/*********************************************************************** * Copyright 2001 MontaVista Software Inc. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net * * arch/mips/ddb5xxx/ddb5477/pci_ops.c * Define the pci_ops for DB5477. * * Much of the code is derived from the original DDB5074 port by * Geert Uytterhoeven * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. *********************************************************************** */ /* * DDB5477 has two PCI channels, external PCI and IOPIC (internal) * Therefore we provide two sets of pci_ops. */ #include #include #include #include #include #include #include /* * config_swap structure records what set of pdar/pmr are used * to access pci config space. It also provides a place hold the * original values for future restoring. */ struct pci_config_swap { u32 pdar; u32 pmr; u32 config_base; u32 config_size; u32 pdar_backup; u32 pmr_backup; }; /* * On DDB5477, we have two sets of swap registers, for ext PCI and IOPCI. */ struct pci_config_swap ext_pci_swap = { DDB_PCIW0, DDB_PCIINIT00, DDB_PCI0_CONFIG_BASE, DDB_PCI0_CONFIG_SIZE }; struct pci_config_swap io_pci_swap = { DDB_IOPCIW0, DDB_PCIINIT01, DDB_PCI1_CONFIG_BASE, DDB_PCI1_CONFIG_SIZE }; /* * access config space */ static inline u32 ddb_access_config_base(struct pci_config_swap *swap, u32 bus,/* 0 means top level bus */ u32 slot_num) { u32 pci_addr = 0; u32 pciinit_offset = 0; u32 virt_addr = swap->config_base; u32 option; /* minimum pdar (window) size is 2MB */ db_assert(swap->config_size >= (2 << 20)); db_assert(slot_num < (1 << 5)); db_assert(bus < (1 << 8)); /* backup registers */ swap->pdar_backup = ddb_in32(swap->pdar); swap->pmr_backup = ddb_in32(swap->pmr); /* set the pdar (pci window) register */ ddb_set_pdar(swap->pdar, swap->config_base, swap->config_size, 32, /* 32 bit wide */ 0, /* not on local memory bus */ 0); /* not visible from PCI bus (N/A) */ /* * calcuate the absolute pci config addr; * according to the spec, we start scanning from adr:11 (0x800) */ if (bus == 0) { /* type 0 config */ pci_addr = 0x800 << slot_num; } else { /* type 1 config */ pci_addr = (bus << 16) | (slot_num << 11); } /* * if pci_addr is less than pci config window size, we set * pciinit_offset to 0 and adjust the virt_address. * Otherwise we will try to adjust pciinit_offset. */ if (pci_addr < swap->config_size) { virt_addr = KSEG1ADDR(swap->config_base + pci_addr); pciinit_offset = 0; } else { db_assert( (pci_addr & (swap->config_size - 1)) == 0); virt_addr = KSEG1ADDR(swap->config_base); pciinit_offset = pci_addr; } /* set the pmr register */ option = DDB_PCI_ACCESS_32; if (bus != 0) option |= DDB_PCI_CFGTYPE1; ddb_set_pmr(swap->pmr, DDB_PCICMD_CFG, pciinit_offset, option); return virt_addr; } static inline void ddb_close_config_base(struct pci_config_swap *swap) { ddb_out32(swap->pdar, swap->pdar_backup); ddb_out32(swap->pmr, swap->pmr_backup); } static int read_config_dword(struct pci_config_swap *swap, struct pci_dev *dev, u32 where, u32 *val) { u32 bus, slot_num, func_num; u32 base; db_assert((where & 3) == 0); db_assert(where < (1 << 8)); /* check if the bus is top-level */ if (dev->bus->parent != NULL) { bus = dev->bus->number; db_assert(bus != 0); } else { bus = 0; } slot_num = PCI_SLOT(dev->devfn); func_num = PCI_FUNC(dev->devfn); base = ddb_access_config_base(swap, bus, slot_num); *val = *(volatile u32*) (base + (func_num << 8) + where); ddb_close_config_base(swap); return PCIBIOS_SUCCESSFUL; } static int read_config_word(struct pci_config_swap *swap, struct pci_dev *dev, u32 where, u16 *val) { int status; u32 result; db_assert((where & 1) == 0); status = read_config_dword(swap, dev, where & ~3, &result); if (where & 2) result >>= 16; *val = result & 0xffff; return status; } static int read_config_byte(struct pci_config_swap *swap, struct pci_dev *dev, u32 where, u8 *val) { int status; u32 result; status = read_config_dword(swap, dev, where & ~3, &result); if (where & 1) result >>= 8; if (where & 2) result >>= 16; *val = result & 0xff; return status; } static int write_config_dword(struct pci_config_swap *swap, struct pci_dev *dev, u32 where, u32 val) { u32 bus, slot_num, func_num; u32 base; db_assert((where & 3) == 0); db_assert(where < (1 << 8)); /* check if the bus is top-level */ if (dev->bus->parent != NULL) { bus = dev->bus->number; db_assert(bus != 0); } else { bus = 0; } slot_num = PCI_SLOT(dev->devfn); func_num = PCI_FUNC(dev->devfn); base = ddb_access_config_base(swap, bus, slot_num); *(volatile u32*) (base + (func_num << 8) + where) = val; ddb_close_config_base(swap); return PCIBIOS_SUCCESSFUL; } static int write_config_word(struct pci_config_swap *swap, struct pci_dev *dev, u32 where, u16 val) { int status, shift=0; u32 result; db_assert((where & 1) == 0); status = read_config_dword(swap, dev, where & ~3, &result); if (status != PCIBIOS_SUCCESSFUL) return status; if (where & 2) shift += 16; result &= ~(0xffff << shift); result |= val << shift; return write_config_dword(swap, dev, where & ~3, result); } static int write_config_byte(struct pci_config_swap *swap, struct pci_dev *dev, u32 where, u8 val) { int status, shift=0; u32 result; status = read_config_dword(swap, dev, where & ~3, &result); if (status != PCIBIOS_SUCCESSFUL) return status; if (where & 2) shift += 16; if (where & 1) shift += 8; result &= ~(0xff << shift); result |= val << shift; return write_config_dword(swap, dev, where & ~3, result); } #define MAKE_PCI_OPS(prefix, rw, unitname, unittype, pciswap) \ static int prefix##_##rw##_config_##unitname(struct pci_dev *dev, int where, unittype val) \ { \ return rw##_config_##unitname(pciswap, \ dev, \ where, \ val); \ } MAKE_PCI_OPS(extpci, read, byte, u8 *, &ext_pci_swap) MAKE_PCI_OPS(extpci, read, word, u16 *, &ext_pci_swap) MAKE_PCI_OPS(extpci, read, dword, u32 *, &ext_pci_swap) MAKE_PCI_OPS(iopci, read, byte, u8 *, &io_pci_swap) MAKE_PCI_OPS(iopci, read, word, u16 *, &io_pci_swap) MAKE_PCI_OPS(iopci, read, dword, u32 *, &io_pci_swap) MAKE_PCI_OPS(extpci, write, byte, u8, &ext_pci_swap) MAKE_PCI_OPS(extpci, write, word, u16, &ext_pci_swap) MAKE_PCI_OPS(extpci, write, dword, u32, &ext_pci_swap) MAKE_PCI_OPS(iopci, write, byte, u8, &io_pci_swap) MAKE_PCI_OPS(iopci, write, word, u16, &io_pci_swap) MAKE_PCI_OPS(iopci, write, dword, u32, &io_pci_swap) struct pci_ops ddb5477_ext_pci_ops ={ extpci_read_config_byte, extpci_read_config_word, extpci_read_config_dword, extpci_write_config_byte, extpci_write_config_word, extpci_write_config_dword }; struct pci_ops ddb5477_io_pci_ops ={ iopci_read_config_byte, iopci_read_config_word, iopci_read_config_dword, iopci_write_config_byte, iopci_write_config_word, iopci_write_config_dword }; #if defined(CONFIG_DEBUG) void jsun_scan_pci_bus(void) { struct pci_bus bus; struct pci_dev dev; unsigned int devfn; int j; bus.parent = NULL; /* we scan the top level only */ dev.bus = &bus; dev.sysdata = NULL; /* scan ext pci bus and io pci bus*/ for (j=0; j< 2; j++) { if (j == 0) { printk("scan ddb5477 external PCI bus:\n"); bus.ops = &ddb5477_ext_pci_ops; } else { printk("scan ddb5477 IO PCI bus:\n"); bus.ops = &ddb5477_io_pci_ops; } for (devfn = 0; devfn < 0x100; devfn += 8) { u32 temp; u16 temp16; u8 temp8; int i; dev.devfn = devfn; db_verify(pci_read_config_dword(&dev, 0, &temp), == PCIBIOS_SUCCESSFUL); if (temp == 0xffffffff) continue; printk("slot %d: (addr %d) \n", devfn/8, 11+devfn/8); /* verify read word and byte */ db_verify(pci_read_config_word(&dev, 2, &temp16), == PCIBIOS_SUCCESSFUL); db_assert(temp16 == (temp >> 16)); db_verify(pci_read_config_byte(&dev, 3, &temp8), == PCIBIOS_SUCCESSFUL); db_assert(temp8 == (temp >> 24)); db_verify(pci_read_config_byte(&dev, 1, &temp8), == PCIBIOS_SUCCESSFUL); db_assert(temp8 == ((temp >> 8) & 0xff)); for (i=0; i < 16; i++) { db_verify(pci_read_config_dword(&dev, i*4, &temp), == PCIBIOS_SUCCESSFUL); printk("\t%08X", temp); if ((i%4) == 3) printk("\n"); } } } } static void jsun_hardcode_pci_resources_eepro(void) { struct pci_bus bus; struct pci_dev dev; u32 temp; bus.parent = NULL; /* we scan the top level only */ bus.ops = &ddb5477_ext_pci_ops; dev.bus = &bus; dev.sysdata = NULL; /* for slot 5 (ext pci 1) eepro card */ dev.devfn = 5*8; pci_read_config_dword(&dev, 0, &temp); db_assert(temp == 0x12298086); pci_write_config_dword(&dev, PCI_BASE_ADDRESS_0, DDB_PCI0_MEM_BASE); pci_write_config_dword(&dev, PCI_BASE_ADDRESS_1, 0); pci_write_config_dword(&dev, PCI_BASE_ADDRESS_2, DDB_PCI0_MEM_BASE+0x100000); pci_write_config_dword(&dev, PCI_INTERRUPT_LINE, 17); } static void jsun_hardcode_pci_resources_onboard_tulip(void) { struct pci_bus bus; struct pci_dev dev; u32 temp; bus.parent = NULL; /* we scan the top level only */ bus.ops = &ddb5477_ext_pci_ops; dev.bus = &bus; dev.sysdata = NULL; /* for slot 4 on board ether chip */ dev.devfn = 4*8; pci_read_config_dword(&dev, 0, &temp); db_assert(temp == 0x00191011); pci_write_config_dword(&dev, PCI_BASE_ADDRESS_0, 0x1000); pci_write_config_dword(&dev, PCI_BASE_ADDRESS_1, DDB_PCI0_MEM_BASE); pci_write_config_dword(&dev, PCI_INTERRUPT_LINE, 16); } static void jsun_hardcode_pci_resources(void) { jsun_hardcode_pci_resources_onboard_tulip(); } void jsun_assign_pci_resource(void) { jsun_hardcode_pci_resources(); } #endif