/* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */ /* Maintained by Jeff Garzik Copyright 2000,2001 The Linux Kernel Team Written/copyright 1994-2001 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License, incorporated herein by reference. Please refer to Documentation/DocBook/tulip.{pdf,ps,html} for more information on this driver, or visit the project Web page at http://sourceforge.net/projects/tulip/ */ #define DRV_NAME "tulip" #define DRV_VERSION "0.9.15-pre9" #define DRV_RELDATE "Nov 6, 2001" #include #include #include "tulip.h" #include #include #include #include #include #include #include #include #ifdef __sparc__ #include #endif static char version[] __devinitdata = "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n"; /* A few user-configurable values. */ /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static unsigned int max_interrupt_work = 25; #define MAX_UNITS 8 /* Used to pass the full-duplex flag, etc. */ static int full_duplex[MAX_UNITS]; static int options[MAX_UNITS]; static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */ /* The possible media types that can be set in options[] are: */ const char * const medianame[32] = { "10baseT", "10base2", "AUI", "100baseTx", "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx", "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII", "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4", "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19", "","","","", "","","","", "","","","Transceiver reset", }; /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */ #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \ || defined(__sparc_) || defined(__ia64__) \ || defined(__sh__) || defined(__mips__) static int rx_copybreak = 1518; #else static int rx_copybreak = 100; #endif /* Set the bus performance register. Typical: Set 16 longword cache alignment, no burst limit. Cache alignment bits 15:14 Burst length 13:8 0000 No alignment 0x00000000 unlimited 0800 8 longwords 4000 8 longwords 0100 1 longword 1000 16 longwords 8000 16 longwords 0200 2 longwords 2000 32 longwords C000 32 longwords 0400 4 longwords Warning: many older 486 systems are broken and require setting 0x00A04800 8 longword cache alignment, 8 longword burst. ToDo: Non-Intel setting could be better. */ #if defined(__alpha__) || defined(__ia64__) || defined(__x86_64__) static int csr0 = 0x01A00000 | 0xE000; #elif defined(__i386__) || defined(__powerpc__) static int csr0 = 0x01A00000 | 0x8000; #elif defined(__sparc__) || defined(__hppa__) /* The UltraSparc PCI controllers will disconnect at every 64-byte * crossing anyways so it makes no sense to tell Tulip to burst * any more than that. */ static int csr0 = 0x01A00000 | 0x9000; #elif defined(__arm__) || defined(__sh__) static int csr0 = 0x01A00000 | 0x4800; #elif defined(__mips__) static int csr0 = 0x00200000 | 0x4000; #else #warning Processor architecture undefined! static int csr0 = 0x00A00000 | 0x4800; #endif /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (4*HZ) MODULE_AUTHOR("The Linux Kernel Team"); MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver"); MODULE_LICENSE("GPL"); MODULE_PARM(tulip_debug, "i"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(csr0, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); #define PFX DRV_NAME ": " #ifdef TULIP_DEBUG int tulip_debug = TULIP_DEBUG; #else int tulip_debug = 1; #endif /* * This table use during operation for capabilities and media timer. * * It is indexed via the values in 'enum chips' */ struct tulip_chip_table tulip_tbl[] = { /* DC21040 */ { "Digital DC21040 Tulip", 128, 0x0001ebef, 0, tulip_timer }, /* DC21041 */ { "Digital DC21041 Tulip", 128, 0x0001ebef, HAS_MEDIA_TABLE | HAS_NWAY, tulip_timer }, /* DC21140 */ { "Digital DS21140 Tulip", 128, 0x0001ebef, HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer }, /* DC21142, DC21143 */ { "Digital DS21143 Tulip", 128, 0x0801fbff, HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY | HAS_INTR_MITIGATION | HAS_PCI_MWI, t21142_timer }, /* LC82C168 */ { "Lite-On 82c168 PNIC", 256, 0x0001fbef, HAS_MII | HAS_PNICNWAY, pnic_timer }, /* MX98713 */ { "Macronix 98713 PMAC", 128, 0x0001ebef, HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer }, /* MX98715 */ { "Macronix 98715 PMAC", 256, 0x0001ebef, HAS_MEDIA_TABLE, mxic_timer }, /* MX98725 */ { "Macronix 98725 PMAC", 256, 0x0001ebef, HAS_MEDIA_TABLE, mxic_timer }, /* AX88140 */ { "ASIX AX88140", 128, 0x0001fbff, HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY | IS_ASIX, tulip_timer }, /* PNIC2 */ { "Lite-On PNIC-II", 256, 0x0801fbff, HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer }, /* COMET */ { "ADMtek Comet", 256, 0x0001abef, MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer }, /* COMPEX9881 */ { "Compex 9881 PMAC", 128, 0x0001ebef, HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer }, /* I21145 */ { "Intel DS21145 Tulip", 128, 0x0801fbff, HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY | HAS_PCI_MWI, t21142_timer }, /* DM910X */ { "Davicom DM9102/DM9102A", 128, 0x0001ebef, HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI, tulip_timer }, }; static struct pci_device_id tulip_pci_tbl[] __devinitdata = { { 0x1011, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21040 }, { 0x1011, 0x0014, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21041 }, { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 }, { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 }, { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 }, { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 }, { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 }, /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/ { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 }, { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 }, { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 }, { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 }, { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X }, { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X }, { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 }, { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, { } /* terminate list */ }; MODULE_DEVICE_TABLE(pci, tulip_pci_tbl); /* A full-duplex map for media types. */ const char tulip_media_cap[32] = {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, }; u8 t21040_csr13[] = {2,0x0C,8,4, 4,0,0,0, 0,0,0,0, 4,0,0,0}; /* 21041 transceiver register settings: 10-T, 10-2, AUI, 10-T, 10T-FD*/ u16 t21041_csr13[] = { csr13_mask_10bt, /* 10-T */ csr13_mask_auibnc, /* 10-2 */ csr13_mask_auibnc, /* AUI */ csr13_mask_10bt, /* 10-T */ csr13_mask_10bt, /* 10T-FD */ }; u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, }; u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, }; static void tulip_tx_timeout(struct net_device *dev); static void tulip_init_ring(struct net_device *dev); static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev); static int tulip_open(struct net_device *dev); static int tulip_close(struct net_device *dev); static void tulip_up(struct net_device *dev); static void tulip_down(struct net_device *dev); static struct net_device_stats *tulip_get_stats(struct net_device *dev); static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static void set_rx_mode(struct net_device *dev); static void tulip_set_power_state (struct tulip_private *tp, int sleep, int snooze) { if (tp->flags & HAS_ACPI) { u32 tmp, newtmp; pci_read_config_dword (tp->pdev, CFDD, &tmp); newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze); if (sleep) newtmp |= CFDD_Sleep; else if (snooze) newtmp |= CFDD_Snooze; if (tmp != newtmp) pci_write_config_dword (tp->pdev, CFDD, newtmp); } } static void tulip_up(struct net_device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; long ioaddr = dev->base_addr; int next_tick = 3*HZ; int i; /* Wake the chip from sleep/snooze mode. */ tulip_set_power_state (tp, 0, 0); /* On some chip revs we must set the MII/SYM port before the reset!? */ if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii)) outl(0x00040000, ioaddr + CSR6); /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ outl(0x00000001, ioaddr + CSR0); udelay(100); /* Deassert reset. Wait the specified 50 PCI cycles after a reset by initializing Tx and Rx queues and the address filter list. */ outl(tp->csr0, ioaddr + CSR0); udelay(100); if (tulip_debug > 1) printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq); outl(tp->rx_ring_dma, ioaddr + CSR3); outl(tp->tx_ring_dma, ioaddr + CSR4); tp->cur_rx = tp->cur_tx = 0; tp->dirty_rx = tp->dirty_tx = 0; if (tp->flags & MC_HASH_ONLY) { u32 addr_low = cpu_to_le32(get_unaligned((u32 *)dev->dev_addr)); u32 addr_high = cpu_to_le32(get_unaligned((u16 *)(dev->dev_addr+4))); if (tp->chip_id == AX88140) { outl(0, ioaddr + CSR13); outl(addr_low, ioaddr + CSR14); outl(1, ioaddr + CSR13); outl(addr_high, ioaddr + CSR14); } else if (tp->flags & COMET_MAC_ADDR) { outl(addr_low, ioaddr + 0xA4); outl(addr_high, ioaddr + 0xA8); outl(0, ioaddr + 0xAC); outl(0, ioaddr + 0xB0); } } else { /* This is set_rx_mode(), but without starting the transmitter. */ u16 *eaddrs = (u16 *)dev->dev_addr; u16 *setup_frm = &tp->setup_frame[15*6]; dma_addr_t mapping; /* 21140 bug: you must add the broadcast address. */ memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame)); /* Fill the final entry of the table with our physical address. */ *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; mapping = pci_map_single(tp->pdev, tp->setup_frame, sizeof(tp->setup_frame), PCI_DMA_TODEVICE); tp->tx_buffers[tp->cur_tx].skb = NULL; tp->tx_buffers[tp->cur_tx].mapping = mapping; /* Put the setup frame on the Tx list. */ tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192); tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping); tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned); tp->cur_tx++; } tp->saved_if_port = dev->if_port; if (dev->if_port == 0) dev->if_port = tp->default_port; /* Allow selecting a default media. */ i = 0; if (tp->mtable == NULL) goto media_picked; if (dev->if_port) { int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 : (dev->if_port == 12 ? 0 : dev->if_port); for (i = 0; i < tp->mtable->leafcount; i++) if (tp->mtable->mleaf[i].media == looking_for) { printk(KERN_INFO "%s: Using user-specified media %s.\n", dev->name, medianame[dev->if_port]); goto media_picked; } } if ((tp->mtable->defaultmedia & 0x0800) == 0) { int looking_for = tp->mtable->defaultmedia & MEDIA_MASK; for (i = 0; i < tp->mtable->leafcount; i++) if (tp->mtable->mleaf[i].media == looking_for) { printk(KERN_INFO "%s: Using EEPROM-set media %s.\n", dev->name, medianame[looking_for]); goto media_picked; } } /* Start sensing first non-full-duplex media. */ for (i = tp->mtable->leafcount - 1; (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--) ; media_picked: tp->csr6 = 0; tp->cur_index = i; tp->nwayset = 0; if (dev->if_port) { if (tp->chip_id == DC21143 && (tulip_media_cap[dev->if_port] & MediaIsMII)) { /* We must reset the media CSRs when we force-select MII mode. */ outl(0x0000, ioaddr + CSR13); outl(0x0000, ioaddr + CSR14); outl(0x0008, ioaddr + CSR15); } tulip_select_media(dev, 1); } else if (tp->chip_id == DC21041) { dev->if_port = 0; tp->nway = tp->mediasense = 1; tp->nwayset = tp->lpar = 0; outl(0x00000000, ioaddr + CSR13); outl(0xFFFFFFFF, ioaddr + CSR14); outl(0x00000008, ioaddr + CSR15); /* Listen on AUI also. */ tp->csr6 = 0x80020000; if (tp->sym_advertise & 0x0040) tp->csr6 |= FullDuplex; outl(tp->csr6, ioaddr + CSR6); outl(0x0000EF01, ioaddr + CSR13); } else if (tp->chip_id == DC21142) { if (tp->mii_cnt) { tulip_select_media(dev, 1); if (tulip_debug > 1) printk(KERN_INFO "%s: Using MII transceiver %d, status " "%4.4x.\n", dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1)); outl(csr6_mask_defstate, ioaddr + CSR6); tp->csr6 = csr6_mask_hdcap; dev->if_port = 11; outl(0x0000, ioaddr + CSR13); outl(0x0000, ioaddr + CSR14); } else t21142_start_nway(dev); } else if (tp->chip_id == PNIC2) { /* for initial startup advertise 10/100 Full and Half */ tp->sym_advertise = 0x01E0; /* enable autonegotiate end interrupt */ outl(inl(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5); outl(inl(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7); pnic2_start_nway(dev); } else if (tp->chip_id == LC82C168 && ! tp->medialock) { if (tp->mii_cnt) { dev->if_port = 11; tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0); outl(0x0001, ioaddr + CSR15); } else if (inl(ioaddr + CSR5) & TPLnkPass) pnic_do_nway(dev); else { /* Start with 10mbps to do autonegotiation. */ outl(0x32, ioaddr + CSR12); tp->csr6 = 0x00420000; outl(0x0001B078, ioaddr + 0xB8); outl(0x0201B078, ioaddr + 0xB8); next_tick = 1*HZ; } } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) && ! tp->medialock) { dev->if_port = 0; tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0); outl(0x0f370000 | inw(ioaddr + 0x80), ioaddr + 0x80); } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) { /* Provided by BOLO, Macronix - 12/10/1998. */ dev->if_port = 0; tp->csr6 = 0x01a80200; outl(0x0f370000 | inw(ioaddr + 0x80), ioaddr + 0x80); outl(0x11000 | inw(ioaddr + 0xa0), ioaddr + 0xa0); } else if (tp->chip_id == COMET) { /* Enable automatic Tx underrun recovery. */ outl(inl(ioaddr + 0x88) | 1, ioaddr + 0x88); dev->if_port = tp->mii_cnt ? 11 : 0; tp->csr6 = 0x00040000; } else if (tp->chip_id == AX88140) { tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100; } else tulip_select_media(dev, 1); /* Start the chip's Tx to process setup frame. */ tulip_stop_rxtx(tp); barrier(); udelay(5); outl(tp->csr6 | TxOn, ioaddr + CSR6); /* Enable interrupts by setting the interrupt mask. */ outl(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5); outl(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7); tulip_start_rxtx(tp); outl(0, ioaddr + CSR2); /* Rx poll demand */ if (tulip_debug > 2) { printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n", dev->name, inl(ioaddr + CSR0), inl(ioaddr + CSR5), inl(ioaddr + CSR6)); } /* Set the timer to switch to check for link beat and perhaps switch to an alternate media type. */ tp->timer.expires = RUN_AT(next_tick); add_timer(&tp->timer); } #ifdef CONFIG_NET_HW_FLOWCONTROL /* Enable receiver */ void tulip_xon(struct net_device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; clear_bit(tp->fc_bit, &netdev_fc_xoff); if (netif_running(dev)){ tulip_refill_rx(dev); outl(tulip_tbl[tp->chip_id].valid_intrs, dev->base_addr+CSR7); } } #endif static int tulip_open(struct net_device *dev) { #ifdef CONFIG_NET_HW_FLOWCONTROL struct tulip_private *tp = (struct tulip_private *)dev->priv; #endif int retval; MOD_INC_USE_COUNT; if ((retval = request_irq(dev->irq, &tulip_interrupt, SA_SHIRQ, dev->name, dev))) { MOD_DEC_USE_COUNT; return retval; } tulip_init_ring (dev); tulip_up (dev); #ifdef CONFIG_NET_HW_FLOWCONTROL tp->fc_bit = netdev_register_fc(dev, tulip_xon); #endif netif_start_queue (dev); return 0; } static void tulip_tx_timeout(struct net_device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; long ioaddr = dev->base_addr; unsigned long flags; spin_lock_irqsave (&tp->lock, flags); if (tulip_media_cap[dev->if_port] & MediaIsMII) { /* Do nothing -- the media monitor should handle this. */ if (tulip_debug > 1) printk(KERN_WARNING "%s: Transmit timeout using MII device.\n", dev->name); } else if (tp->chip_id == DC21040) { if ( !tp->medialock && inl(ioaddr + CSR12) & 0x0002) { dev->if_port = (dev->if_port == 2 ? 0 : 2); printk(KERN_INFO "%s: 21040 transmit timed out, switching to " "%s.\n", dev->name, medianame[dev->if_port]); tulip_select_media(dev, 0); } goto out; } else if (tp->chip_id == DC21041) { int csr12 = inl(ioaddr + CSR12); printk(KERN_WARNING "%s: 21041 transmit timed out, status %8.8x, " "CSR12 %8.8x, CSR13 %8.8x, CSR14 %8.8x, resetting...\n", dev->name, inl(ioaddr + CSR5), csr12, inl(ioaddr + CSR13), inl(ioaddr + CSR14)); tp->mediasense = 1; if ( ! tp->medialock) { if (dev->if_port == 1 || dev->if_port == 2) if (csr12 & 0x0004) { dev->if_port = 2 - dev->if_port; } else dev->if_port = 0; else dev->if_port = 1; tulip_select_media(dev, 0); } } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 || tp->chip_id == DM910X) { printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, " "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n", dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR12), inl(ioaddr + CSR13), inl(ioaddr + CSR14), inl(ioaddr + CSR15)); if ( ! tp->medialock && tp->mtable) { do --tp->cur_index; while (tp->cur_index >= 0 && (tulip_media_cap[tp->mtable->mleaf[tp->cur_index].media] & MediaIsFD)); if (--tp->cur_index < 0) { /* We start again, but should instead look for default. */ tp->cur_index = tp->mtable->leafcount - 1; } tulip_select_media(dev, 0); printk(KERN_WARNING "%s: transmit timed out, switching to %s " "media.\n", dev->name, medianame[dev->if_port]); } } else if (tp->chip_id == PNIC2) { printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, " "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n", dev->name, (int)inl(ioaddr + CSR5), (int)inl(ioaddr + CSR6), (int)inl(ioaddr + CSR7), (int)inl(ioaddr + CSR12)); } else { printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 " "%8.8x, resetting...\n", dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR12)); dev->if_port = 0; } #if defined(way_too_many_messages) if (tulip_debug > 3) { int i; for (i = 0; i < RX_RING_SIZE; i++) { u8 *buf = (u8 *)(tp->rx_ring[i].buffer1); int j; printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x " "%2.2x %2.2x %2.2x.\n", i, (unsigned int)tp->rx_ring[i].status, (unsigned int)tp->rx_ring[i].length, (unsigned int)tp->rx_ring[i].buffer1, (unsigned int)tp->rx_ring[i].buffer2, buf[0], buf[1], buf[2]); for (j = 0; buf[j] != 0xee && j < 1600; j++) if (j < 100) printk(" %2.2x", buf[j]); printk(" j=%d.\n", j); } printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring); for (i = 0; i < RX_RING_SIZE; i++) printk(" %8.8x", (unsigned int)tp->rx_ring[i].status); printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring); for (i = 0; i < TX_RING_SIZE; i++) printk(" %8.8x", (unsigned int)tp->tx_ring[i].status); printk("\n"); } #endif /* Stop and restart the chip's Tx processes . */ #ifdef CONFIG_NET_HW_FLOWCONTROL if (tp->fc_bit && test_bit(tp->fc_bit,&netdev_fc_xoff)) printk("BUG tx_timeout restarting rx when fc on\n"); #endif tulip_restart_rxtx(tp); /* Trigger an immediate transmit demand. */ outl(0, ioaddr + CSR1); tp->stats.tx_errors++; out: spin_unlock_irqrestore (&tp->lock, flags); dev->trans_start = jiffies; netif_wake_queue (dev); } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void tulip_init_ring(struct net_device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; int i; tp->susp_rx = 0; tp->ttimer = 0; tp->nir = 0; for (i = 0; i < RX_RING_SIZE; i++) { tp->rx_ring[i].status = 0x00000000; tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ); tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1)); tp->rx_buffers[i].skb = NULL; tp->rx_buffers[i].mapping = 0; } /* Mark the last entry as wrapping the ring. */ tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP); tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma); for (i = 0; i < RX_RING_SIZE; i++) { dma_addr_t mapping; /* Note the receive buffer must be longword aligned. dev_alloc_skb() provides 16 byte alignment. But do *not* use skb_reserve() to align the IP header! */ struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ); tp->rx_buffers[i].skb = skb; if (skb == NULL) break; mapping = pci_map_single(tp->pdev, skb->tail, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); tp->rx_buffers[i].mapping = mapping; skb->dev = dev; /* Mark as being used by this device. */ tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */ tp->rx_ring[i].buffer1 = cpu_to_le32(mapping); } tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); /* The Tx buffer descriptor is filled in as needed, but we do need to clear the ownership bit. */ for (i = 0; i < TX_RING_SIZE; i++) { tp->tx_buffers[i].skb = NULL; tp->tx_buffers[i].mapping = 0; tp->tx_ring[i].status = 0x00000000; tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1)); } tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma); } static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; int entry; u32 flag; dma_addr_t mapping; spin_lock_irq(&tp->lock); /* Calculate the next Tx descriptor entry. */ entry = tp->cur_tx % TX_RING_SIZE; tp->tx_buffers[entry].skb = skb; mapping = pci_map_single(tp->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); tp->tx_buffers[entry].mapping = mapping; tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping); if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */ flag = 0x60000000; /* No interrupt */ } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) { flag = 0xe0000000; /* Tx-done intr. */ } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) { flag = 0x60000000; /* No Tx-done intr. */ } else { /* Leave room for set_rx_mode() to fill entries. */ flag = 0xe0000000; /* Tx-done intr. */ netif_stop_queue(dev); } if (entry == TX_RING_SIZE-1) flag = 0xe0000000 | DESC_RING_WRAP; tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag); /* if we were using Transmit Automatic Polling, we would need a * wmb() here. */ tp->tx_ring[entry].status = cpu_to_le32(DescOwned); wmb(); tp->cur_tx++; /* Trigger an immediate transmit demand. */ outl(0, dev->base_addr + CSR1); spin_unlock_irq(&tp->lock); dev->trans_start = jiffies; return 0; } static void tulip_clean_tx_ring(struct tulip_private *tp) { unsigned int dirty_tx; for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0; dirty_tx++) { int entry = dirty_tx % TX_RING_SIZE; int status = le32_to_cpu(tp->tx_ring[entry].status); if (status < 0) { tp->stats.tx_errors++; /* It wasn't Txed */ tp->tx_ring[entry].status = 0; } /* Check for Tx filter setup frames. */ if (tp->tx_buffers[entry].skb == NULL) { /* test because dummy frames not mapped */ if (tp->tx_buffers[entry].mapping) pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping, sizeof(tp->setup_frame), PCI_DMA_TODEVICE); continue; } pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping, tp->tx_buffers[entry].skb->len, PCI_DMA_TODEVICE); /* Free the original skb. */ dev_kfree_skb_irq(tp->tx_buffers[entry].skb); tp->tx_buffers[entry].skb = NULL; tp->tx_buffers[entry].mapping = 0; } } static void tulip_down (struct net_device *dev) { long ioaddr = dev->base_addr; struct tulip_private *tp = (struct tulip_private *) dev->priv; unsigned long flags; del_timer_sync (&tp->timer); spin_lock_irqsave (&tp->lock, flags); /* Disable interrupts by clearing the interrupt mask. */ outl (0x00000000, ioaddr + CSR7); /* Stop the Tx and Rx processes. */ tulip_stop_rxtx(tp); /* prepare receive buffers */ tulip_refill_rx(dev); /* release any unconsumed transmit buffers */ tulip_clean_tx_ring(tp); /* 21040 -- Leave the card in 10baseT state. */ if (tp->chip_id == DC21040) outl (0x00000004, ioaddr + CSR13); if (inl (ioaddr + CSR6) != 0xffffffff) tp->stats.rx_missed_errors += inl (ioaddr + CSR8) & 0xffff; spin_unlock_irqrestore (&tp->lock, flags); init_timer(&tp->timer); tp->timer.data = (unsigned long)dev; tp->timer.function = tulip_tbl[tp->chip_id].media_timer; dev->if_port = tp->saved_if_port; /* Leave the driver in snooze, not sleep, mode. */ tulip_set_power_state (tp, 0, 1); } static int tulip_close (struct net_device *dev) { long ioaddr = dev->base_addr; struct tulip_private *tp = (struct tulip_private *) dev->priv; int i; netif_stop_queue (dev); #ifdef CONFIG_NET_HW_FLOWCONTROL if (tp->fc_bit) { int bit = tp->fc_bit; tp->fc_bit = 0; netdev_unregister_fc(bit); } #endif tulip_down (dev); if (tulip_debug > 1) printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n", dev->name, inl (ioaddr + CSR5)); free_irq (dev->irq, dev); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = tp->rx_buffers[i].skb; dma_addr_t mapping = tp->rx_buffers[i].mapping; tp->rx_buffers[i].skb = NULL; tp->rx_buffers[i].mapping = 0; tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */ tp->rx_ring[i].length = 0; tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */ if (skb) { pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); dev_kfree_skb (skb); } } for (i = 0; i < TX_RING_SIZE; i++) { struct sk_buff *skb = tp->tx_buffers[i].skb; if (skb != NULL) { pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb (skb); } tp->tx_buffers[i].skb = NULL; tp->tx_buffers[i].mapping = 0; } MOD_DEC_USE_COUNT; return 0; } static struct net_device_stats *tulip_get_stats(struct net_device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; long ioaddr = dev->base_addr; if (netif_running(dev)) { unsigned long flags; spin_lock_irqsave (&tp->lock, flags); tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff; spin_unlock_irqrestore(&tp->lock, flags); } return &tp->stats; } static int netdev_ethtool_ioctl(struct net_device *dev, void *useraddr) { struct tulip_private *np = dev->priv; u32 ethcmd; if (copy_from_user(ðcmd, useraddr, sizeof(ethcmd))) return -EFAULT; switch (ethcmd) { case ETHTOOL_GDRVINFO: { struct ethtool_drvinfo info = {ETHTOOL_GDRVINFO}; strcpy(info.driver, DRV_NAME); strcpy(info.version, DRV_VERSION); strcpy(info.bus_info, np->pdev->slot_name); if (copy_to_user(useraddr, &info, sizeof(info))) return -EFAULT; return 0; } } return -EOPNOTSUPP; } /* Provide ioctl() calls to examine the MII xcvr state. */ static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) { struct tulip_private *tp = dev->priv; long ioaddr = dev->base_addr; struct mii_ioctl_data *data = (struct mii_ioctl_data *) & rq->ifr_data; const unsigned int phy_idx = 0; int phy = tp->phys[phy_idx] & 0x1f; unsigned int regnum = data->reg_num; switch (cmd) { case SIOCETHTOOL: return netdev_ethtool_ioctl(dev, (void *) rq->ifr_data); case SIOCGMIIPHY: /* Get address of MII PHY in use. */ case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */ if (tp->mii_cnt) data->phy_id = phy; else if (tp->flags & HAS_NWAY) data->phy_id = 32; else if (tp->chip_id == COMET) data->phy_id = 1; else return -ENODEV; case SIOCGMIIREG: /* Read MII PHY register. */ case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */ if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) { int csr12 = inl (ioaddr + CSR12); int csr14 = inl (ioaddr + CSR14); switch (regnum) { case 0: if (((csr14<<5) & 0x1000) || (dev->if_port == 5 && tp->nwayset)) data->val_out = 0x1000; else data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0) | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0); break; case 1: data->val_out = 0x1848 + ((csr12&0x7000) == 0x5000 ? 0x20 : 0) + ((csr12&0x06) == 6 ? 0 : 4); if (tp->chip_id != DC21041) data->val_out |= 0x6048; break; case 4: /* Advertised value, bogus 10baseTx-FD value from CSR6. */ data->val_out = ((inl(ioaddr + CSR6) >> 3) & 0x0040) + ((csr14 >> 1) & 0x20) + 1; if (tp->chip_id != DC21041) data->val_out |= ((csr14 >> 9) & 0x03C0); break; case 5: data->val_out = tp->lpar; break; default: data->val_out = 0; break; } } else { data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum); } return 0; case SIOCSMIIREG: /* Write MII PHY register. */ case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */ if (!capable (CAP_NET_ADMIN)) return -EPERM; if (regnum & ~0x1f) return -EINVAL; if (data->phy_id == phy) { u16 value = data->val_in; switch (regnum) { case 0: /* Check for autonegotiation on or reset. */ tp->full_duplex_lock = (value & 0x9000) ? 0 : 1; if (tp->full_duplex_lock) tp->full_duplex = (value & 0x0100) ? 1 : 0; break; case 4: tp->advertising[phy_idx] = tp->mii_advertise = data->val_in; break; } } if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) { u16 value = data->val_in; if (regnum == 0) { if ((value & 0x1200) == 0x1200) { if (tp->chip_id == PNIC2) { pnic2_start_nway (dev); } else { t21142_start_nway (dev); } } } else if (regnum == 4) tp->sym_advertise = value; } else { tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in); } return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } /* Set or clear the multicast filter for this adaptor. Note that we only use exclusion around actually queueing the new frame, not around filling tp->setup_frame. This is non-deterministic when re-entered but still correct. */ /* The little-endian AUTODIN32 ethernet CRC calculation. N.B. Do not use for bulk data, use a table-based routine instead. This is common code and should be moved to net/core/crc.c */ static unsigned const ethernet_polynomial_le = 0xedb88320U; static inline u32 ether_crc_le(int length, unsigned char *data) { u32 crc = 0xffffffff; /* Initial value. */ while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 8; --bit >= 0; current_octet >>= 1) { if ((crc ^ current_octet) & 1) { crc >>= 1; crc ^= ethernet_polynomial_le; } else crc >>= 1; } } return crc; } static unsigned const ethernet_polynomial = 0x04c11db7U; static inline u32 ether_crc(int length, unsigned char *data) { int crc = -1; while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 0; bit < 8; bit++, current_octet >>= 1) crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0); } return crc; } #undef set_bit_le #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0) static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; u16 hash_table[32]; struct dev_mc_list *mclist; int i; u16 *eaddrs; memset(hash_table, 0, sizeof(hash_table)); set_bit_le(255, hash_table); /* Broadcast entry */ /* This should work on big-endian machines as well. */ for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff; set_bit_le(index, hash_table); for (i = 0; i < 32; i++) { *setup_frm++ = hash_table[i]; *setup_frm++ = hash_table[i]; } setup_frm = &tp->setup_frame[13*6]; } /* Fill the final entry with our physical address. */ eaddrs = (u16 *)dev->dev_addr; *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; } static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; struct dev_mc_list *mclist; int i; u16 *eaddrs; /* We have <= 14 addresses so we can use the wonderful 16 address perfect filtering of the Tulip. */ for (i = 0, mclist = dev->mc_list; i < dev->mc_count; i++, mclist = mclist->next) { eaddrs = (u16 *)mclist->dmi_addr; *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; } /* Fill the unused entries with the broadcast address. */ memset(setup_frm, 0xff, (15-i)*12); setup_frm = &tp->setup_frame[15*6]; /* Fill the final entry with our physical address. */ eaddrs = (u16 *)dev->dev_addr; *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; } static void set_rx_mode(struct net_device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; long ioaddr = dev->base_addr; int csr6; csr6 = inl(ioaddr + CSR6) & ~0x00D5; tp->csr6 &= ~0x00D5; if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ tp->csr6 |= AcceptAllMulticast | AcceptAllPhys; csr6 |= AcceptAllMulticast | AcceptAllPhys; /* Unconditionally log net taps. */ printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter well -- accept all multicasts. */ tp->csr6 |= AcceptAllMulticast; csr6 |= AcceptAllMulticast; } else if (tp->flags & MC_HASH_ONLY) { /* Some work-alikes have only a 64-entry hash filter table. */ /* Should verify correctness on big-endian/__powerpc__ */ struct dev_mc_list *mclist; int i; if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */ tp->csr6 |= AcceptAllMulticast; csr6 |= AcceptAllMulticast; } else { u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */ int filterbit; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { if (tp->flags & COMET_MAC_ADDR) filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr); else filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26; filterbit &= 0x3f; mc_filter[filterbit >> 5] |= cpu_to_le32(1 << (filterbit & 31)); if (tulip_debug > 2) { printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:" "%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name, mclist->dmi_addr[0], mclist->dmi_addr[1], mclist->dmi_addr[2], mclist->dmi_addr[3], mclist->dmi_addr[4], mclist->dmi_addr[5], ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit); } } if (mc_filter[0] == tp->mc_filter[0] && mc_filter[1] == tp->mc_filter[1]) ; /* No change. */ else if (tp->flags & IS_ASIX) { outl(2, ioaddr + CSR13); outl(mc_filter[0], ioaddr + CSR14); outl(3, ioaddr + CSR13); outl(mc_filter[1], ioaddr + CSR14); } else if (tp->flags & COMET_MAC_ADDR) { outl(mc_filter[0], ioaddr + 0xAC); outl(mc_filter[1], ioaddr + 0xB0); } tp->mc_filter[0] = mc_filter[0]; tp->mc_filter[1] = mc_filter[1]; } } else { unsigned long flags; /* Note that only the low-address shortword of setup_frame is valid! The values are doubled for big-endian architectures. */ if (dev->mc_count > 14) { /* Must use a multicast hash table. */ build_setup_frame_hash(tp->setup_frame, dev); } else { build_setup_frame_perfect(tp->setup_frame, dev); } spin_lock_irqsave(&tp->lock, flags); if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) { /* Same setup recently queued, we need not add it. */ } else { u32 tx_flags = 0x08000000 | 192; unsigned int entry; int dummy = -1; /* Now add this frame to the Tx list. */ entry = tp->cur_tx++ % TX_RING_SIZE; if (entry != 0) { /* Avoid a chip errata by prefixing a dummy entry. */ tp->tx_buffers[entry].skb = NULL; tp->tx_buffers[entry].mapping = 0; tp->tx_ring[entry].length = (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0; tp->tx_ring[entry].buffer1 = 0; /* Must set DescOwned later to avoid race with chip */ dummy = entry; entry = tp->cur_tx++ % TX_RING_SIZE; } tp->tx_buffers[entry].skb = NULL; tp->tx_buffers[entry].mapping = pci_map_single(tp->pdev, tp->setup_frame, sizeof(tp->setup_frame), PCI_DMA_TODEVICE); /* Put the setup frame on the Tx list. */ if (entry == TX_RING_SIZE-1) tx_flags |= DESC_RING_WRAP; /* Wrap ring. */ tp->tx_ring[entry].length = cpu_to_le32(tx_flags); tp->tx_ring[entry].buffer1 = cpu_to_le32(tp->tx_buffers[entry].mapping); tp->tx_ring[entry].status = cpu_to_le32(DescOwned); if (dummy >= 0) tp->tx_ring[dummy].status = cpu_to_le32(DescOwned); if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) netif_stop_queue(dev); /* Trigger an immediate transmit demand. */ outl(0, ioaddr + CSR1); } spin_unlock_irqrestore(&tp->lock, flags); } outl(csr6, ioaddr + CSR6); } #ifdef CONFIG_TULIP_MWI static void __devinit tulip_mwi_config (struct pci_dev *pdev, struct net_device *dev) { struct tulip_private *tp = dev->priv; u8 cache; u16 pci_command, new_command; u32 csr0; if (tulip_debug > 3) printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pdev->slot_name); tp->csr0 = csr0 = 0; /* check for sane cache line size. from acenic.c. */ pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache); if ((cache << 2) != SMP_CACHE_BYTES) { printk(KERN_WARNING "%s: PCI cache line size set incorrectly " "(%i bytes) by BIOS/FW, correcting to %i\n", pdev->slot_name, (cache << 2), SMP_CACHE_BYTES); pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, SMP_CACHE_BYTES >> 2); udelay(5); } /* read cache line size again, hardware may not have accepted * our cache line size change */ pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache); if (!cache) goto out; /* if we have any cache line size at all, we can do MRM */ csr0 |= MRM; /* ...and barring hardware bugs, MWI */ if (!(tp->chip_id == DC21143 && tp->revision == 65)) csr0 |= MWI; /* set or disable MWI in the standard PCI command bit. * Check for the case where mwi is desired but not available */ pci_read_config_word(pdev, PCI_COMMAND, &pci_command); if (csr0 & MWI) new_command = pci_command | PCI_COMMAND_INVALIDATE; else new_command = pci_command & ~PCI_COMMAND_INVALIDATE; if (new_command != pci_command) { pci_write_config_word(pdev, PCI_COMMAND, new_command); udelay(5); pci_read_config_word(pdev, PCI_COMMAND, &pci_command); if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE))) csr0 &= ~MWI; } /* assign per-cacheline-size cache alignment and * burst length values */ switch (cache) { case 8: csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift); break; case 16: csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift); break; case 32: csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift); break; default: goto out; } tp->csr0 = csr0; goto out; if (csr0 & MWI) { pci_command &= ~PCI_COMMAND_INVALIDATE; pci_write_config_word(pdev, PCI_COMMAND, pci_command); csr0 &= ~MWI; } tp->csr0 = csr0 | (8 << BurstLenShift) | (1 << CALShift); out: if (tulip_debug > 2) printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n", pdev->slot_name, cache, csr0); } #endif static int __devinit tulip_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) { struct tulip_private *tp; /* See note below on the multiport cards. */ static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'}; static int last_irq; static int multiport_cnt; /* For four-port boards w/one EEPROM */ u8 chip_rev; int i, irq; unsigned short sum; u8 ee_data[EEPROM_SIZE]; struct net_device *dev; long ioaddr; static int board_idx = -1; int chip_idx = ent->driver_data; unsigned int t2104x_mode = 0; unsigned int eeprom_missing = 0; unsigned int force_csr0 = 0; #ifndef MODULE static int did_version; /* Already printed version info. */ if (tulip_debug > 0 && did_version++ == 0) printk (KERN_INFO "%s", version); #endif board_idx++; /* * Lan media wire a tulip chip to a wan interface. Needs a very * different driver (lmc driver) */ if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) { printk (KERN_ERR PFX "skipping LMC card.\n"); return -ENODEV; } /* * Early DM9100's need software CRC and the DMFE driver */ if (pdev->vendor == 0x1282 && pdev->device == 0x9100) { u32 dev_rev; /* Read Chip revision */ pci_read_config_dword(pdev, PCI_REVISION_ID, &dev_rev); if(dev_rev < 0x02000030) { printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n"); return -ENODEV; } } /* * Looks for early PCI chipsets where people report hangs * without the workarounds being on. */ /* Intel Saturn. Switch to 8 long words burst, 8 long word cache aligned Aries might need this too. The Saturn errata are not pretty reading but thankfully its an old 486 chipset. */ if (pci_find_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424, NULL)) { csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift); force_csr0 = 1; } /* The dreaded SiS496 486 chipset. Same workaround as above. */ if (pci_find_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496, NULL)) { csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift); force_csr0 = 1; } /* bugfix: the ASIX must have a burst limit or horrible things happen. */ if (chip_idx == AX88140) { if ((csr0 & 0x3f00) == 0) csr0 |= 0x2000; } /* PNIC doesn't have MWI/MRL/MRM... */ if (chip_idx == LC82C168) csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */ /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */ if (pdev->vendor == 0x1282 && pdev->device == 0x9102) csr0 &= ~0x01f100ff; #if defined(__sparc__) /* DM9102A needs 32-dword alignment/burst length on sparc - chip bug? */ if (pdev->vendor == 0x1282 && pdev->device == 0x9102) csr0 = (csr0 & ~0xff00) | 0xe000; #endif /* * And back to business */ i = pci_enable_device(pdev); if (i) { printk (KERN_ERR PFX "Cannot enable tulip board #%d, aborting\n", board_idx); return i; } ioaddr = pci_resource_start (pdev, 0); irq = pdev->irq; /* alloc_etherdev ensures aligned and zeroed private structures */ dev = alloc_etherdev (sizeof (*tp)); if (!dev) { printk (KERN_ERR PFX "ether device alloc failed, aborting\n"); return -ENOMEM; } if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) { printk (KERN_ERR PFX "%s: I/O region (0x%lx@0x%lx) too small, " "aborting\n", pdev->slot_name, pci_resource_len (pdev, 0), pci_resource_start (pdev, 0)); goto err_out_free_netdev; } /* grab all resources from both PIO and MMIO regions, as we * don't want anyone else messing around with our hardware */ if (pci_request_regions (pdev, "tulip")) goto err_out_free_netdev; #ifndef USE_IO_OPS ioaddr = (unsigned long) ioremap (pci_resource_start (pdev, 1), tulip_tbl[chip_idx].io_size); if (!ioaddr) goto err_out_free_res; #endif pci_read_config_byte (pdev, PCI_REVISION_ID, &chip_rev); /* * initialize private data structure 'tp' * it is zeroed and aligned in alloc_etherdev */ tp = dev->priv; tp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct tulip_rx_desc) * RX_RING_SIZE + sizeof(struct tulip_tx_desc) * TX_RING_SIZE, &tp->rx_ring_dma); if (!tp->rx_ring) goto err_out_mtable; tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE); tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE; tp->chip_id = chip_idx; tp->flags = tulip_tbl[chip_idx].flags; tp->pdev = pdev; tp->base_addr = ioaddr; tp->revision = chip_rev; tp->csr0 = csr0; spin_lock_init(&tp->lock); spin_lock_init(&tp->mii_lock); init_timer(&tp->timer); tp->timer.data = (unsigned long)dev; tp->timer.function = tulip_tbl[tp->chip_id].media_timer; dev->base_addr = ioaddr; dev->irq = irq; #ifdef CONFIG_TULIP_MWI if (!force_csr0 && (tp->flags & HAS_PCI_MWI)) tulip_mwi_config (pdev, dev); #else /* MWI is broken for DC21143 rev 65... */ if (chip_idx == DC21143 && chip_rev == 65) tp->csr0 &= ~MWI; #endif /* Stop the chip's Tx and Rx processes. */ tulip_stop_rxtx(tp); pci_set_master(pdev); /* Clear the missed-packet counter. */ inl(ioaddr + CSR8); if (chip_idx == DC21041) { if (inl(ioaddr + CSR9) & 0x8000) { chip_idx = DC21040; t2104x_mode = 1; } else { t2104x_mode = 2; } } /* The station address ROM is read byte serially. The register must be polled, waiting for the value to be read bit serially from the EEPROM. */ sum = 0; if (chip_idx == DC21040) { outl(0, ioaddr + CSR9); /* Reset the pointer with a dummy write. */ for (i = 0; i < 6; i++) { int value, boguscnt = 100000; do value = inl(ioaddr + CSR9); while (value < 0 && --boguscnt > 0); dev->dev_addr[i] = value; sum += value & 0xff; } } else if (chip_idx == LC82C168) { for (i = 0; i < 3; i++) { int value, boguscnt = 100000; outl(0x600 | i, ioaddr + 0x98); do value = inl(ioaddr + CSR9); while (value < 0 && --boguscnt > 0); put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i); sum += value & 0xffff; } } else if (chip_idx == COMET) { /* No need to read the EEPROM. */ put_unaligned(inl(ioaddr + 0xA4), (u32 *)dev->dev_addr); put_unaligned(inl(ioaddr + 0xA8), (u16 *)(dev->dev_addr + 4)); for (i = 0; i < 6; i ++) sum += dev->dev_addr[i]; } else { /* A serial EEPROM interface, we read now and sort it out later. */ int sa_offset = 0; int ee_addr_size = tulip_read_eeprom(ioaddr, 0xff, 8) & 0x40000 ? 8 : 6; for (i = 0; i < sizeof(ee_data)/2; i++) ((u16 *)ee_data)[i] = le16_to_cpu(tulip_read_eeprom(ioaddr, i, ee_addr_size)); /* DEC now has a specification (see Notes) but early board makers just put the address in the first EEPROM locations. */ /* This does memcmp(eedata, eedata+16, 8) */ for (i = 0; i < 8; i ++) if (ee_data[i] != ee_data[16+i]) sa_offset = 20; if (ee_data[0] == 0xff && ee_data[1] == 0xff && ee_data[2] == 0) { sa_offset = 2; /* Grrr, damn Matrox boards. */ multiport_cnt = 4; } #ifdef CONFIG_DDB5476 if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 6)) { /* DDB5476 MAC address in first EEPROM locations. */ sa_offset = 0; /* No media table either */ tp->flags &= ~HAS_MEDIA_TABLE; } #endif #ifdef CONFIG_DDB5477 if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 4)) { /* DDB5477 MAC address in first EEPROM locations. */ sa_offset = 0; /* No media table either */ tp->flags &= ~HAS_MEDIA_TABLE; } #endif for (i = 0; i < 6; i ++) { dev->dev_addr[i] = ee_data[i + sa_offset]; sum += ee_data[i + sa_offset]; } } /* Lite-On boards have the address byte-swapped. */ if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0) && dev->dev_addr[1] == 0x00) for (i = 0; i < 6; i+=2) { char tmp = dev->dev_addr[i]; dev->dev_addr[i] = dev->dev_addr[i+1]; dev->dev_addr[i+1] = tmp; } /* On the Zynx 315 Etherarray and other multiport boards only the first Tulip has an EEPROM. On Sparc systems the mac address is held in the OBP property "local-mac-address". The addresses of the subsequent ports are derived from the first. Many PCI BIOSes also incorrectly report the IRQ line, so we correct that here as well. */ if (sum == 0 || sum == 6*0xff) { #if defined(__sparc__) struct pcidev_cookie *pcp = pdev->sysdata; #endif eeprom_missing = 1; for (i = 0; i < 5; i++) dev->dev_addr[i] = last_phys_addr[i]; dev->dev_addr[i] = last_phys_addr[i] + 1; #if defined(__sparc__) if ((pcp != NULL) && prom_getproplen(pcp->prom_node, "local-mac-address") == 6) { prom_getproperty(pcp->prom_node, "local-mac-address", dev->dev_addr, 6); } #endif #if defined(__i386__) /* Patch up x86 BIOS bug. */ if (last_irq) irq = last_irq; #endif } for (i = 0; i < 6; i++) last_phys_addr[i] = dev->dev_addr[i]; last_irq = irq; /* The lower four bits are the media type. */ if (board_idx >= 0 && board_idx < MAX_UNITS) { if (options[board_idx] & MEDIA_MASK) tp->default_port = options[board_idx] & MEDIA_MASK; if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0) tp->full_duplex = 1; if (mtu[board_idx] > 0) dev->mtu = mtu[board_idx]; } if (dev->mem_start & MEDIA_MASK) tp->default_port = dev->mem_start & MEDIA_MASK; if (tp->default_port) { printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n", board_idx, medianame[tp->default_port & MEDIA_MASK]); tp->medialock = 1; if (tulip_media_cap[tp->default_port] & MediaAlwaysFD) tp->full_duplex = 1; } if (tp->full_duplex) tp->full_duplex_lock = 1; if (tulip_media_cap[tp->default_port] & MediaIsMII) { u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 }; tp->mii_advertise = media2advert[tp->default_port - 9]; tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */ } if (tp->flags & HAS_MEDIA_TABLE) { memcpy(tp->eeprom, ee_data, sizeof(tp->eeprom)); sprintf(dev->name, "tulip%d", board_idx); /* hack */ tulip_parse_eeprom(dev); strcpy(dev->name, "eth%d"); /* un-hack */ } if ((tp->flags & ALWAYS_CHECK_MII) || (tp->mtable && tp->mtable->has_mii) || ( ! tp->mtable && (tp->flags & HAS_MII))) { if (tp->mtable && tp->mtable->has_mii) { for (i = 0; i < tp->mtable->leafcount; i++) if (tp->mtable->mleaf[i].media == 11) { tp->cur_index = i; tp->saved_if_port = dev->if_port; tulip_select_media(dev, 2); dev->if_port = tp->saved_if_port; break; } } /* Find the connected MII xcvrs. Doing this in open() would allow detecting external xcvrs later, but takes much time. */ tulip_find_mii (dev, board_idx); } /* The Tulip-specific entries in the device structure. */ dev->open = tulip_open; dev->hard_start_xmit = tulip_start_xmit; dev->tx_timeout = tulip_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; dev->stop = tulip_close; dev->get_stats = tulip_get_stats; dev->do_ioctl = private_ioctl; dev->set_multicast_list = set_rx_mode; if (register_netdev(dev)) goto err_out_free_ring; printk(KERN_INFO "%s: %s rev %d at %#3lx,", dev->name, tulip_tbl[chip_idx].chip_name, chip_rev, ioaddr); pci_set_drvdata(pdev, dev); if (t2104x_mode == 1) printk(" 21040 compatible mode,"); else if (t2104x_mode == 2) printk(" 21041 mode,"); if (eeprom_missing) printk(" EEPROM not present,"); for (i = 0; i < 6; i++) printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]); printk(", IRQ %d.\n", irq); if (tp->chip_id == PNIC2) tp->link_change = pnic2_lnk_change; else if ((tp->flags & HAS_NWAY) || tp->chip_id == DC21041) tp->link_change = t21142_lnk_change; else if (tp->flags & HAS_PNICNWAY) tp->link_change = pnic_lnk_change; /* Reset the xcvr interface and turn on heartbeat. */ switch (chip_idx) { case DC21041: if (tp->sym_advertise == 0) tp->sym_advertise = 0x0061; outl(0x00000000, ioaddr + CSR13); outl(0xFFFFFFFF, ioaddr + CSR14); outl(0x00000008, ioaddr + CSR15); /* Listen on AUI also. */ outl(inl(ioaddr + CSR6) | csr6_fd, ioaddr + CSR6); outl(0x0000EF01, ioaddr + CSR13); break; case DC21040: outl(0x00000000, ioaddr + CSR13); outl(0x00000004, ioaddr + CSR13); break; case DC21140: case DM910X: default: if (tp->mtable) outl(tp->mtable->csr12dir | 0x100, ioaddr + CSR12); break; case DC21142: if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) { outl(csr6_mask_defstate, ioaddr + CSR6); outl(0x0000, ioaddr + CSR13); outl(0x0000, ioaddr + CSR14); outl(csr6_mask_hdcap, ioaddr + CSR6); } else t21142_start_nway(dev); break; case PNIC2: /* just do a reset for sanity sake */ outl(0x0000, ioaddr + CSR13); outl(0x0000, ioaddr + CSR14); break; case LC82C168: if ( ! tp->mii_cnt) { tp->nway = 1; tp->nwayset = 0; outl(csr6_ttm | csr6_ca, ioaddr + CSR6); outl(0x30, ioaddr + CSR12); outl(0x0001F078, ioaddr + CSR6); outl(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */ } break; case MX98713: case COMPEX9881: outl(0x00000000, ioaddr + CSR6); outl(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */ outl(0x00000001, ioaddr + CSR13); break; case MX98715: case MX98725: outl(0x01a80000, ioaddr + CSR6); outl(0xFFFFFFFF, ioaddr + CSR14); outl(0x00001000, ioaddr + CSR12); break; case COMET: /* No initialization necessary. */ break; } /* put the chip in snooze mode until opened */ tulip_set_power_state (tp, 0, 1); return 0; err_out_free_ring: pci_free_consistent (pdev, sizeof (struct tulip_rx_desc) * RX_RING_SIZE + sizeof (struct tulip_tx_desc) * TX_RING_SIZE, tp->rx_ring, tp->rx_ring_dma); err_out_mtable: if (tp->mtable) kfree (tp->mtable); #ifndef USE_IO_OPS iounmap((void *)ioaddr); err_out_free_res: #endif pci_release_regions (pdev); err_out_free_netdev: kfree (dev); return -ENODEV; } #ifdef CONFIG_PM static int tulip_suspend (struct pci_dev *pdev, u32 state) { struct net_device *dev = pci_get_drvdata(pdev); if (dev && netif_running (dev) && netif_device_present (dev)) { netif_device_detach (dev); tulip_down (dev); /* pci_power_off(pdev, -1); */ } return 0; } static int tulip_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (dev && netif_running (dev) && !netif_device_present (dev)) { #if 1 pci_enable_device (pdev); #endif /* pci_power_on(pdev); */ tulip_up (dev); netif_device_attach (dev); } return 0; } #endif /* CONFIG_PM */ static void __devexit tulip_remove_one (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata (pdev); struct tulip_private *tp; if (!dev) return; tp = dev->priv; pci_free_consistent (pdev, sizeof (struct tulip_rx_desc) * RX_RING_SIZE + sizeof (struct tulip_tx_desc) * TX_RING_SIZE, tp->rx_ring, tp->rx_ring_dma); unregister_netdev (dev); if (tp->mtable) kfree (tp->mtable); #ifndef USE_IO_OPS iounmap((void *)dev->base_addr); #endif kfree (dev); pci_release_regions (pdev); pci_set_drvdata (pdev, NULL); /* pci_power_off (pdev, -1); */ } static struct pci_driver tulip_driver = { name: DRV_NAME, id_table: tulip_pci_tbl, probe: tulip_init_one, remove: __devexit_p(tulip_remove_one), #ifdef CONFIG_PM suspend: tulip_suspend, resume: tulip_resume, #endif /* CONFIG_PM */ }; static int __init tulip_init (void) { #ifdef MODULE printk (KERN_INFO "%s", version); #endif /* copy module parms into globals */ tulip_rx_copybreak = rx_copybreak; tulip_max_interrupt_work = max_interrupt_work; /* probe for and init boards */ return pci_module_init (&tulip_driver); } static void __exit tulip_cleanup (void) { pci_unregister_driver (&tulip_driver); } module_init(tulip_init); module_exit(tulip_cleanup);