/* * Copyright (C) 2001 Broadcom Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * SB1250-specific PCI support * * This module provides the glue between Linux's PCI subsystem * and the hardware. We basically provide glue for accessing * configuration space, and set up the translation for I/O * space accesses. * * To access configuration space, we call some assembly-level * stubs that flip the KX bit on and off in the status * register, and do XKSEG addressed memory accesses there. * It's slow (7 SSNOPs to guarantee that KX is set!) but * fortunately, config space accesses are rare. * * We could use the ioremap functionality for the confguration * space as well as I/O space, but I'm not sure of the * implications of setting aside 16MB of KSEG2 for something * that is used so rarely (how much space in the page tables?) * */ #include #include #include #include #include #include #include #include #include #include "lib_hssubr.h" /* * This macro calculates the offset into config space where * a given bus, device/function, and offset live on the sb1250 */ #define CFGOFFSET(bus,devfn,where) (((bus)<<16)+((devfn)<<8)+(where)) /* * Using the above offset, this macro calcuates the actual * address. Note that the physical address is not accessible * without remapping or setting KX. We use 'match bits' * as our endian policy to guarantee that 32-bit accesses * look the same from either endianness. */ #define CFGADDR(dev,where) (A_PHYS_LDTPCI_CFG_MATCH_BITS + \ CFGOFFSET(dev->bus->number,dev->devfn,where)) /* * Read/write 32-bit values in config space. */ #define READCFG32(addr) hs_read32((addr)&~3) #define WRITECFG32(addr,data) hs_write32(((addr)&~3),(data)) /* * This variable is the KSEG2 (kernel virtual) mapping * of the ISA/PCI I/O space area. We map 64K here and * the offsets from this address get treated with "match bytes" * policy to make everything look little-endian. So, * you need to also set CONFIG_SWAP_IO_SPACE, but this is the * combination that works correctly with most of Linux's drivers. */ #define PCI_BUS_ENABLED 1 #define LDT_BUS_ENABLED 2 static int sb1250_bus_status = 0; #define MATCH_BITS 0x20000000 /* really belongs in an include file */ #define LDT_BRIDGE_START ((A_PCI_TYPE01_HEADER|MATCH_BITS)+0x00) #define LDT_BRIDGE_END ((A_PCI_TYPE01_HEADER|MATCH_BITS)+0x20) /* * Read/write access functions for various sizes of values * in config space. */ static int sb1250_pci_read_config_byte(struct pci_dev *dev, int where, u8 * val) { u32 data = 0; u32 cfgaddr = CFGADDR(dev, where); data = READCFG32(cfgaddr); /* * If the LDT was not configured, make it look like the bridge * header is not there. */ if (!(sb1250_bus_status & LDT_BUS_ENABLED) && (cfgaddr >= LDT_BRIDGE_START) && (cfgaddr < LDT_BRIDGE_END)) { data = 0xFFFFFFFF; } *val = (data >> ((where & 3) << 3)) & 0xff; return PCIBIOS_SUCCESSFUL; } static int sb1250_pci_read_config_word(struct pci_dev *dev, int where, u16 * val) { u32 data = 0; u32 cfgaddr = CFGADDR(dev, where); if (where & 1) return PCIBIOS_BAD_REGISTER_NUMBER; data = READCFG32(cfgaddr); /* * If the LDT was not configured, make it look like the bridge * header is not there. */ if (!(sb1250_bus_status & LDT_BUS_ENABLED) && (cfgaddr >= LDT_BRIDGE_START) && (cfgaddr < LDT_BRIDGE_END)) { data = 0xFFFFFFFF; } *val = (data >> ((where & 3) << 3)) & 0xffff; return PCIBIOS_SUCCESSFUL; } static int sb1250_pci_read_config_dword(struct pci_dev *dev, int where, u32 * val) { u32 data = 0; u32 cfgaddr = CFGADDR(dev, where); if (where & 3) return PCIBIOS_BAD_REGISTER_NUMBER; data = READCFG32(cfgaddr); /* * If the LDT was not configured, make it look like the bridge * header is not there. */ if (!(sb1250_bus_status & LDT_BUS_ENABLED) && (cfgaddr >= LDT_BRIDGE_START) && (cfgaddr < LDT_BRIDGE_END)) { data = 0xFFFFFFFF; } *val = data; return PCIBIOS_SUCCESSFUL; } static int sb1250_pci_write_config_byte(struct pci_dev *dev, int where, u8 val) { u32 data = 0; u32 cfgaddr = CFGADDR(dev, where); data = READCFG32(cfgaddr); data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); WRITECFG32(cfgaddr, data); return PCIBIOS_SUCCESSFUL; } static int sb1250_pci_write_config_word(struct pci_dev *dev, int where, u16 val) { u32 data = 0; u32 cfgaddr = CFGADDR(dev, where); if (where & 1) return PCIBIOS_BAD_REGISTER_NUMBER; data = READCFG32(cfgaddr); data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); WRITECFG32(cfgaddr, data); return PCIBIOS_SUCCESSFUL; } static int sb1250_pci_write_config_dword(struct pci_dev *dev, int where, u32 val) { u32 cfgaddr = CFGADDR(dev, where); if (where & 3) return PCIBIOS_BAD_REGISTER_NUMBER; WRITECFG32(cfgaddr, val); return PCIBIOS_SUCCESSFUL; } struct pci_ops sb1250_pci_ops = { sb1250_pci_read_config_byte, sb1250_pci_read_config_word, sb1250_pci_read_config_dword, sb1250_pci_write_config_byte, sb1250_pci_write_config_word, sb1250_pci_write_config_dword }; void __init pcibios_init(void) { uint32_t cmdreg; /* * See if the PCI bus has been configured by the firmware. */ cmdreg = READCFG32((A_PCI_TYPE00_HEADER | MATCH_BITS) + R_PCI_TYPE0_CMDSTATUS); if (!(cmdreg & M_PCI_CMD_MASTER_EN)) { printk ("PCI: Skipping PCI probe. Bus is not initialized.\n"); return; } sb1250_bus_status |= PCI_BUS_ENABLED; /* * Establish a mapping from KSEG2 (kernel virtual) to PCI I/O space * Use "match bytes", even though this exposes endianness. * big-endian Linuxes will have CONFIG_SWAP_IO_SPACE set. */ set_io_port_base(ioremap(A_PHYS_LDTPCI_IO_MATCH_BYTES, 65536)); /* * Also check the LDT bridge's enable, just in case we didn't * initialize that one. */ cmdreg = READCFG32((A_PCI_TYPE01_HEADER | MATCH_BITS) + R_PCI_TYPE0_CMDSTATUS); if (cmdreg & M_PCI_CMD_MASTER_EN) { sb1250_bus_status |= LDT_BUS_ENABLED; } /* Probe for PCI hardware */ printk("PCI: Probing PCI hardware on host bus 0.\n"); pci_scan_bus(0, &sb1250_pci_ops, NULL); } int __init pcibios_enable_device(struct pci_dev *dev) { /* Not needed, since we enable all devices at startup. */ return 0; } void __init pcibios_align_resource(void *data, struct resource *res, unsigned long size) { } char *__init pcibios_setup(char *str) { /* Nothing to do for now. */ return str; } struct pci_fixup pcibios_fixups[] = { {0} }; void __init pcibios_update_resource(struct pci_dev *dev, struct resource *root, struct resource *res, int resource) { unsigned long where, size; u32 reg; where = PCI_BASE_ADDRESS_0 + (resource * 4); size = res->end - res->start; pci_read_config_dword(dev, where, ®); reg = (reg & size) | (((u32) (res->start - root->start)) & ~size); pci_write_config_dword(dev, where, reg); } /* * Called after each bus is probed, but before its children * are examined. */ void __init pcibios_fixup_bus(struct pci_bus *b) { pci_read_bridge_bases(b); } unsigned __init int pcibios_assign_all_busses(void) { return 1; }