/* Common Flash Interface probe code. (C) 2000 Red Hat. GPL'd. $Id: cfi_probe.c,v 1.1.1.1 2003/06/23 22:18:28 jharrell Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG_CFI #ifdef DEBUG_CFI static void print_cfi_ident(struct cfi_ident *); #endif int cfi_jedec_setup(struct cfi_private *p_cfi, int index); int cfi_jedec_lookup(int index, int mfr_id, int dev_id); static int cfi_probe_chip(struct map_info *map, __u32 base, struct flchip *chips, struct cfi_private *cfi); static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi); struct mtd_info *cfi_probe(struct map_info *map); /* check for QRY, or search for jedec id. in: interleave,type,mode ret: table index, <0 for error */ static inline int qry_present(struct map_info *map, __u32 base, struct cfi_private *cfi) { int osf = cfi->interleave * cfi->device_type; // scale factor if (cfi_read(map,base+osf*0x10)==cfi_build_cmd('Q',map,cfi) && cfi_read(map,base+osf*0x11)==cfi_build_cmd('R',map,cfi) && cfi_read(map,base+osf*0x12)==cfi_build_cmd('Y',map,cfi)) { #ifdef CFIDEV_BUSWIDTH_8 if (map->buswidth == 8) { if (cfi_read(map,base+0x04+osf*0x10)==cfi_build_cmd('Q',map,cfi) && cfi_read(map,base+0x04+osf*0x11)==cfi_build_cmd('R',map,cfi) && cfi_read(map,base+0x04+osf*0x12)==cfi_build_cmd('Y',map,cfi)) { return 1; // ok ! } else { printk("cfi_check_qry_or_id: 64 bit upper range BAD \n"); } } else return 1; // ok ! #else return 1; // ok ! #endif } return 0; // nothing found } static int cfi_probe_chip(struct map_info *map, __u32 base, struct flchip *chips, struct cfi_private *cfi) { int i; cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); if (!qry_present(map,base,cfi)) return 0; if (!cfi->numchips) { /* This is the first time we're called. Set up the CFI stuff accordingly and return */ return cfi_chip_setup(map, cfi); } /* Check each previous chip to see if it's an alias */ for (i=0; inumchips; i++) { /* This chip should be in read mode if it's one we've already touched. */ if (qry_present(map,chips[i].start,cfi)) { /* Eep. This chip also had the QRY marker. * Is it an alias for the new one? */ /* Commented the following lines to avoid chip alias detection. */ #if 0 cfi_send_gen_cmd(0xFF, 0, chips[i].start, map, cfi, cfi->device_type, NULL); /* If the QRY marker goes away, it's an alias */ if (!qry_present(map, chips[i].start, cfi)) { printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, chips[i].start); return 0; } #endif /* Yes, it's actually got QRY for data. Most * unfortunate. Stick the new chip in read mode * too and if it's the same, assume it's an alias. */ /* FIXME: Use other modes to do a proper check */ cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); if (qry_present(map, base, cfi)) { printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, chips[i].start); return 0; } } } /* OK, if we got to here, then none of the previous chips appear to be aliases for the current one. */ if (cfi->numchips == MAX_CFI_CHIPS) { printk(KERN_WARNING"%s: Too many flash chips detected. Increase MAX_CFI_CHIPS from %d.\n", map->name, MAX_CFI_CHIPS); /* Doesn't matter about resetting it to Read Mode - we're not going to talk to it anyway */ return -1; } chips[cfi->numchips].start = base; chips[cfi->numchips].state = FL_READY; cfi->numchips++; /* Put it back into Read Mode */ cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit mode\n", map->name, cfi->interleave, cfi->device_type*8, base, map->buswidth*8); return 1; } static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi) { int ofs_factor = cfi->interleave*cfi->device_type; __u32 base = 0; int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor); int i; #ifdef DEBUG_CFI printk("Number of erase regions: %d\n", num_erase_regions); #endif if (!num_erase_regions) return 0; cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL); if (!cfi->cfiq) { printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name); return 0; } memset(cfi->cfiq,0,sizeof(struct cfi_ident)); cfi->cfi_mode = 1; cfi->fast_prog=1; /* CFI supports fast programming */ /* Read the CFI info structure */ for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++) { ((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor); } /* Do any necessary byteswapping */ cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID); cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR); cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID); cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR); cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc); cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize); #ifdef DEBUG_CFI /* Dump the information therein */ print_cfi_ident(cfi->cfiq); #endif for (i=0; icfiq->NumEraseRegions; i++) { cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]); #ifdef DEBUG_CFI printk(" Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n", i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff, (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1); #endif } /* Put it back into Read Mode */ cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); return 1; } #ifdef DEBUG_CFI static char *vendorname(__u16 vendor) { switch (vendor) { case P_ID_NONE: return "None"; case P_ID_INTEL_EXT: return "Intel/Sharp Extended"; case P_ID_AMD_STD: return "AMD/Fujitsu Standard"; case P_ID_INTEL_STD: return "Intel/Sharp Standard"; case P_ID_AMD_EXT: return "AMD/Fujitsu Extended"; case P_ID_MITSUBISHI_STD: return "Mitsubishi Standard"; case P_ID_MITSUBISHI_EXT: return "Mitsubishi Extended"; case P_ID_RESERVED: return "Not Allowed / Reserved for Future Use"; default: return "Unknown"; } } static void print_cfi_ident(struct cfi_ident *cfip) { #if 0 if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') { printk("Invalid CFI ident structure.\n"); return; } #endif printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID)); if (cfip->P_ADR) printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR); else printk("No Primary Algorithm Table\n"); printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID)); if (cfip->A_ADR) printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR); else printk("No Alternate Algorithm Table\n"); printk("Vcc Minimum: %x.%x V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf); printk("Vcc Maximum: %x.%x V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf); if (cfip->VppMin) { printk("Vpp Minimum: %x.%x V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf); printk("Vpp Maximum: %x.%x V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf); } else printk("No Vpp line\n"); printk("Typical byte/word write timeout: %d īs\n", 1<WordWriteTimeoutTyp); printk("Maximum byte/word write timeout: %d īs\n", (1<WordWriteTimeoutMax) * (1<WordWriteTimeoutTyp)); if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) { printk("Typical full buffer write timeout: %d īs\n", 1<BufWriteTimeoutTyp); printk("Maximum full buffer write timeout: %d īs\n", (1<BufWriteTimeoutMax) * (1<BufWriteTimeoutTyp)); } else printk("Full buffer write not supported\n"); printk("Typical block erase timeout: %d īs\n", 1<BlockEraseTimeoutTyp); printk("Maximum block erase timeout: %d īs\n", (1<BlockEraseTimeoutMax) * (1<BlockEraseTimeoutTyp)); if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) { printk("Typical chip erase timeout: %d īs\n", 1<ChipEraseTimeoutTyp); printk("Maximum chip erase timeout: %d īs\n", (1<ChipEraseTimeoutMax) * (1<ChipEraseTimeoutTyp)); } else printk("Chip erase not supported\n"); printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20)); printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc); switch(cfip->InterfaceDesc) { case 0: printk(" - x8-only asynchronous interface\n"); break; case 1: printk(" - x16-only asynchronous interface\n"); break; case 2: printk(" - supports x8 and x16 via BYTE# with asynchronous interface\n"); break; case 3: printk(" - x32-only asynchronous interface\n"); break; case 65535: printk(" - Not Allowed / Reserved\n"); break; default: printk(" - Unknown\n"); break; } printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize); printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions); } #endif /* DEBUG_CFI */ static struct chip_probe cfi_chip_probe = { name: "CFI", probe_chip: cfi_probe_chip }; struct mtd_info *cfi_probe(struct map_info *map) { /* * Just use the generic probe stuff to call our CFI-specific * chip_probe routine in all the possible permutations, etc. */ return mtd_do_chip_probe(map, &cfi_chip_probe); } static struct mtd_chip_driver cfi_chipdrv = { probe: cfi_probe, name: "cfi_probe", module: THIS_MODULE }; int __init cfi_probe_init(void) { register_mtd_chip_driver(&cfi_chipdrv); return 0; } static void __exit cfi_probe_exit(void) { unregister_mtd_chip_driver(&cfi_chipdrv); } module_init(cfi_probe_init); module_exit(cfi_probe_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse et al."); MODULE_DESCRIPTION("Probe code for CFI-compliant flash chips");