/* * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * MIPS32 CPU variant specific MMU/Cache routines. */ #include #include #include #include #include #include #include #include #include #include #include #include /* CP0 hazard avoidance. */ #define BARRIER __asm__ __volatile__(".set noreorder\n\t" \ "nop; nop; nop; nop; nop; nop;\n\t" \ ".set reorder\n\t") /* Primary cache parameters. */ int icache_size, dcache_size; /* Size in bytes */ int ic_lsize, dc_lsize; /* LineSize in bytes */ /* Secondary cache (if present) parameters. */ unsigned int scache_size, sc_lsize; /* Again, in bytes */ #include #include #undef DEBUG_CACHE /* * Dummy cache handling routines for machines without boardcaches */ static void no_sc_noop(void) {} static struct bcache_ops no_sc_ops = { (void *)no_sc_noop, (void *)no_sc_noop, (void *)no_sc_noop, (void *)no_sc_noop }; struct bcache_ops *bcops = &no_sc_ops; static inline void mips32_flush_cache_all_sc(void) { unsigned long flags; __save_and_cli(flags); blast_dcache(); blast_icache(); blast_scache(); __restore_flags(flags); } static inline void mips32_flush_cache_all_pc(void) { unsigned long flags; __save_and_cli(flags); blast_dcache(); blast_icache(); __restore_flags(flags); } static void mips32_flush_cache_range_sc(struct mm_struct *mm, unsigned long start, unsigned long end) { struct vm_area_struct *vma; unsigned long flags; if(mm->context == 0) return; start &= PAGE_MASK; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif vma = find_vma(mm, start); if(vma) { if(mm->context != current->mm->context) { mips32_flush_cache_all_sc(); } else { pgd_t *pgd; pmd_t *pmd; pte_t *pte; __save_and_cli(flags); while(start < end) { pgd = pgd_offset(mm, start); pmd = pmd_offset(pgd, start); pte = pte_offset(pmd, start); if(pte_val(*pte) & _PAGE_VALID) blast_scache_page(start); start += PAGE_SIZE; } __restore_flags(flags); } } } static void mips32_flush_cache_range_pc(struct mm_struct *mm, unsigned long start, unsigned long end) { if(mm->context != 0) { unsigned long flags; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif __save_and_cli(flags); blast_dcache(); blast_icache(); __restore_flags(flags); } } /* * On architectures like the Sparc, we could get rid of lines in * the cache created only by a certain context, but on the MIPS * (and actually certain Sparc's) we cannot. */ static void mips32_flush_cache_mm_sc(struct mm_struct *mm) { if(mm->context != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif mips32_flush_cache_all_sc(); } } static void mips32_flush_cache_mm_pc(struct mm_struct *mm) { if(mm->context != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif mips32_flush_cache_all_pc(); } } static void mips32_flush_cache_page_sc(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (mm->context == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if (!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (mm->context != current->active_mm->context) { /* * Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (scache_size - 1))); blast_dcache_page_indexed(page); blast_scache_page_indexed(page); } else blast_scache_page(page); out: __restore_flags(flags); } static void mips32_flush_cache_page_pc(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (mm->context == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if (!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since Mips32 caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (mm == current->active_mm) { blast_dcache_page(page); } else { /* Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (dcache_size - 1))); blast_dcache_page_indexed(page); } out: __restore_flags(flags); } /* If the addresses passed to these routines are valid, they are * either: * * 1) In KSEG0, so we can do a direct flush of the page. * 2) In KSEG2, and since every process can translate those * addresses all the time in kernel mode we can do a direct * flush. * 3) In KSEG1, no flush necessary. */ static void mips32_flush_page_to_ram_sc(struct page *page) { blast_scache_page((unsigned long)page_address(page)); } static void mips32_flush_page_to_ram_pc(struct page *page) { blast_dcache_page((unsigned long)page_address(page)); } static void mips32_flush_icache_page_s(struct vm_area_struct *vma, struct page *page) { /* * We did an scache flush therefore PI is already clean. */ } static void mips32_flush_icache_range(unsigned long start, unsigned long end) { flush_cache_all(); } static void mips32_flush_icache_page(struct vm_area_struct *vma, struct page *page) { int address; if (!(vma->vm_flags & VM_EXEC)) return; address = KSEG0 + ((unsigned long)page_address(page) & PAGE_MASK & (dcache_size - 1)); blast_icache_page_indexed(address); } /* * Writeback and invalidate the primary cache dcache before DMA. */ static void mips32_dma_cache_wback_inv_pc(unsigned long addr, unsigned long size) { unsigned long end, a; unsigned int flags; if (size >= dcache_size) { flush_cache_all(); } else { __save_and_cli(flags); a = addr & ~(dc_lsize - 1); end = (addr + size) & ~(dc_lsize - 1); while (1) { flush_dcache_line(a); /* Hit_Writeback_Inv_D */ if (a == end) break; a += dc_lsize; } __restore_flags(flags); } bc_wback_inv(addr, size); } static void mips32_dma_cache_wback_inv_sc(unsigned long addr, unsigned long size) { unsigned long end, a; if (size >= scache_size) { flush_cache_all(); return; } a = addr & ~(sc_lsize - 1); end = (addr + size) & ~(sc_lsize - 1); while (1) { flush_scache_line(a); /* Hit_Writeback_Inv_SD */ if (a == end) break; a += sc_lsize; } } static void mips32_dma_cache_inv_pc(unsigned long addr, unsigned long size) { unsigned long end, a; unsigned int flags; if (size >= dcache_size) { flush_cache_all(); } else { __save_and_cli(flags); a = addr & ~(dc_lsize - 1); end = (addr + size) & ~(dc_lsize - 1); while (1) { flush_dcache_line(a); /* Hit_Writeback_Inv_D */ if (a == end) break; a += dc_lsize; } __restore_flags(flags); } bc_inv(addr, size); } static void mips32_dma_cache_inv_sc(unsigned long addr, unsigned long size) { unsigned long end, a; if (size >= scache_size) { flush_cache_all(); return; } a = addr & ~(sc_lsize - 1); end = (addr + size) & ~(sc_lsize - 1); while (1) { flush_scache_line(a); /* Hit_Writeback_Inv_SD */ if (a == end) break; a += sc_lsize; } } static void mips32_dma_cache_wback(unsigned long addr, unsigned long size) { panic("mips32_dma_cache called - should not happen."); } /* * While we're protected against bad userland addresses we don't care * very much about what happens in that case. Usually a segmentation * fault will dump the process later on anyway ... */ static void mips32_flush_cache_sigtramp(unsigned long addr) { protected_writeback_dcache_line(addr & ~(dc_lsize - 1)); protected_flush_icache_line(addr & ~(ic_lsize - 1)); } /* Detect and size the various caches. */ static void __init probe_icache(unsigned long config) { unsigned long config1; unsigned int lsize; if (!(config & (1 << 31))) { /* * Not a MIPS32 complainant CPU. * Config 1 register not supported, we assume R4k style. */ icache_size = 1 << (12 + ((config >> 9) & 7)); ic_lsize = 16 << ((config >> 5) & 1); mips_cpu.icache.linesz = ic_lsize; /* * We cannot infer associativity - assume direct map * unless probe template indicates otherwise */ if(!mips_cpu.icache.ways) mips_cpu.icache.ways = 1; mips_cpu.icache.sets = (icache_size / ic_lsize) / mips_cpu.icache.ways; } else { config1 = read_mips32_cp0_config1(); if ((lsize = ((config1 >> 19) & 7))) mips_cpu.icache.linesz = 2 << lsize; else mips_cpu.icache.linesz = lsize; mips_cpu.icache.sets = 64 << ((config1 >> 22) & 7); mips_cpu.icache.ways = 1 + ((config1 >> 16) & 7); ic_lsize = mips_cpu.icache.linesz; icache_size = mips_cpu.icache.sets * mips_cpu.icache.ways * ic_lsize; } printk("Primary instruction cache %dkb, linesize %d bytes (%d ways)\n", icache_size >> 10, ic_lsize, mips_cpu.icache.ways); } static void __init probe_dcache(unsigned long config) { unsigned long config1; unsigned int lsize; if (!(config & (1 << 31))) { /* * Not a MIPS32 complainant CPU. * Config 1 register not supported, we assume R4k style. */ dcache_size = 1 << (12 + ((config >> 6) & 7)); dc_lsize = 16 << ((config >> 4) & 1); mips_cpu.dcache.linesz = dc_lsize; /* * We cannot infer associativity - assume direct map * unless probe template indicates otherwise */ if(!mips_cpu.dcache.ways) mips_cpu.dcache.ways = 1; mips_cpu.dcache.sets = (dcache_size / dc_lsize) / mips_cpu.dcache.ways; } else { config1 = read_mips32_cp0_config1(); if ((lsize = ((config1 >> 10) & 7))) mips_cpu.dcache.linesz = 2 << lsize; else mips_cpu.dcache.linesz= lsize; mips_cpu.dcache.sets = 64 << ((config1 >> 13) & 7); mips_cpu.dcache.ways = 1 + ((config1 >> 7) & 7); dc_lsize = mips_cpu.dcache.linesz; dcache_size = mips_cpu.dcache.sets * mips_cpu.dcache.ways * dc_lsize; } printk("Primary data cache %dkb, linesize %d bytes (%d ways)\n", dcache_size >> 10, dc_lsize, mips_cpu.dcache.ways); } /* If you even _breathe_ on this function, look at the gcc output * and make sure it does not pop things on and off the stack for * the cache sizing loop that executes in KSEG1 space or else * you will crash and burn badly. You have been warned. */ static int __init probe_scache(unsigned long config) { extern unsigned long stext; unsigned long flags, addr, begin, end, pow2; int tmp; if (mips_cpu.scache.flags == MIPS_CACHE_NOT_PRESENT) return 0; tmp = ((config >> 17) & 1); if(tmp) return 0; tmp = ((config >> 22) & 3); switch(tmp) { case 0: sc_lsize = 16; break; case 1: sc_lsize = 32; break; case 2: sc_lsize = 64; break; case 3: sc_lsize = 128; break; } begin = (unsigned long) &stext; begin &= ~((4 * 1024 * 1024) - 1); end = begin + (4 * 1024 * 1024); /* This is such a bitch, you'd think they would make it * easy to do this. Away you daemons of stupidity! */ __save_and_cli(flags); /* Fill each size-multiple cache line with a valid tag. */ pow2 = (64 * 1024); for(addr = begin; addr < end; addr = (begin + pow2)) { unsigned long *p = (unsigned long *) addr; __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ pow2 <<= 1; } /* Load first line with zero (therefore invalid) tag. */ set_taglo(0); set_taghi(0); __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ __asm__ __volatile__("\n\t.set noreorder\n\t" ".set mips3\n\t" "cache 8, (%0)\n\t" ".set mips0\n\t" ".set reorder\n\t" : : "r" (begin)); __asm__ __volatile__("\n\t.set noreorder\n\t" ".set mips3\n\t" "cache 9, (%0)\n\t" ".set mips0\n\t" ".set reorder\n\t" : : "r" (begin)); __asm__ __volatile__("\n\t.set noreorder\n\t" ".set mips3\n\t" "cache 11, (%0)\n\t" ".set mips0\n\t" ".set reorder\n\t" : : "r" (begin)); /* Now search for the wrap around point. */ pow2 = (128 * 1024); tmp = 0; for(addr = (begin + (128 * 1024)); addr < (end); addr = (begin + pow2)) { __asm__ __volatile__("\n\t.set noreorder\n\t" ".set mips3\n\t" "cache 7, (%0)\n\t" ".set mips0\n\t" ".set reorder\n\t" : : "r" (addr)); __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ if(!get_taglo()) break; pow2 <<= 1; } __restore_flags(flags); addr -= begin; printk("Secondary cache sized at %dK linesize %d bytes.\n", (int) (addr >> 10), sc_lsize); scache_size = addr; return 1; } static void __init setup_noscache_funcs(void) { _clear_page = (void *)mips32_clear_page_dc; _copy_page = (void *)mips32_copy_page_dc; _flush_cache_all = mips32_flush_cache_all_pc; ___flush_cache_all = mips32_flush_cache_all_pc; _flush_cache_mm = mips32_flush_cache_mm_pc; _flush_cache_range = mips32_flush_cache_range_pc; _flush_cache_page = mips32_flush_cache_page_pc; _flush_page_to_ram = mips32_flush_page_to_ram_pc; _flush_icache_page = mips32_flush_icache_page; _dma_cache_wback_inv = mips32_dma_cache_wback_inv_pc; _dma_cache_wback = mips32_dma_cache_wback; _dma_cache_inv = mips32_dma_cache_inv_pc; } static void __init setup_scache_funcs(void) { _flush_cache_all = mips32_flush_cache_all_sc; ___flush_cache_all = mips32_flush_cache_all_sc; _flush_cache_mm = mips32_flush_cache_mm_sc; _flush_cache_range = mips32_flush_cache_range_sc; _flush_cache_page = mips32_flush_cache_page_sc; _flush_page_to_ram = mips32_flush_page_to_ram_sc; _clear_page = (void *)mips32_clear_page_sc; _copy_page = (void *)mips32_copy_page_sc; _flush_icache_page = mips32_flush_icache_page_s; _dma_cache_wback_inv = mips32_dma_cache_wback_inv_sc; _dma_cache_wback = mips32_dma_cache_wback; _dma_cache_inv = mips32_dma_cache_inv_sc; } typedef int (*probe_func_t)(unsigned long); static inline void __init setup_scache(unsigned int config) { probe_func_t probe_scache_kseg1; int sc_present = 0; /* Maybe the cpu knows about a l2 cache? */ probe_scache_kseg1 = (probe_func_t) (KSEG1ADDR(&probe_scache)); sc_present = probe_scache_kseg1(config); if (sc_present) { mips_cpu.scache.linesz = sc_lsize; /* * We cannot infer associativity - assume direct map * unless probe template indicates otherwise */ if(!mips_cpu.scache.ways) mips_cpu.scache.ways = 1; mips_cpu.scache.sets = (scache_size / sc_lsize) / mips_cpu.scache.ways; setup_scache_funcs(); return; } setup_noscache_funcs(); } void __init ld_mmu_mips32(void) { unsigned long config = read_32bit_cp0_register(CP0_CONFIG); #ifdef CONFIG_MIPS_UNCACHED change_cp0_config(CONF_CM_CMASK, CONF_CM_UNCACHED); #else #ifdef CONFIG_MIPS_JADE change_cp0_config(CONF_CM_CMASK, CONF_CM_CACHABLE_WA); #else #ifdef CONFIG_MIPS_EMERALD change_cp0_config(CONF_CM_CMASK, CONF_CM_CACHABLE_NONCOHERENT); #else change_cp0_config(CONF_CM_CMASK,CONF_CM_CACHABLE_NONCOHERENT); #endif #endif #endif probe_icache(config); probe_dcache(config); setup_scache(config); _flush_cache_sigtramp = mips32_flush_cache_sigtramp; _flush_icache_range = mips32_flush_icache_range; /* Ouch */ __flush_cache_all(); }