkage long sys_clock_nanosleep( \ clockid_t which_clock, \ int flags, \ const struct timespec *rqtp, \ struct timespec *rmtp) \ { #endif #endif /* __KERNEL__ */ #endif /* _LINUX_SIGNAL_H */