/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) 2000, 2001 Kanoj Sarcar * Copyright (C) 2000, 2001 Ralf Baechle * Copyright (C) 2000, 2001 Silicon Graphics, Inc. * Copyright (C) 2000, 2001 Broadcom Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Ze Big Kernel Lock! */ spinlock_t kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED; int smp_threads_ready; int smp_num_cpus = 1; /* Number that came online. */ cpumask_t cpu_online_map; /* Bitmask of currently online CPUs */ int global_irq_holder = NO_PROC_ID; spinlock_t global_irq_lock = SPIN_LOCK_UNLOCKED; struct cpuinfo_mips cpu_data[NR_CPUS]; void (*volatile smp_cpu0_finalize)(void) = NULL; static atomic_t cpus_booted = ATOMIC_INIT(0); /* These are defined by the board-specific code. */ /* * Cause the function described by call_data to be executed on the passed * cpu. When the function has finished, increment the finished field of * call_data. */ void core_send_ipi(int cpu, unsigned int action); /* * Clear all undefined state in the cpu, set up sp and gp to the passed * values, and kick the cpu into smp_bootstrap(); */ void prom_boot_secondary(int cpu, unsigned long sp, unsigned long gp); /* * After we've done initial boot, this function is called to allow the * board code to clean up state, if needed */ void prom_init_secondary(void); void cpu_idle(void); /* Do whatever setup needs to be done for SMP at the board level. Return the number of cpus in the system, including this one */ int prom_setup_smp(void); /* * Hook for doing final board-specific setup after the generic smp setup * is done */ int start_secondary(void *unused) { prom_init_secondary(); /* Do stuff that trap_init() did for the first processor */ clear_cp0_status(ST0_BEV); if (mips_cpu.options & MIPS_CPU_DIVEC) { set_cp0_cause(CAUSEF_IV); } /* XXX parity protection should be folded in here when it's converted to an option instead of something based on .cputype */ write_32bit_cp0_register(CP0_CONTEXT, smp_processor_id()<<23); pgd_current[smp_processor_id()] = init_mm.pgd; cpu_data[smp_processor_id()].udelay_val = loops_per_jiffy; cpu_data[smp_processor_id()].asid_cache = ASID_FIRST_VERSION; prom_smp_finish(); printk("Slave cpu booted successfully\n"); atomic_inc(&cpus_booted); cpu_idle(); return 0; } void __init smp_boot_cpus(void) { int i; smp_num_cpus = prom_setup_smp(); init_new_context(current, &init_mm); current->processor = 0; cpu_data[0].udelay_val = loops_per_jiffy; cpu_data[0].asid_cache = ASID_FIRST_VERSION; atomic_set(&cpus_booted, 1); /* Master CPU is already booted... */ init_idle(); for (i = 1; i < smp_num_cpus; i++) { struct task_struct *p; struct pt_regs regs; printk("Starting CPU %d... ", i); /* Spawn a new process normally. Grab a pointer to its task struct so we can mess with it */ do_fork(CLONE_VM|CLONE_PID, 0, ®s, 0); p = init_task.prev_task; /* Schedule the first task manually */ p->processor = i; p->cpus_runnable = 1 << i; /* we schedule the first task manually */ /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); p->active_mm = &init_mm; init_tasks[i] = p; del_from_runqueue(p); unhash_process(p); prom_boot_secondary(i, (unsigned long)p + KERNEL_STACK_SIZE - 32, (unsigned long)p); #if 0 /* This is copied from the ip-27 code in the mips64 tree */ struct task_struct *p; /* * The following code is purely to make sure * Linux can schedule processes on this slave. */ kernel_thread(0, NULL, CLONE_PID); p = init_task.prev_task; sprintf(p->comm, "%s%d", "Idle", i); init_tasks[i] = p; p->processor = i; p->cpus_runnable = 1 << i; /* we schedule the first task manually * del_from_runqueue(p); unhash_process(p); /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); p->active_mm = &init_mm; prom_boot_secondary(i, (unsigned long)p + KERNEL_STACK_SIZE - 32, (unsigned long)p); #endif } /* Wait for everyone to come up */ while (atomic_read(&cpus_booted) != smp_num_cpus); smp_threads_ready = 1; } void __init smp_commence(void) { /* Not sure what to do here yet */ } static void reschedule_this_cpu(void *dummy) { current->need_resched = 1; } void smp_send_reschedule(int cpu) { smp_call_function(reschedule_this_cpu, NULL, 0, 0); } static spinlock_t call_lock = SPIN_LOCK_UNLOCKED; struct call_data_struct *call_data; /* * The caller of this wants the passed function to run on every cpu. If wait * is set, wait until all cpus have finished the function before returning. * The lock is here to protect the call structure. */ int smp_call_function (void (*func) (void *info), void *info, int retry, int wait) { struct call_data_struct data; int cpus = smp_num_cpus - 1; int cpu = smp_processor_id(); int i; if (!cpus) return 0; data.func = func; data.info = info; atomic_set(&data.started, 0); data.wait = wait; if (wait) atomic_set(&data.finished, 0); spin_lock_bh(&call_lock); call_data = &data; for (i = 0; i < smp_num_cpus; i++) { if (i != cpu) { /* Call the board specific routine */ core_send_ipi(i, SMP_CALL_FUNCTION); } } /* Wait for response */ while (atomic_read(&data.started) != cpus) barrier(); if (wait) while(atomic_read(&data.finished) != cpus) barrier(); spin_unlock_bh(&call_lock); return 0; } void synchronize_irq(void) { if (irqs_running()) { /* Stupid approach */ cli(); sti(); } } static void stop_this_cpu(void *dummy) { int cpu = smp_processor_id(); if (cpu) for (;;); /* XXX Use halt like i386 */ else { /* XXXKW this isn't quite there yet */ while (!smp_cpu0_finalize) ; smp_cpu0_finalize(); } } void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 1, 0); smp_num_cpus = 1; } /* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; } /* * Most of this code is take from the mips64 tree (ip27-irq.c). It's virtually * identical to the i386 implentation in arh/i386/irq.c, with translations for * the interrupt enable bit */ #define MAXCOUNT 100000000 #define SYNC_OTHER_CORES(x) udelay(x+1) static inline void wait_on_irq(int cpu) { int count = MAXCOUNT; for (;;) { /* * Wait until all interrupts are gone. Wait * for bottom half handlers unless we're * already executing in one.. */ if (!irqs_running()) if (local_bh_count(cpu) || !spin_is_locked(&global_bh_lock)) break; /* Duh, we have to loop. Release the lock to avoid deadlocks */ spin_unlock(&global_irq_lock); for (;;) { if (!--count) { printk("Count spun out. Huh?\n"); count = ~0; } __sti(); SYNC_OTHER_CORES(cpu); __cli(); if (irqs_running()) continue; if (spin_is_locked(&global_irq_lock)) continue; if (!local_bh_count(cpu) && spin_is_locked(&global_bh_lock)) continue; if (spin_trylock(&global_irq_lock)) break; } } } static inline void get_irqlock(int cpu) { if (!spin_trylock(&global_irq_lock)) { /* do we already hold the lock? */ if ((unsigned char) cpu == global_irq_holder) return; /* Uhhuh.. Somebody else got it. Wait.. */ spin_lock(&global_irq_lock); } /* * We also to make sure that nobody else is running * in an interrupt context. */ wait_on_irq(cpu); /* * Ok, finally.. */ global_irq_holder = cpu; } /* * A global "cli()" while in an interrupt context * turns into just a local cli(). Interrupts * should use spinlocks for the (very unlikely) * case that they ever want to protect against * each other. * * If we already have local interrupts disabled, * this will not turn a local disable into a * global one (problems with spinlocks: this makes * save_flags+cli+sti usable inside a spinlock). */ void __global_cli(void) { unsigned int flags; __save_flags(flags); if (flags & ST0_IE) { int cpu = smp_processor_id(); __cli(); if (!local_irq_count(cpu)) get_irqlock(cpu); } } void __global_sti(void) { int cpu = smp_processor_id(); if (!local_irq_count(cpu)) release_irqlock(cpu); __sti(); } /* * SMP flags value to restore to: * 0 - global cli * 1 - global sti * 2 - local cli * 3 - local sti */ unsigned long __global_save_flags(void) { int retval; int local_enabled; unsigned long flags; int cpu = smp_processor_id(); __save_flags(flags); local_enabled = (flags & ST0_IE); /* default to local */ retval = 2 + local_enabled; /* check for global flags if we're not in an interrupt */ if (!local_irq_count(cpu)) { if (local_enabled) retval = 1; if (global_irq_holder == cpu) retval = 0; } return retval; } void __global_restore_flags(unsigned long flags) { switch (flags) { case 0: __global_cli(); break; case 1: __global_sti(); break; case 2: __cli(); break; case 3: __sti(); break; default: printk("global_restore_flags: %08lx\n", flags); } } static void flush_tlb_all_ipi(void *info) { local_flush_tlb_all(); } void flush_tlb_all(void) { smp_call_function(flush_tlb_all_ipi, 0, 1, 1); local_flush_tlb_all(); } static void flush_tlb_mm_ipi(void *mm) { local_flush_tlb_mm((struct mm_struct *)mm); } /* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, intercpu interrupts have to be sent. * Another case where intercpu interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */ void flush_tlb_mm(struct mm_struct *mm) { if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) CPU_CONTEXT(i, mm) = 0; } local_flush_tlb_mm(mm); } struct flush_tlb_data { struct mm_struct *mm; struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_range(fd->mm, fd->addr1, fd->addr2); } void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd; fd.mm = mm; fd.addr1 = start; fd.addr2 = end; smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) CPU_CONTEXT(i, mm) = 0; } local_flush_tlb_range(mm, start, end); } static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd; fd.vma = vma; fd.addr1 = page; smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1, 1); } else { int i; for (i = 0; i < smp_num_cpus; i++) if (smp_processor_id() != i) CPU_CONTEXT(i, vma->vm_mm) = 0; } local_flush_tlb_page(vma, page); } EXPORT_SYMBOL(flush_tlb_page); EXPORT_SYMBOL(cpu_data); EXPORT_SYMBOL(synchronize_irq); EXPORT_SYMBOL(kernel_flag); EXPORT_SYMBOL(__global_sti); EXPORT_SYMBOL(__global_cli); EXPORT_SYMBOL(__global_save_flags); EXPORT_SYMBOL(__global_restore_flags);