/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Time operations for IP22 machines. Original code may come from * Ralf Baechle or David S. Miller (sorry guys, i'm really not sure) * * Copyright (C) 2001 by Ladislav Michl */ #include #include #include #include #include #include #include #include #include #include #include #include /* * note that mktime uses month from 1 to 12 while to_tm * uses 0 to 11. */ static unsigned long indy_rtc_get_time(void) { unsigned char yrs, mon, day, hrs, min, sec; unsigned char save_control; save_control = CMOS_READ(RTC_CMD); CMOS_WRITE((save_control|RTC_TE), RTC_CMD); sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hrs = CMOS_READ(RTC_HOURS) & 0x1f; day = CMOS_READ(RTC_DATE); mon = CMOS_READ(RTC_MONTH) & 0x1f; yrs = CMOS_READ(RTC_YEAR); CMOS_WRITE(save_control, RTC_CMD); BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hrs); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(yrs); if (yrs < 45) yrs += 30; if ((yrs += 40) < 70) yrs += 100; return mktime((int)yrs + 1900, mon, day, hrs, min, sec); } static int indy_rtc_set_time(unsigned long tim) { struct rtc_time tm; unsigned char save_control; to_tm(tim, &tm); tm.tm_mon += 1; tm.tm_year -= 40; if (tm.tm_year >= 100) tm.tm_year -= 100; BIN_TO_BCD(tm.tm_sec); BIN_TO_BCD(tm.tm_min); BIN_TO_BCD(tm.tm_hour); BIN_TO_BCD(tm.tm_mday); BIN_TO_BCD(tm.tm_mon); BIN_TO_BCD(tm.tm_year); save_control = CMOS_READ(RTC_CMD); CMOS_WRITE((save_control|RTC_TE), RTC_CMD); CMOS_WRITE(tm.tm_year, RTC_YEAR); CMOS_WRITE(tm.tm_mon, RTC_MONTH); CMOS_WRITE(tm.tm_mday, RTC_DATE); CMOS_WRITE(tm.tm_hour, RTC_HOURS); CMOS_WRITE(tm.tm_min, RTC_MINUTES); CMOS_WRITE(tm.tm_sec, RTC_SECONDS); CMOS_WRITE(0, RTC_HUNDREDTH_SECOND); CMOS_WRITE(save_control, RTC_CMD); return 0; } static unsigned long dosample(volatile unsigned char *tcwp, volatile unsigned char *tc2p) { unsigned long ct0, ct1; unsigned char msb, lsb; /* Start the counter. */ *tcwp = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL | SGINT_TCWORD_MRGEN); *tc2p = (SGINT_TCSAMP_COUNTER & 0xff); *tc2p = (SGINT_TCSAMP_COUNTER >> 8); /* Get initial counter invariant */ ct0 = read_32bit_cp0_register(CP0_COUNT); /* Latch and spin until top byte of counter2 is zero */ do { *tcwp = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CLAT); lsb = *tc2p; msb = *tc2p; ct1 = read_32bit_cp0_register(CP0_COUNT); } while(msb); /* Stop the counter. */ *tcwp = (SGINT_TCWORD_CNT2 | SGINT_TCWORD_CALL | SGINT_TCWORD_MSWST); /* * Return the difference, this is how far the r4k counter increments * for every 1/HZ seconds. We round off the nearest 1 MHz of master * clock (= 1000000 / 100 / 2 = 5000 count). */ return ((ct1 - ct0) / 5000) * 5000; } void indy_time_init(void) { /* Here we need to calibrate the cycle counter to at least be close. * We don't need to actually register the irq handler because that's * all done in indyIRQ.S. */ struct sgi_ioc_timers *p; volatile unsigned char *tcwp, *tc2p; unsigned long r4k_ticks[3]; unsigned long r4k_tick; /* Figure out the r4k offset, the algorithm is very simple * and works in _all_ cases as long as the 8254 counter * register itself works ok (as an interrupt driving timer * it does not because of bug, this is why we are using * the onchip r4k counter/compare register to serve this * purpose, but for r4k_offset calculation it will work * ok for us). There are other very complicated ways * of performing this calculation but this one works just * fine so I am not going to futz around. ;-) */ p = ioc_timers; tcwp = &p->tcword; tc2p = &p->tcnt2; printk("Calibrating system timer... "); dosample(tcwp, tc2p); /* Prime cache. */ dosample(tcwp, tc2p); /* Prime cache. */ /* Zero is NOT an option. */ do { r4k_ticks[0] = dosample (tcwp, tc2p); } while (!r4k_ticks[0]); do { r4k_ticks[1] = dosample (tcwp, tc2p); } while (!r4k_ticks[1]); if (r4k_ticks[0] != r4k_ticks[1]) { printk ("warning: timer counts differ, retrying..."); r4k_ticks[2] = dosample (tcwp, tc2p); if (r4k_ticks[2] == r4k_ticks[0] || r4k_ticks[2] == r4k_ticks[1]) r4k_tick = r4k_ticks[2]; else { printk ("disagreement, using average..."); r4k_tick = (r4k_ticks[0] + r4k_ticks[1] + r4k_ticks[2]) / 3; } } else r4k_tick = r4k_ticks[0]; printk("%d [%d.%02d MHz CPU]\n", (int) r4k_tick, (int) (r4k_tick / 5000), (int) (r4k_tick % 5000) / 50); mips_counter_frequency = r4k_tick * HZ; } /* Generic SGI handler for (spurious) 8254 interrupts */ void indy_8254timer_irq(struct pt_regs *regs) { int cpu = smp_processor_id(); int irq = SGI_8254_0_IRQ; irq_enter(cpu, irq); kstat.irqs[cpu][irq]++; printk("indy_8254timer_irq: Whoops, should not have gotten this IRQ\n"); prom_getchar(); ArcEnterInteractiveMode(); irq_exit(cpu, irq); } void indy_r4k_timer_interrupt(struct pt_regs *regs) { int cpu = smp_processor_id(); int irq = SGI_TIMER_IRQ; irq_enter(cpu, irq); kstat.irqs[cpu][irq]++; timer_interrupt(irq, NULL, regs); irq_exit(cpu, irq); if (softirq_pending(cpu)) do_softirq(); } extern int setup_irq(unsigned int irq, struct irqaction *irqaction); static void indy_timer_setup(struct irqaction *irq) { /* over-write the handler, we use our own way */ irq->handler = no_action; /* setup irqaction */ setup_irq(SGI_TIMER_IRQ, irq); } void sgitime_init(void) { /* setup hookup functions */ rtc_get_time = indy_rtc_get_time; rtc_set_time = indy_rtc_set_time; board_time_init = indy_time_init; board_timer_setup = indy_timer_setup; }