/****************************************************************************** * * Module Name: os.c - Linux OSL functions * $Revision: 1.1.1.1 $ * *****************************************************************************/ /* * os.c - OS-dependent functions * * Copyright (C) 2000 Andrew Henroid * Copyright (C) 2001 Andrew Grover * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* Changes * * Christopher Liebman 2001-5-15 * - Fixed improper kernel_thread parameters */ #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ACPI_EFI #include #endif #ifdef _IA64 #include #endif #define _COMPONENT ACPI_OS_SERVICES MODULE_NAME ("os") typedef struct { OSD_EXECUTION_CALLBACK function; void *context; } ACPI_OS_DPC; /***************************************************************************** * Debugger Stuff *****************************************************************************/ #ifdef ENABLE_DEBUGGER #include /* stuff for debugger support */ int acpi_in_debugger = 0; extern NATIVE_CHAR line_buf[80]; #endif /***************************************************************************** * Globals *****************************************************************************/ static int acpi_irq_irq = 0; static OSD_HANDLER acpi_irq_handler = NULL; static void *acpi_irq_context = NULL; /****************************************************************************** * Functions *****************************************************************************/ acpi_status acpi_os_initialize(void) { return AE_OK; } acpi_status acpi_os_terminate(void) { if (acpi_irq_handler) { acpi_os_remove_interrupt_handler(acpi_irq_irq, acpi_irq_handler); } return AE_OK; } s32 acpi_os_printf(const NATIVE_CHAR *fmt,...) { s32 size; va_list args; va_start(args, fmt); size = acpi_os_vprintf(fmt, args); va_end(args); return size; } s32 acpi_os_vprintf(const NATIVE_CHAR *fmt, va_list args) { static char buffer[512]; int size = vsprintf(buffer, fmt, args); #ifdef ENABLE_DEBUGGER if (acpi_in_debugger) { kdb_printf("%s", buffer); } else { printk("%s", buffer); } #else printk("%s", buffer); #endif return size; } void * acpi_os_allocate(u32 size) { return kmalloc(size, GFP_KERNEL); } void * acpi_os_callocate(u32 size) { void *ptr = acpi_os_allocate(size); if (ptr) memset(ptr, 0, size); return ptr; } void acpi_os_free(void *ptr) { kfree(ptr); } acpi_status acpi_os_get_root_pointer(u32 flags, ACPI_PHYSICAL_ADDRESS *phys_addr) { #ifndef CONFIG_ACPI_EFI if (ACPI_FAILURE(acpi_find_root_pointer(flags, phys_addr))) { printk(KERN_ERR "ACPI: System description tables not found\n"); return AE_ERROR; } #else /*CONFIG_ACPI_EFI*/ if (efi.acpi20) *phys_addr = (ACPI_PHYSICAL_ADDRESS) efi.acpi20; else if (efi.acpi) *phys_addr = (ACPI_PHYSICAL_ADDRESS) efi.acpi; else { printk(KERN_ERR "ACPI: System description tables not found\n"); *phys_addr = NULL; return AE_ERROR; } #endif /*CONFIG_ACPI_EFI*/ return AE_OK; } acpi_status acpi_os_map_memory(ACPI_PHYSICAL_ADDRESS phys, u32 size, void **virt) { if (phys > ULONG_MAX) { printk(KERN_ERR "ACPI: Cannot map memory that high\n"); return AE_ERROR; } *virt = ioremap((unsigned long) phys, size); if (!*virt) return AE_ERROR; return AE_OK; } void acpi_os_unmap_memory(void *virt, u32 size) { iounmap(virt); } acpi_status acpi_os_get_physical_address(void *virt, ACPI_PHYSICAL_ADDRESS *phys) { if(!phys || !virt) return AE_BAD_PARAMETER; *phys = virt_to_phys(virt); return AE_OK; } static void acpi_irq(int irq, void *dev_id, struct pt_regs *regs) { (*acpi_irq_handler)(acpi_irq_context); } acpi_status acpi_os_install_interrupt_handler(u32 irq, OSD_HANDLER handler, void *context) { #ifdef _IA64 irq = isa_irq_to_vector(irq); #endif /*_IA64*/ acpi_irq_irq = irq; acpi_irq_handler = handler; acpi_irq_context = context; if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) { printk(KERN_ERR "ACPI: SCI (IRQ%d) allocation failed\n", irq); return AE_ERROR; } return AE_OK; } acpi_status acpi_os_remove_interrupt_handler(u32 irq, OSD_HANDLER handler) { if (acpi_irq_handler) { #ifdef _IA64 irq = isa_irq_to_vector(irq); #endif /*_IA64*/ free_irq(irq, acpi_irq); acpi_irq_handler = NULL; } return AE_OK; } /* * Running in interpreter thread context, safe to sleep */ void acpi_os_sleep(u32 sec, u32 ms) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(HZ * sec + (ms * HZ) / 1000); } void acpi_os_stall(u32 us) { if (us > 10000) { mdelay(us / 1000); } else { udelay(us); } } acpi_status acpi_os_read_port( ACPI_IO_ADDRESS port, void *value, u32 width) { u32 dummy; if (!value) value = &dummy; switch (width) { case 8: *(u8*) value = inb(port); break; case 16: *(u16*) value = inw(port); break; case 32: *(u32*) value = inl(port); break; default: BUG(); } return AE_OK; } acpi_status acpi_os_write_port( ACPI_IO_ADDRESS port, NATIVE_UINT value, u32 width) { switch (width) { case 8: outb(value, port); break; case 16: outw(value, port); break; case 32: outl(value, port); break; default: BUG(); } return AE_OK; } acpi_status acpi_os_read_memory( ACPI_PHYSICAL_ADDRESS phys_addr, void *value, u32 width) { u32 dummy; if (!value) value = &dummy; switch (width) { case 8: *(u8*) value = *(u8*) phys_to_virt(phys_addr); break; case 16: *(u16*) value = *(u16*) phys_to_virt(phys_addr); break; case 32: *(u32*) value = *(u32*) phys_to_virt(phys_addr); break; default: BUG(); } return AE_OK; } acpi_status acpi_os_write_memory( ACPI_PHYSICAL_ADDRESS phys_addr, u32 value, u32 width) { switch (width) { case 8: *(u8*) phys_to_virt(phys_addr) = value; break; case 16: *(u16*) phys_to_virt(phys_addr) = value; break; case 32: *(u32*) phys_to_virt(phys_addr) = value; break; default: BUG(); } return AE_OK; } #ifdef CONFIG_ACPI_PCI /* Architecture-dependent low-level PCI configuration access functions. */ extern int (*pci_config_read)(int seg, int bus, int dev, int fn, int reg, int len, u32 *val); extern int (*pci_config_write)(int seg, int bus, int dev, int fn, int reg, int len, u32 val); acpi_status acpi_os_read_pci_configuration ( acpi_pci_id *pci_id, u32 reg, void *value, u32 width) { int result = 0; if (!value) return AE_ERROR; switch (width) { case 8: result = pci_config_read(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 1, value); break; case 16: result = pci_config_read(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 2, value); break; case 32: result = pci_config_read(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 4, value); break; default: BUG(); } return (result ? AE_ERROR : AE_OK); } acpi_status acpi_os_write_pci_configuration ( acpi_pci_id *pci_id, u32 reg, NATIVE_UINT value, u32 width) { int result = 0; switch (width) { case 8: result = pci_config_write(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 1, value); break; case 16: result = pci_config_write(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 2, value); break; case 32: result = pci_config_write(pci_id->segment, pci_id->bus, pci_id->device, pci_id->function, reg, 4, value); break; default: BUG(); } return (result ? AE_ERROR : AE_OK); } #else /*CONFIG_ACPI_PCI*/ acpi_status acpi_os_read_pci_configuration ( acpi_pci_id *pci_id, u32 reg, void *value, u32 width) { int devfn = PCI_DEVFN(pci_id->device, pci_id->function); struct pci_dev *dev = pci_find_slot(pci_id->bus, devfn); if (!value || !dev) return AE_ERROR; switch (width) { case 8: if (pci_read_config_byte(dev, reg, (u8*) value)) return AE_ERROR; break; case 16: if (pci_read_config_word(dev, reg, (u16*) value)) return AE_ERROR; break; case 32: if (pci_read_config_dword(dev, reg, (u32*) value)) return AE_ERROR; break; default: BUG(); } return AE_OK; } acpi_status acpi_os_write_pci_configuration ( acpi_pci_id *pci_id, u32 reg, u32 value, u32 width) { int devfn = PCI_DEVFN(pci_id->device, pci_id->function); struct pci_dev *dev = pci_find_slot(pci_id->bus, devfn); if (!dev) return AE_ERROR; switch (width) { case 8: if (pci_write_config_byte(dev, reg, value)) return AE_ERROR; break; case 16: if (pci_write_config_word(dev, reg, value)) return AE_ERROR; break; case 32: if (pci_write_config_dword(dev, reg, value)) return AE_ERROR; break; default: BUG(); } return AE_OK; } #endif /*CONFIG_ACPI_PCI*/ acpi_status acpi_os_load_module ( char *module_name) { PROC_NAME("acpi_os_load_module"); if (!module_name) return AE_BAD_PARAMETER; if (0 > request_module(module_name)) { ACPI_DEBUG_PRINT ((ACPI_DB_WARN, "Unable to load module [%s].\n", module_name)); return AE_ERROR; } return AE_OK; } acpi_status acpi_os_unload_module ( char *module_name) { if (!module_name) return AE_BAD_PARAMETER; /* TODO: How on Linux? */ /* this is done automatically for all modules with use_count = 0, I think. see: MOD_INC_USE_COUNT -ASG */ return AE_OK; } /* * See acpi_os_queue_for_execution() */ static int acpi_os_queue_exec ( void *context) { ACPI_OS_DPC *dpc = (ACPI_OS_DPC*)context; PROC_NAME("acpi_os_queue_exec"); daemonize(); strcpy(current->comm, "kacpidpc"); if (!dpc || !dpc->function) return AE_BAD_PARAMETER; ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Executing function [%p(%p)].\n", dpc->function, dpc->context)); dpc->function(dpc->context); kfree(dpc); return 1; } static void acpi_os_schedule_exec ( void *context) { ACPI_OS_DPC *dpc = NULL; int thread_pid = -1; PROC_NAME("acpi_os_schedule_exec"); dpc = (ACPI_OS_DPC*)context; if (!dpc) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Invalid (NULL) context.\n")); return; } ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Creating new thread to run function [%p(%p)].\n", dpc->function, dpc->context)); thread_pid = kernel_thread(acpi_os_queue_exec, dpc, (CLONE_FS | CLONE_FILES | SIGCHLD)); if (thread_pid < 0) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Call to kernel_thread() failed.\n")); acpi_os_free(dpc); } } acpi_status acpi_os_queue_for_execution( u32 priority, OSD_EXECUTION_CALLBACK function, void *context) { acpi_status status = AE_OK; ACPI_OS_DPC *dpc = NULL; PROC_NAME("acpi_os_queue_for_execution"); ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Scheduling function [%p(%p)] for deferred execution.\n", function, context)); if (!function) return AE_BAD_PARAMETER; /* * Queue via DPC: * -------------- * Note that we have to use two different processes for queuing DPCs: * Interrupt-Level: Use schedule_task; can't spawn a new thread. * Kernel-Level: Spawn a new kernel thread, as schedule_task has * its limitations (e.g. single-threaded model), and * all other task queues run at interrupt-level. */ switch (priority) { case OSD_PRIORITY_GPE: { static struct tq_struct task; /* * Allocate/initialize DPC structure. Note that this memory will be * freed by the callee. */ dpc = kmalloc(sizeof(ACPI_OS_DPC), GFP_ATOMIC); if (!dpc) return AE_NO_MEMORY; dpc->function = function; dpc->context = context; memset(&task, 0, sizeof(struct tq_struct)); task.routine = acpi_os_schedule_exec; task.data = (void*)dpc; if (schedule_task(&task) < 0) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Call to schedule_task() failed.\n")); status = AE_ERROR; } } break; default: /* * Allocate/initialize DPC structure. Note that this memory will be * freed by the callee. */ dpc = kmalloc(sizeof(ACPI_OS_DPC), GFP_KERNEL); if (!dpc) return AE_NO_MEMORY; dpc->function = function; dpc->context = context; acpi_os_schedule_exec(dpc); break; } return status; } acpi_status acpi_os_create_semaphore( u32 max_units, u32 initial_units, acpi_handle *handle) { struct semaphore *sem = NULL; PROC_NAME("acpi_os_create_semaphore"); sem = acpi_os_callocate(sizeof(struct semaphore)); if (!sem) return AE_NO_MEMORY; sema_init(sem, initial_units); *handle = (acpi_handle*)sem; ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Creating semaphore[%p|%d].\n", *handle, initial_units)); return AE_OK; } /* * TODO: A better way to delete semaphores? Linux doesn't have a * 'delete_semaphore()' function -- may result in an invalid * pointer dereference for non-synchronized consumers. Should * we at least check for blocked threads and signal/cancel them? */ acpi_status acpi_os_delete_semaphore( acpi_handle handle) { struct semaphore *sem = (struct semaphore*) handle; PROC_NAME("acpi_os_delete_semaphore"); if (!sem) return AE_BAD_PARAMETER; ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Deleting semaphore[%p].\n", handle)); acpi_os_free(sem); sem = NULL; return AE_OK; } /* * TODO: The kernel doesn't have a 'down_timeout' function -- had to * improvise. The process is to sleep for one scheduler quantum * until the semaphore becomes available. Downside is that this * may result in starvation for timeout-based waits when there's * lots of semaphore activity. * * TODO: Support for units > 1? */ acpi_status acpi_os_wait_semaphore( acpi_handle handle, u32 units, u32 timeout) { acpi_status status = AE_OK; struct semaphore *sem = (struct semaphore*)handle; int ret = 0; PROC_NAME("acpi_os_wait_semaphore"); if (!sem || (units < 1)) return AE_BAD_PARAMETER; if (units > 1) return AE_SUPPORT; ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Waiting for semaphore[%p|%d|%d]\n", handle, units, timeout)); switch (timeout) { /* * No Wait: * -------- * A zero timeout value indicates that we shouldn't wait - just * acquire the semaphore if available otherwise return AE_TIME * (a.k.a. 'would block'). */ case 0: if(down_trylock(sem)) status = AE_TIME; break; /* * Wait Indefinitely: * ------------------ */ case WAIT_FOREVER: ret = down_interruptible(sem); if (ret < 0) status = AE_ERROR; break; /* * Wait w/ Timeout: * ---------------- */ default: // TODO: A better timeout algorithm? { int i = 0; static const int quantum_ms = 1000/HZ; ret = down_trylock(sem); for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(1); ret = down_trylock(sem); } if (ret != 0) status = AE_TIME; } break; } if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Failed to acquire semaphore[%p|%d|%d]\n", handle, units, timeout)); } else { ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Acquired semaphore[%p|%d|%d]\n", handle, units, timeout)); } return status; } /* * TODO: Support for units > 1? */ acpi_status acpi_os_signal_semaphore( acpi_handle handle, u32 units) { struct semaphore *sem = (struct semaphore *) handle; PROC_NAME("acpi_os_signal_semaphore"); if (!sem || (units < 1)) return AE_BAD_PARAMETER; if (units > 1) return AE_SUPPORT; ACPI_DEBUG_PRINT ((ACPI_DB_INFO, "Signaling semaphore[%p|%d]\n", handle, units)); up(sem); return AE_OK; } u32 acpi_os_get_line(NATIVE_CHAR *buffer) { #ifdef ENABLE_DEBUGGER if (acpi_in_debugger) { u32 chars; kdb_read(buffer, sizeof(line_buf)); /* remove the CR kdb includes */ chars = strlen(buffer) - 1; buffer[chars] = '\0'; } #endif return 0; } /* * We just have to assume we're dealing with valid memory */ BOOLEAN acpi_os_readable(void *ptr, u32 len) { return 1; } BOOLEAN acpi_os_writable(void *ptr, u32 len) { return 1; } u32 acpi_os_get_thread_id (void) { if (!in_interrupt()) return current->pid; return 0; } acpi_status acpi_os_signal ( u32 function, void *info) { switch (function) { case ACPI_SIGNAL_FATAL: printk(KERN_ERR "ACPI: Fatal opcode executed\n"); break; case ACPI_SIGNAL_BREAKPOINT: { char *bp_info = (char*) info; printk(KERN_ERR "ACPI breakpoint: %s\n", bp_info); } default: break; } return AE_OK; } acpi_status acpi_os_breakpoint(NATIVE_CHAR *msg) { acpi_os_printf("breakpoint: %s", msg); return AE_OK; }