/* * drivers/net/wan/dscc4/dscc4_main.c: a DSCC4 HDLC driver for Linux * * This software may be used and distributed according to the terms of the * GNU General Public License. * * The author may be reached as romieu@cogenit.fr. * Specific bug reports/asian food will be welcome. * * Special thanks to the nice people at CS-Telecom for the hardware and the * access to the test/measure tools. * * * Theory of Operation * * I. Board Compatibility * * This device driver is designed for the Siemens PEB20534 4 ports serial * controller as found on Etinc PCISYNC cards. The documentation for the * chipset is available at http://www.infineon.com: * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1"; * - Application Hint "Management of DSCC4 on-chip FIFO resources". * Jens David has built an adapter based on the same chipset. Take a look * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific * driver. * Sample code (2 revisions) is available at Infineon. * * II. Board-specific settings * * Pcisync can transmit some clock signal to the outside world on the * *first two* ports provided you put a quartz and a line driver on it and * remove the jumpers. The operation is described on Etinc web site. If you * go DCE on these ports, don't forget to use an adequate cable. * * Sharing of the PCI interrupt line for this board is possible. * * III. Driver operation * * The rx/tx operations are based on a linked list of descriptor. I haven't * tried the start/stop descriptor method as this one looks like the cheapest * in terms of PCI manipulation. * * Tx direction * Once the data section of the current descriptor processed, the next linked * descriptor is loaded if the HOLD bit isn't set in the current descriptor. * If HOLD is met, the transmission is stopped until the host unsets it and * signals the change via TxPOLL. * When the tx ring is full, the xmit routine issues a call to netdev_stop. * The device is supposed to be enabled again during an ALLS irq (we could * use HI but as it's easy to loose events, it's fscked). * * Rx direction * The received frames aren't supposed to span over multiple receiving areas. * I may implement it some day but it isn't the highest ranked item. * * IV. Notes * The chipset is buggy. Typically, under some specific load patterns (I * wouldn't call them "high"), the irq queues and the descriptors look like * some event has been lost. Even assuming some fancy PCI feature, it won't * explain the reproductible missing "C" bit in the descriptors. Faking an * irq in the periodic timer isn't really elegant but at least it seems * reliable. * The current error (XDU, RFO) recovery code is untested. * So far, RDO takes his RX channel down and the right sequence to enable it * again is still a mistery. If RDO happens, plan a reboot. More details * in the code (NB: as this happens, TX still works). * Don't mess the cables during operation, especially on DTE ports. I don't * suggest it for DCE either but at least one can get some messages instead * of a complete instant freeze. * Tests are done on Rev. 20 of the silicium. The RDO handling changes with * the documentation/chipset releases. An on-line errata would be welcome. * * TODO: * - some trivial error lurk, * - the stats are fscked, * - use polling at high irq/s, * - performance analysis, * - endianness. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Version */ static const char version[] = "$Id: dscc4.c,v 1.1.1.1 2003/06/23 22:18:30 jharrell Exp $\n"; static int debug; /* Module parameters */ MODULE_AUTHOR("Maintainer: Francois Romieu "); MODULE_DESCRIPTION("Siemens PEB20534 PCI Controller"); MODULE_LICENSE("GPL"); MODULE_PARM(debug,"i"); /* Structures */ struct TxFD { u32 state; u32 next; u32 data; u32 complete; u32 jiffies; /* more hack to come :o) */ }; struct RxFD { u32 state1; u32 next; u32 data; u32 state2; u32 end; }; #define DEBUG #define DEBUG_PARANOID #define TX_RING_SIZE 32 #define RX_RING_SIZE 32 #define IRQ_RING_SIZE 64 /* Keep it A multiple of 32 */ #define TX_TIMEOUT (HZ/10) #define BRR_DIVIDER_MAX 64*0x00008000 #define dev_per_card 4 #define SOURCE_ID(flags) ((flags >> 28 ) & 0x03) #define TO_SIZE(state) ((state >> 16) & 0x1fff) #define TO_STATE(len) cpu_to_le32((len & TxSizeMax) << 16) #define RX_MAX(len) ((((len) >> 5) + 1) << 5) #define SCC_REG_START(id) SCC_START+(id)*SCC_OFFSET #undef DEBUG struct dscc4_pci_priv { u32 *iqcfg; int cfg_cur; spinlock_t lock; struct pci_dev *pdev; struct net_device *root; dma_addr_t iqcfg_dma; u32 xtal_hz; }; struct dscc4_dev_priv { struct sk_buff *rx_skbuff[RX_RING_SIZE]; struct sk_buff *tx_skbuff[TX_RING_SIZE]; struct RxFD *rx_fd; struct TxFD *tx_fd; u32 *iqrx; u32 *iqtx; u32 rx_current; u32 tx_current; u32 iqrx_current; u32 iqtx_current; u32 tx_dirty; int bad_tx_frame; int bad_rx_frame; int rx_needs_refill; dma_addr_t tx_fd_dma; dma_addr_t rx_fd_dma; dma_addr_t iqtx_dma; dma_addr_t iqrx_dma; struct net_device_stats stats; struct timer_list timer; struct dscc4_pci_priv *pci_priv; spinlock_t lock; int dev_id; u32 flags; u32 timer_help; u32 hi_expected; struct hdlc_device_struct hdlc; int usecount; }; /* GLOBAL registers definitions */ #define GCMDR 0x00 #define GSTAR 0x04 #define GMODE 0x08 #define IQLENR0 0x0C #define IQLENR1 0x10 #define IQRX0 0x14 #define IQTX0 0x24 #define IQCFG 0x3c #define FIFOCR1 0x44 #define FIFOCR2 0x48 #define FIFOCR3 0x4c #define FIFOCR4 0x34 #define CH0CFG 0x50 #define CH0BRDA 0x54 #define CH0BTDA 0x58 /* SCC registers definitions */ #define SCC_START 0x0100 #define SCC_OFFSET 0x80 #define CMDR 0x00 #define STAR 0x04 #define CCR0 0x08 #define CCR1 0x0c #define CCR2 0x10 #define BRR 0x2C #define RLCR 0x40 #define IMR 0x54 #define ISR 0x58 /* Bit masks */ #define IntRxScc0 0x10000000 #define IntTxScc0 0x01000000 #define TxPollCmd 0x00000400 #define RxActivate 0x08000000 #define MTFi 0x04000000 #define Rdr 0x00400000 #define Rdt 0x00200000 #define Idr 0x00100000 #define Idt 0x00080000 #define TxSccRes 0x01000000 #define RxSccRes 0x00010000 #define TxSizeMax 0x1ffc #define RxSizeMax 0x1ffc #define Ccr0ClockMask 0x0000003f #define Ccr1LoopMask 0x00000200 #define BrrExpMask 0x00000f00 #define BrrMultMask 0x0000003f #define EncodingMask 0x00700000 #define Hold 0x40000000 #define SccBusy 0x10000000 #define FrameOk (FrameVfr | FrameCrc) #define FrameVfr 0x80 #define FrameRdo 0x40 #define FrameCrc 0x20 #define FrameAborted 0x00000200 #define FrameEnd 0x80000000 #define DataComplete 0x40000000 #define LengthCheck 0x00008000 #define SccEvt 0x02000000 #define NoAck 0x00000200 #define Action 0x00000001 #define HiDesc 0x20000000 /* SCC events */ #define RxEvt 0xf0000000 #define TxEvt 0x0f000000 #define Alls 0x00040000 #define Xdu 0x00010000 #define Xmr 0x00002000 #define Xpr 0x00001000 #define Rdo 0x00000080 #define Rfs 0x00000040 #define Rfo 0x00000002 #define Flex 0x00000001 /* DMA core events */ #define Cfg 0x00200000 #define Hi 0x00040000 #define Fi 0x00020000 #define Err 0x00010000 #define Arf 0x00000002 #define ArAck 0x00000001 /* Misc */ #define NeedIDR 0x00000001 #define NeedIDT 0x00000002 #define RdoSet 0x00000004 /* Functions prototypes */ static __inline__ void dscc4_rx_irq(struct dscc4_pci_priv *, struct net_device *); static __inline__ void dscc4_tx_irq(struct dscc4_pci_priv *, struct net_device *); static int dscc4_found1(struct pci_dev *, unsigned long ioaddr); static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent); static int dscc4_open(struct net_device *); static int dscc4_start_xmit(struct sk_buff *, struct net_device *); static int dscc4_close(struct net_device *); static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int dscc4_change_mtu(struct net_device *dev, int mtu); static int dscc4_init_ring(struct net_device *); static void dscc4_release_ring(struct dscc4_dev_priv *); static void dscc4_timer(unsigned long); static void dscc4_tx_timeout(struct net_device *); static void dscc4_irq(int irq, void *dev_id, struct pt_regs *ptregs); static struct net_device_stats *dscc4_get_stats(struct net_device *); static int dscc4_attach_hdlc_device(struct net_device *); static void dscc4_unattach_hdlc_device(struct net_device *); static int dscc4_hdlc_open(struct hdlc_device_struct *); static void dscc4_hdlc_close(struct hdlc_device_struct *); static int dscc4_hdlc_ioctl(struct hdlc_device_struct *, struct ifreq *, int); static int dscc4_hdlc_xmit(hdlc_device *, struct sk_buff *); #ifdef EXPERIMENTAL_POLLING static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *); #endif void inline reset_TxFD(struct TxFD *tx_fd) { /* FIXME: test with the last arg (size specification) = 0 */ tx_fd->state = FrameEnd | Hold | 0x00100000; tx_fd->complete = 0x00000000; } void inline dscc4_release_ring_skbuff(struct sk_buff **p, int n) { for(; n > 0; n--) { if (*p) dev_kfree_skb(*p); p++; } } static void dscc4_release_ring(struct dscc4_dev_priv *dpriv) { struct pci_dev *pdev = dpriv->pci_priv->pdev; pci_free_consistent(pdev, TX_RING_SIZE*sizeof(struct TxFD), dpriv->tx_fd, dpriv->tx_fd_dma); pci_free_consistent(pdev, RX_RING_SIZE*sizeof(struct RxFD), dpriv->rx_fd, dpriv->rx_fd_dma); dscc4_release_ring_skbuff(dpriv->tx_skbuff, TX_RING_SIZE); dscc4_release_ring_skbuff(dpriv->rx_skbuff, RX_RING_SIZE); } void inline try_get_rx_skb(struct dscc4_dev_priv *priv, int cur, struct net_device *dev) { struct sk_buff *skb; skb = dev_alloc_skb(RX_MAX(HDLC_MAX_MRU+2)); priv->rx_skbuff[cur] = skb; if (!skb) { priv->rx_fd[cur--].data = (u32) NULL; priv->rx_fd[cur%RX_RING_SIZE].state1 |= Hold; priv->rx_needs_refill++; return; } skb->dev = dev; skb->protocol = htons(ETH_P_IP); skb->mac.raw = skb->data; priv->rx_fd[cur].data = pci_map_single(priv->pci_priv->pdev, skb->data, skb->len, PCI_DMA_FROMDEVICE); } /* * IRQ/thread/whatever safe */ static int dscc4_wait_ack_cec(u32 ioaddr, struct net_device *dev, char *msg) { s16 i = 0; while (readl(ioaddr + STAR) & SccBusy) { if (i++ < 0) { printk(KERN_ERR "%s: %s timeout\n", dev->name, msg); return -1; } } printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name, msg, i); return 0; } static int dscc4_do_action(struct net_device *dev, char *msg) { unsigned long ioaddr = dev->base_addr; u32 state; s16 i; writel(Action, ioaddr + GCMDR); ioaddr += GSTAR; for (i = 0; i >= 0; i++) { state = readl(ioaddr); if (state & Arf) { printk(KERN_ERR "%s: %s failed\n", dev->name, msg); writel(Arf, ioaddr); return -1; } else if (state & ArAck) { printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name, msg, i); writel(ArAck, ioaddr); return 0; } } printk(KERN_ERR "%s: %s timeout\n", dev->name, msg); return -1; } static __inline__ int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv) { int cur; s16 i; cur = dpriv->iqtx_current%IRQ_RING_SIZE; for (i = 0; i >= 0; i++) { if (!(dpriv->flags & (NeedIDR | NeedIDT)) || (dpriv->iqtx[cur] & Xpr)) return 0; } printk(KERN_ERR "%s: %s timeout\n", "dscc4", "XPR"); return -1; } static __inline__ void dscc4_rx_skb(struct dscc4_dev_priv *dpriv, int cur, struct RxFD *rx_fd, struct net_device *dev) { struct pci_dev *pdev = dpriv->pci_priv->pdev; struct sk_buff *skb; int pkt_len; skb = dpriv->rx_skbuff[cur]; pkt_len = TO_SIZE(rx_fd->state2) - 1; pci_dma_sync_single(pdev, rx_fd->data, pkt_len + 1, PCI_DMA_FROMDEVICE); if((skb->data[pkt_len] & FrameOk) == FrameOk) { pci_unmap_single(pdev, rx_fd->data, skb->len, PCI_DMA_FROMDEVICE); dpriv->stats.rx_packets++; dpriv->stats.rx_bytes += pkt_len; skb->tail += pkt_len; skb->len = pkt_len; if (netif_running(hdlc_to_dev(&dpriv->hdlc))) hdlc_netif_rx(&dpriv->hdlc, skb); else netif_rx(skb); try_get_rx_skb(dpriv, cur, dev); } else { if(skb->data[pkt_len] & FrameRdo) dpriv->stats.rx_fifo_errors++; else if(!(skb->data[pkt_len] | ~FrameCrc)) dpriv->stats.rx_crc_errors++; else if(!(skb->data[pkt_len] | ~FrameVfr)) dpriv->stats.rx_length_errors++; else dpriv->stats.rx_errors++; } rx_fd->state1 |= Hold; rx_fd->state2 = 0x00000000; rx_fd->end = 0xbabeface; if (!rx_fd->data) return; rx_fd--; if (!cur) rx_fd += RX_RING_SIZE; rx_fd->state1 &= ~Hold; } static int __init dscc4_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) { struct dscc4_pci_priv *priv; struct dscc4_dev_priv *dpriv; int i; static int cards_found = 0; unsigned long ioaddr; printk(KERN_DEBUG "%s", version); if (pci_enable_device(pdev)) goto err_out; if (!request_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0), "registers")) { printk (KERN_ERR "dscc4: can't reserve MMIO region (regs)\n"); goto err_out; } if (!request_mem_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1), "LBI interface")) { printk (KERN_ERR "dscc4: can't reserve MMIO region (lbi)\n"); goto err_out_free_mmio_region0; } ioaddr = (unsigned long)ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!ioaddr) { printk(KERN_ERR "dscc4: cannot remap MMIO region %lx @ %lx\n", pci_resource_len(pdev, 0), pci_resource_start(pdev, 0)); goto err_out_free_mmio_region; } printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#lx (regs), %#lx (lbi), IRQ %d.\n", pci_resource_start(pdev, 0), pci_resource_start(pdev, 1), pdev->irq); /* High PCI latency useless. Cf app. note. */ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x10); pci_set_master(pdev); if (dscc4_found1(pdev, ioaddr)) goto err_out_iounmap; priv = (struct dscc4_pci_priv *)pci_get_drvdata(pdev); if (request_irq(pdev->irq, &dscc4_irq, SA_SHIRQ, "dscc4", priv->root)) { printk(KERN_WARNING "dscc4: IRQ %d is busy\n", pdev->irq); goto err_out_iounmap; } priv->pdev = pdev; /* power up/little endian/dma core controlled via hold bit */ writel(0x00000000, ioaddr + GMODE); /* Shared interrupt queue */ { u32 bits; bits = (IRQ_RING_SIZE >> 5) - 1; bits |= bits << 4; bits |= bits << 8; bits |= bits << 16; writel(bits, ioaddr + IQLENR0); } /* Global interrupt queue */ writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1); priv->iqcfg = (u32 *) pci_alloc_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), &priv->iqcfg_dma); if (!priv->iqcfg) goto err_out_free_irq; writel(priv->iqcfg_dma, ioaddr + IQCFG); /* * SCC 0-3 private rx/tx irq structures * IQRX/TXi needs to be set soon. Learned it the hard way... */ for(i = 0; i < dev_per_card; i++) { dpriv = (struct dscc4_dev_priv *)(priv->root + i)->priv; dpriv->iqtx = (u32 *) pci_alloc_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma); if (!dpriv->iqtx) goto err_out_free_iqtx; writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4); } for(i = 0; i < dev_per_card; i++) { dpriv = (struct dscc4_dev_priv *)(priv->root + i)->priv; dpriv->iqrx = (u32 *) pci_alloc_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma); if (!dpriv->iqrx) goto err_out_free_iqrx; writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4); } /* * Cf application hint. Beware of hard-lock condition on * threshold . */ writel(0x42104000, ioaddr + FIFOCR1); //writel(0x9ce69800, ioaddr + FIFOCR2); writel(0xdef6d800, ioaddr + FIFOCR2); //writel(0x11111111, ioaddr + FIFOCR4); writel(0x18181818, ioaddr + FIFOCR4); // FIXME: should depend on the chipset revision writel(0x0000000e, ioaddr + FIFOCR3); writel(0xff200001, ioaddr + GCMDR); cards_found++; return 0; err_out_free_iqrx: while (--i >= 0) { dpriv = (struct dscc4_dev_priv *)(priv->root + i)->priv; pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), dpriv->iqrx, dpriv->iqrx_dma); } i = dev_per_card; err_out_free_iqtx: while (--i >= 0) { dpriv = (struct dscc4_dev_priv *)(priv->root + i)->priv; pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), dpriv->iqtx, dpriv->iqtx_dma); } pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg, priv->iqcfg_dma); err_out_free_irq: free_irq(pdev->irq, priv->root); err_out_iounmap: iounmap ((void *)ioaddr); err_out_free_mmio_region: release_mem_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); err_out_free_mmio_region0: release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); err_out: return -ENODEV; }; static int dscc4_found1(struct pci_dev *pdev, unsigned long ioaddr) { struct dscc4_pci_priv *ppriv; struct dscc4_dev_priv *dpriv; struct net_device *dev; int i = 0; dpriv = (struct dscc4_dev_priv *) kmalloc(dev_per_card*sizeof(struct dscc4_dev_priv), GFP_KERNEL); if (!dpriv) { printk(KERN_ERR "dscc4: can't allocate data\n"); goto err_out; } memset(dpriv, 0, dev_per_card*sizeof(struct dscc4_dev_priv)); dev = (struct net_device *) kmalloc(dev_per_card*sizeof(struct net_device), GFP_KERNEL); if (!dev) { printk(KERN_ERR "dscc4: can't allocate net_device\n"); goto err_dealloc_priv; } memset(dev, 0, dev_per_card*sizeof(struct net_device)); ppriv = (struct dscc4_pci_priv *) kmalloc(sizeof(struct dscc4_pci_priv), GFP_KERNEL); if (!ppriv) { printk(KERN_ERR "dscc4: can't allocate pci private data.\n"); goto err_dealloc_dev; } memset(ppriv, 0, sizeof(struct dscc4_pci_priv)); for (i = 0; i < dev_per_card; i++) { struct dscc4_dev_priv *p; struct net_device *d; d = dev + i; d->base_addr = ioaddr; d->init = NULL; d->irq = pdev->irq; /* The card adds the crc */ d->type = ARPHRD_RAWHDLC; d->open = dscc4_open; d->stop = dscc4_close; d->hard_start_xmit = dscc4_start_xmit; d->set_multicast_list = NULL; d->do_ioctl = dscc4_ioctl; d->get_stats = dscc4_get_stats; d->change_mtu = dscc4_change_mtu; d->mtu = HDLC_MAX_MTU; d->flags = IFF_MULTICAST|IFF_POINTOPOINT|IFF_NOARP; d->tx_timeout = dscc4_tx_timeout; d->watchdog_timeo = TX_TIMEOUT; p = dpriv + i; p->dev_id = i; p->pci_priv = ppriv; spin_lock_init(&p->lock); d->priv = p; if (dev_alloc_name(d, "scc%d")<0) { printk(KERN_ERR "dev_alloc_name failed for scc.\n"); goto err_dealloc_dev; } if (register_netdev(d)) { printk(KERN_ERR "%s: register_netdev != 0.\n", d->name); goto err_dealloc_dev; } dscc4_attach_hdlc_device(d); SET_MODULE_OWNER(d); } ppriv->root = dev; ppriv->pdev = pdev; spin_lock_init(&ppriv->lock); pci_set_drvdata(pdev, ppriv); return 0; err_dealloc_dev: while (--i >= 0) unregister_netdev(dev + i); kfree(dev); err_dealloc_priv: kfree(dpriv); err_out: return -1; }; static void dscc4_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct dscc4_dev_priv *dpriv; struct dscc4_pci_priv *ppriv; dpriv = dev->priv; if (netif_queue_stopped(dev) && ((jiffies - dev->trans_start) > TX_TIMEOUT)) { ppriv = dpriv->pci_priv; if (dpriv->iqtx[dpriv->iqtx_current%IRQ_RING_SIZE]) { u32 flags; printk(KERN_DEBUG "%s: pending events\n", dev->name); dev->trans_start = jiffies; spin_lock_irqsave(&ppriv->lock, flags); dscc4_tx_irq(ppriv, dev); spin_unlock_irqrestore(&ppriv->lock, flags); } else { struct TxFD *tx_fd; struct sk_buff *skb; int i,j; printk(KERN_DEBUG "%s: missing events\n", dev->name); i = dpriv->tx_dirty%TX_RING_SIZE; j = dpriv->tx_current - dpriv->tx_dirty; dpriv->stats.tx_dropped += j; while(j--) { skb = dpriv->tx_skbuff[i]; tx_fd = dpriv->tx_fd + i; if (skb) { dpriv->tx_skbuff[i] = NULL; pci_unmap_single(ppriv->pdev, tx_fd->data, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); } else printk(KERN_INFO "%s: hardware on drugs!\n", dev->name); tx_fd->data = 0; /* DEBUG */ tx_fd->complete &= ~DataComplete; i++; i %= TX_RING_SIZE; } dpriv->tx_dirty = dpriv->tx_current; dev->trans_start = jiffies; netif_wake_queue(dev); printk(KERN_DEBUG "%s: re-enabled\n", dev->name); } } dpriv->timer.expires = jiffies + TX_TIMEOUT; add_timer(&dpriv->timer); } static void dscc4_tx_timeout(struct net_device *dev) { /* FIXME: something is missing there */ }; static int dscc4_open(struct net_device *dev) { struct dscc4_dev_priv *dpriv = (struct dscc4_dev_priv *)dev->priv; struct dscc4_pci_priv *ppriv; u32 ioaddr = 0; MOD_INC_USE_COUNT; ppriv = dpriv->pci_priv; if (dscc4_init_ring(dev)) goto err_out; ioaddr = dev->base_addr + SCC_REG_START(dpriv->dev_id); /* FIXME: VIS */ writel(readl(ioaddr + CCR0) | 0x80001000, ioaddr + CCR0); writel(LengthCheck | (HDLC_MAX_MRU >> 5), ioaddr + RLCR); /* no address recognition/crc-CCITT/cts enabled */ writel(readl(ioaddr + CCR1) | 0x021c8000, ioaddr + CCR1); /* Ccr2.Rac = 0 */ writel(0x00050008 & ~RxActivate, ioaddr + CCR2); #ifdef EXPERIMENTAL_POLLING writel(0xfffeef7f, ioaddr + IMR); /* Interrupt mask */ #else /* Don't mask RDO. Ever. */ //writel(0xfffaef7f, ioaddr + IMR); /* Interrupt mask */ writel(0xfffaef7e, ioaddr + IMR); /* Interrupt mask */ #endif /* IDT+IDR during XPR */ dpriv->flags = NeedIDR | NeedIDT; /* * The following is a bit paranoid... * * NB: the datasheet "...CEC will stay active if the SCC is in * power-down mode or..." and CCR2.RAC = 1 are two different * situations. */ if (readl(ioaddr + STAR) & SccBusy) { printk(KERN_ERR "%s busy. Try later\n", dev->name); goto err_free_ring; } writel(TxSccRes | RxSccRes, ioaddr + CMDR); /* ... the following isn't */ if (dscc4_wait_ack_cec(ioaddr, dev, "Cec")) goto err_free_ring; /* * I would expect XPR near CE completion (before ? after ?). * At worst, this code won't see a late XPR and people * will have to re-issue an ifconfig (this is harmless). * WARNING, a really missing XPR usually means a hardware * reset is needed. Suggestions anyone ? */ if (dscc4_xpr_ack(dpriv)) goto err_free_ring; netif_start_queue(dev); init_timer(&dpriv->timer); dpriv->timer.expires = jiffies + 10*HZ; dpriv->timer.data = (unsigned long)dev; dpriv->timer.function = &dscc4_timer; add_timer(&dpriv->timer); netif_carrier_on(dev); return 0; err_free_ring: dscc4_release_ring(dpriv); err_out: MOD_DEC_USE_COUNT; return -EAGAIN; } #ifdef EXPERIMENTAL_POLLING static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev) { /* FIXME: it's gonna be easy (TM), for sure */ } #endif /* EXPERIMENTAL_POLLING */ static int dscc4_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct dscc4_dev_priv *dpriv = dev->priv; struct dscc4_pci_priv *ppriv; struct TxFD *tx_fd; int cur, next; ppriv = dpriv->pci_priv; cur = dpriv->tx_current++%TX_RING_SIZE; next = dpriv->tx_current%TX_RING_SIZE; dpriv->tx_skbuff[next] = skb; tx_fd = dpriv->tx_fd + next; tx_fd->state = FrameEnd | Hold | TO_STATE(skb->len & TxSizeMax); tx_fd->data = pci_map_single(ppriv->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); tx_fd->complete = 0x00000000; mb(); // FIXME: suppress ? #ifdef EXPERIMENTAL_POLLING spin_lock(&dpriv->lock); while(dscc4_tx_poll(dpriv, dev)); spin_unlock(&dpriv->lock); #endif /* * I know there's a window for a race in the following lines but * dscc4_timer will take good care of it. The chipset eats events * (especially the net_dev re-enabling ones) thus there is no * reason to try and be smart. */ if ((dpriv->tx_dirty + 16) < dpriv->tx_current) { netif_stop_queue(dev); dpriv->hi_expected = 2; } tx_fd = dpriv->tx_fd + cur; tx_fd->state &= ~Hold; mb(); // FIXME: suppress ? /* * One may avoid some pci transactions during intense TX periods. * Not sure it's worth the pain... */ writel((TxPollCmd << dpriv->dev_id) | NoAck, dev->base_addr + GCMDR); dev->trans_start = jiffies; return 0; } static int dscc4_close(struct net_device *dev) { struct dscc4_dev_priv *dpriv = (struct dscc4_dev_priv *)dev->priv; u32 ioaddr = dev->base_addr; int dev_id; del_timer_sync(&dpriv->timer); netif_stop_queue(dev); dev_id = dpriv->dev_id; writel(0x00050000, ioaddr + SCC_REG_START(dev_id) + CCR2); writel(MTFi|Rdr|Rdt, ioaddr + CH0CFG + dev_id*0x0c); /* Reset Rx/Tx */ writel(0x00000001, ioaddr + GCMDR); dscc4_release_ring(dpriv); MOD_DEC_USE_COUNT; return 0; } static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state) { struct dscc4_dev_priv *dpriv = (struct dscc4_dev_priv *)dev->priv; u32 brr; *state &= ~Ccr0ClockMask; if (*bps) { /* DCE */ u32 n = 0, m = 0, divider; int xtal; xtal = dpriv->pci_priv->xtal_hz; if (!xtal) return -1; divider = xtal / *bps; if (divider > BRR_DIVIDER_MAX) { divider >>= 4; *state |= 0x00000036; /* Clock mode 6b (BRG/16) */ } else *state |= 0x00000037; /* Clock mode 7b (BRG) */ if (divider >> 22) { n = 63; m = 15; } else if (divider) { /* Extraction of the 6 highest weighted bits */ m = 0; while (0xffffffc0 & divider) { m++; divider >>= 1; } n = divider; } brr = (m << 8) | n; divider = n << m; if (!(*state & 0x00000001)) /* Clock mode 6b */ divider <<= 4; *bps = xtal / divider; } else { /* DTE */ /* * "state" already reflects Clock mode 0a. * Nothing more to be done */ brr = 0; } writel(brr, dev->base_addr + BRR + SCC_REG_START(dpriv->dev_id)); return 0; } #ifdef LATER_PLEASE /* * -*- [RFC] Configuring Synchronous Interfaces in Linux -*- */ // FIXME: MEDIA already defined in linux/hdlc.h #define HDLC_MEDIA_V35 0 #define HDLC_MEDIA_RS232 1 #define HDLC_MEDIA_X21 2 #define HDLC_MEDIA_E1 3 #define HDLC_MEDIA_HSSI 4 #define HDLC_CODING_NRZ 0 #define HDLC_CODING_NRZI 1 #define HDLC_CODING_FM0 2 #define HDLC_CODING_FM1 3 #define HDLC_CODING_MANCHESTER 4 #define HDLC_CRC_NONE 0 #define HDLC_CRC_16 1 #define HDLC_CRC_32 2 #define HDLC_CRC_CCITT 3 /* RFC: add the crc reset value ? */ struct hdlc_physical { u8 media; u8 coding; u32 rate; u8 crc; u8 crc_siz; /* 2 or 4 bytes */ u8 shared_flags; /* Discouraged on the DSCC4 */ }; // FIXME: PROTO already defined in linux/hdlc.h #define HDLC_PROTO_RAW 0 #define HDLC_PROTO_FR 1 #define HDLC_PROTO_X25 2 #define HDLC_PROTO_PPP 3 #define HDLC_PROTO_CHDLC 4 struct hdlc_protocol { u8 proto; union { } u; }; struct screq { u16 media_group; union { struct hdlc_physical hdlc_phy; struct hdlc_protocol hdlc_proto; } u; }; // FIXME: go sub-module static struct { u16 coding; u16 bits; } map[] = { {HDLC_CODING_NRZ, 0x00}, {HDLC_CODING_NRZI, 0x20}, {HDLC_CODING_FM0, 0x40}, {HDLC_CODING_FM1, 0x50}, {HDLC_CODING_MANCHESTER, 0x60}, {65535, 0x00} }; #endif /* LATER_PLEASE */ static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct dscc4_dev_priv *dpriv = dev->priv; u32 state, ioaddr; if (dev->flags & IFF_UP) return -EBUSY; switch (cmd) { /* Set built-in quartz frequency */ case SIOCDEVPRIVATE: { u32 hz; hz = ifr->ifr_ifru.ifru_ivalue; if (hz >= 33000000) /* 33 MHz */ return -EOPNOTSUPP; dpriv->pci_priv->xtal_hz = hz; return 0; } /* Set/unset loopback */ case SIOCDEVPRIVATE+1: { u32 flags; ioaddr = dev->base_addr + CCR1 + SCC_REG_START(dpriv->dev_id); state = readl(ioaddr); flags = ifr->ifr_ifru.ifru_ivalue; if (flags & 0x00000001) { printk(KERN_DEBUG "%s: loopback\n", dev->name); state |= 0x00000100; } else { printk(KERN_DEBUG "%s: normal\n", dev->name); state &= ~0x00000100; } writel(state, ioaddr); return 0; } #ifdef LATER_PLEASE case SIOCDEVPRIVATE+2: { { struct screq scr; err = copy_from_user(&scr, ifr->ifr_ifru.ifru_data, sizeof(struct screq)); if (err) return err; do { if (scr.u.hdlc_phy.coding == map[i].coding) break; } while (map[++i].coding != 65535); if (!map[i].coding) return -EOPNOTSUPP; ioaddr = dev->base_addr + CCR0 + SCC_REG_START(dpriv->dev_id); state = readl(ioaddr) & ~EncodingMask; state |= (u32)map[i].bits << 16; writel(state, ioaddr); printk("state: %08x\n", state); /* DEBUG */ return 0; } case SIOCDEVPRIVATE+3: { struct screq *scr = (struct screq *)ifr->ifr_ifru.ifru_data; ioaddr = dev->base_addr + CCR0 + SCC_REG_START(dpriv->dev_id); state = (readl(ioaddr) & EncodingMask) >> 16; do { if (state == map[i].bits) break; } while (map[++i].coding); return put_user(map[i].coding, (u16 *)scr->u.hdlc_phy.coding); } #endif /* LATER_PLEASE */ case HDLCSCLOCKRATE: { u32 state, bps; bps = ifr->ifr_ifru.ifru_ivalue; ioaddr = dev->base_addr + CCR0 + SCC_REG_START(dpriv->dev_id); state = readl(ioaddr); if(dscc4_set_clock(dev, &bps, &state) < 0) return -EOPNOTSUPP; if (bps) { /* DCE */ printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name); ifr->ifr_ifru.ifru_ivalue = bps; } else { /* DTE */ state = 0x80001000; printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name); } writel(state, ioaddr); return 0; } case HDLCGCLOCKRATE: { u32 brr; int bps; brr = readl(dev->base_addr + BRR + SCC_REG_START(dpriv->dev_id)); bps = dpriv->pci_priv->xtal_hz >> (brr >> 8); bps /= (brr & 0x3f) + 1; ifr->ifr_ifru.ifru_ivalue = bps; return 0; } default: return -EOPNOTSUPP; } } static int dscc4_change_mtu(struct net_device *dev, int mtu) { /* FIXME: chainsaw coded... */ if ((mtu <= 3) || (mtu > 65531)) return -EINVAL; if(dev->flags & IFF_UP) return -EBUSY; dev->mtu = mtu; return(0); } static void dscc4_irq(int irq, void *dev_instance, struct pt_regs *ptregs) { struct net_device *dev = dev_instance; struct dscc4_pci_priv *priv; u32 ioaddr, state; unsigned long flags; int i; priv = ((struct dscc4_dev_priv *)dev->priv)->pci_priv; /* * FIXME: shorten the protected area (set some bit telling we're * in an interrupt or increment some work-to-do counter etc...) */ spin_lock_irqsave(&priv->lock, flags); ioaddr = dev->base_addr; state = readl(ioaddr + GSTAR); if (!state) goto out; writel(state, ioaddr + GSTAR); if (state & Arf) { printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n", dev->name); goto out; } state &= ~ArAck; if (state & Cfg) { if (debug) printk(KERN_DEBUG "CfgIV\n"); if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & Arf) printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG"); if (!(state &= ~Cfg)) goto out; } if (state & RxEvt) { i = dev_per_card - 1; do { dscc4_rx_irq(priv, dev + i); } while (--i >= 0); state &= ~RxEvt; } if (state & TxEvt) { i = dev_per_card - 1; do { dscc4_tx_irq(priv, dev + i); } while (--i >= 0); state &= ~TxEvt; } out: spin_unlock_irqrestore(&priv->lock, flags); } static __inline__ void dscc4_tx_irq(struct dscc4_pci_priv *ppriv, struct net_device *dev) { struct dscc4_dev_priv *dpriv = dev->priv; u32 state; int cur, loop = 0; try: cur = dpriv->iqtx_current%IRQ_RING_SIZE; state = dpriv->iqtx[cur]; if (!state) { #ifdef DEBUG if (loop > 1) printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop); #endif if (loop && netif_queue_stopped(dev)) if ((dpriv->tx_dirty + 8) >= dpriv->tx_current) netif_wake_queue(dev); return; } loop++; dpriv->iqtx[cur] = 0; dpriv->iqtx_current++; #ifdef DEBUG_PARANOID if (SOURCE_ID(state) != dpriv->dev_id) { printk(KERN_DEBUG "%s (Tx): Source Id=%d, state=%08x\n", dev->name, SOURCE_ID(state), state ); return; } if (state & 0x0df80c00) { printk(KERN_DEBUG "%s (Tx): state=%08x (UFO alert)\n", dev->name, state); return; } #endif // state &= 0x0fffffff; /* Tracking the analyzed bits */ if (state & SccEvt) { if (state & Alls) { struct TxFD *tx_fd; struct sk_buff *skb; cur = dpriv->tx_dirty%TX_RING_SIZE; tx_fd = dpriv->tx_fd + cur; skb = dpriv->tx_skbuff[cur]; /* XXX: hideous kludge - to be removed "later" */ if (!skb) { printk(KERN_ERR "%s: NULL skb in tx_irq at index %d\n", dev->name, cur); goto try; } dpriv->tx_dirty++; // MUST be after skb test /* Happens sometime. Don't know what triggers it */ if (!(tx_fd->complete & DataComplete)) { u32 ioaddr, isr; ioaddr = dev->base_addr + SCC_REG_START(dpriv->dev_id) + ISR; isr = readl(ioaddr); printk(KERN_DEBUG "%s: DataComplete=0 cur=%d isr=%08x state=%08x\n", dev->name, cur, isr, state); writel(isr, ioaddr); dpriv->stats.tx_dropped++; } else { tx_fd->complete &= ~DataComplete; if (tx_fd->state & FrameEnd) { dpriv->stats.tx_packets++; dpriv->stats.tx_bytes += skb->len; } } dpriv->tx_skbuff[cur] = NULL; pci_unmap_single(ppriv->pdev, tx_fd->data, skb->len, PCI_DMA_TODEVICE); tx_fd->data = 0; /* DEBUG */ dev_kfree_skb_irq(skb); { // DEBUG cur = (dpriv->tx_dirty-1)%TX_RING_SIZE; tx_fd = dpriv->tx_fd + cur; tx_fd->state |= Hold; } if (!(state &= ~Alls)) goto try; } /* * Transmit Data Underrun */ if (state & Xdu) { printk(KERN_ERR "dscc4: XDU. Contact maintainer\n"); dpriv->flags = NeedIDT; /* Tx reset */ writel(MTFi | Rdt, dev->base_addr + 0x0c*dpriv->dev_id + CH0CFG); writel(0x00000001, dev->base_addr + GCMDR); return; } if (state & Xmr) { /* Frame needs to be sent again - FIXME */ //dscc4_start_xmit(dpriv->tx_skbuff[dpriv->tx_dirty], dev); if (!(state &= ~0x00002000)) /* DEBUG */ goto try; } if (state & Xpr) { unsigned long ioaddr = dev->base_addr; unsigned long scc_offset; u32 scc_addr; scc_offset = ioaddr + SCC_REG_START(dpriv->dev_id); scc_addr = ioaddr + 0x0c*dpriv->dev_id; if (readl(scc_offset + STAR) & SccBusy) printk(KERN_DEBUG "%s busy. Fatal\n", dev->name); /* * Keep this order: IDT before IDR */ if (dpriv->flags & NeedIDT) { writel(MTFi | Idt, scc_addr + CH0CFG); writel(dpriv->tx_fd_dma + (dpriv->tx_dirty%TX_RING_SIZE)* sizeof(struct TxFD), scc_addr + CH0BTDA); if(dscc4_do_action(dev, "IDT")) goto err_xpr; dpriv->flags &= ~NeedIDT; mb(); } if (dpriv->flags & NeedIDR) { writel(MTFi | Idr, scc_addr + CH0CFG); writel(dpriv->rx_fd_dma + (dpriv->rx_current%RX_RING_SIZE)* sizeof(struct RxFD), scc_addr + CH0BRDA); if(dscc4_do_action(dev, "IDR")) goto err_xpr; dpriv->flags &= ~NeedIDR; mb(); /* Activate receiver and misc */ writel(0x08050008, scc_offset + CCR2); } err_xpr: if (!(state &= ~Xpr)) goto try; } } else { /* ! SccEvt */ if (state & Hi) { #ifdef EXPERIMENTAL_POLLING while(!dscc4_tx_poll(dpriv, dev)); #endif state &= ~Hi; } /* * FIXME: it may be avoided. Re-re-re-read the manual. */ if (state & Err) { printk(KERN_ERR "%s: Tx ERR\n", dev->name); dpriv->stats.tx_errors++; state &= ~Err; } } goto try; } static __inline__ void dscc4_rx_irq(struct dscc4_pci_priv *priv, struct net_device *dev) { struct dscc4_dev_priv *dpriv = dev->priv; u32 state; int cur; try: cur = dpriv->iqrx_current%IRQ_RING_SIZE; state = dpriv->iqrx[cur]; if (!state) return; dpriv->iqrx[cur] = 0; dpriv->iqrx_current++; #ifdef DEBUG_PARANOID if (SOURCE_ID(state) != dpriv->dev_id) { printk(KERN_DEBUG "%s (Rx): Source Id=%d, state=%08x\n", dev->name, SOURCE_ID(state), state); goto try; } if (state & 0x0df80c00) { printk(KERN_DEBUG "%s (Rx): state=%08x (UFO alert)\n", dev->name, state); goto try; } #endif if (!(state & SccEvt)){ struct RxFD *rx_fd; state &= 0x00ffffff; if (state & Err) { /* Hold or reset */ printk(KERN_DEBUG "%s (Rx): ERR\n", dev->name); cur = dpriv->rx_current; rx_fd = dpriv->rx_fd + cur; /* * Presume we're not facing a DMAC receiver reset. * As We use the rx size-filtering feature of the * DSCC4, the beginning of a new frame is waiting in * the rx fifo. I bet a Receive Data Overflow will * happen most of time but let's try and avoid it. * Btw (as for RDO) if one experiences ERR whereas * the system looks rather idle, there may be a * problem with latency. In this case, increasing * RX_RING_SIZE may help. */ while (dpriv->rx_needs_refill) { while(!(rx_fd->state1 & Hold)) { rx_fd++; cur++; if (!(cur = cur%RX_RING_SIZE)) rx_fd = dpriv->rx_fd; } dpriv->rx_needs_refill--; try_get_rx_skb(dpriv, cur, dev); if (!rx_fd->data) goto try; rx_fd->state1 &= ~Hold; rx_fd->state2 = 0x00000000; rx_fd->end = 0xbabeface; } goto try; } if (state & Fi) { cur = dpriv->rx_current%RX_RING_SIZE; rx_fd = dpriv->rx_fd + cur; dscc4_rx_skb(dpriv, cur, rx_fd, dev); dpriv->rx_current++; goto try; } if (state & Hi ) { /* HI bit */ state &= ~Hi; goto try; } } else { /* ! SccEvt */ #ifdef DEBUG_PARANOIA int i; static struct { u32 mask; const char *irq_name; } evts[] = { { 0x00008000, "TIN"}, { 0x00004000, "CSC"}, { 0x00000020, "RSC"}, { 0x00000010, "PCE"}, { 0x00000008, "PLLA"}, { 0x00000004, "CDSC"}, { 0, NULL} }; #endif /* DEBUG_PARANOIA */ state &= 0x00ffffff; #ifdef DEBUG_PARANOIA for (i = 0; evts[i].irq_name; i++) { if (state & evts[i].mask) { printk(KERN_DEBUG "dscc4(%s): %s\n", dev->name, evts[i].irq_name); if (!(state &= ~evts[i].mask)) goto try; } } #endif /* DEBUG_PARANOIA */ /* * Receive Data Overflow (FIXME: untested) */ if (state & Rdo) { u32 ioaddr, scc_offset, scc_addr; struct RxFD *rx_fd; int cur; //if (debug) // dscc4_rx_dump(dpriv); ioaddr = dev->base_addr; scc_addr = ioaddr + 0x0c*dpriv->dev_id; scc_offset = ioaddr + SCC_REG_START(dpriv->dev_id); writel(readl(scc_offset + CCR2) & ~RxActivate, scc_offset + CCR2); /* * This has no effect. Why ? * ORed with TxSccRes, one sees the CFG ack (for * the TX part only). */ writel(RxSccRes, scc_offset + CMDR); dpriv->flags |= RdoSet; /* * Let's try and save something in the received data. * rx_current must be incremented at least once to * avoid HOLD in the BRDA-to-be-pointed desc. */ do { cur = dpriv->rx_current++%RX_RING_SIZE; rx_fd = dpriv->rx_fd + cur; if (!(rx_fd->state2 & DataComplete)) break; if (rx_fd->state2 & FrameAborted) { dpriv->stats.rx_over_errors++; rx_fd->state1 |= Hold; rx_fd->state2 = 0x00000000; rx_fd->end = 0xbabeface; } else dscc4_rx_skb(dpriv, cur, rx_fd, dev); } while (1); if (debug) { if (dpriv->flags & RdoSet) printk(KERN_DEBUG "dscc4: no RDO in Rx data\n"); } #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY /* * FIXME: must the reset be this violent ? */ writel(dpriv->rx_fd_dma + (dpriv->rx_current%RX_RING_SIZE)* sizeof(struct RxFD), scc_addr + CH0BRDA); writel(MTFi|Rdr|Idr, scc_addr + CH0CFG); if(dscc4_do_action(dev, "RDR")) { printk(KERN_ERR "%s: RDO recovery failed(%s)\n", dev->name, "RDR"); goto rdo_end; } writel(MTFi|Idr, scc_addr + CH0CFG); if(dscc4_do_action(dev, "IDR")) { printk(KERN_ERR "%s: RDO recovery failed(%s)\n", dev->name, "IDR"); goto rdo_end; } rdo_end: #endif writel(readl(scc_offset + CCR2) | RxActivate, scc_offset + CCR2); goto try; } /* These will be used later */ if (state & Rfs) { if (!(state &= ~Rfs)) goto try; } if (state & Rfo) { if (!(state &= ~Rfo)) goto try; } if (state & Flex) { if (!(state &= ~Flex)) goto try; } } } static int dscc4_init_ring(struct net_device *dev) { struct dscc4_dev_priv *dpriv = (struct dscc4_dev_priv *)dev->priv; struct TxFD *tx_fd; struct RxFD *rx_fd; int i; tx_fd = (struct TxFD *) pci_alloc_consistent(dpriv->pci_priv->pdev, TX_RING_SIZE*sizeof(struct TxFD), &dpriv->tx_fd_dma); if (!tx_fd) goto err_out; rx_fd = (struct RxFD *) pci_alloc_consistent(dpriv->pci_priv->pdev, RX_RING_SIZE*sizeof(struct RxFD), &dpriv->rx_fd_dma); if (!rx_fd) goto err_free_dma_tx; dpriv->tx_fd = tx_fd; dpriv->rx_fd = rx_fd; dpriv->rx_current = 0; dpriv->tx_current = 0; dpriv->tx_dirty = 0; /* the dma core of the dscc4 will be locked on the first desc */ for(i = 0; i < TX_RING_SIZE; ) { reset_TxFD(tx_fd); /* FIXME: NULL should be ok - to be tried */ tx_fd->data = dpriv->tx_fd_dma; dpriv->tx_skbuff[i] = NULL; i++; tx_fd->next = (u32)(dpriv->tx_fd_dma + i*sizeof(struct TxFD)); tx_fd++; } (--tx_fd)->next = (u32)dpriv->tx_fd_dma; { /* * XXX: I would expect the following to work for the first descriptor * (tx_fd->state = 0xc0000000) * - Hold=1 (don't try and branch to the next descripto); * - No=0 (I want an empty data section, i.e. size=0); * - Fe=1 (required by No=0 or we got an Err irq and must reset). * Alas, it fails (and locks solid). Thus the introduction of a dummy * skb to avoid No=0 (choose one: Ugly [ ] Tasteless [ ] VMS [ ]). * TODO: fiddle the tx threshold when time permits. */ struct sk_buff *skb; skb = dev_alloc_skb(32); if (!skb) goto err_free_dma_tx; skb->len = 32; memset(skb->data, 0xaa, 16); tx_fd -= (TX_RING_SIZE - 1); tx_fd->state = 0xc0000000; tx_fd->state |= ((u32)(skb->len & TxSizeMax)) << 16; tx_fd->data = pci_map_single(dpriv->pci_priv->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); dpriv->tx_skbuff[0] = skb; } for (i = 0; i < RX_RING_SIZE;) { /* size set by the host. Multiple of 4 bytes please */ rx_fd->state1 = HiDesc; /* Hi, no Hold */ rx_fd->state2 = 0x00000000; rx_fd->end = 0xbabeface; rx_fd->state1 |= ((u32)(HDLC_MAX_MRU & RxSizeMax)) << 16; try_get_rx_skb(dpriv, i, dev); i++; rx_fd->next = (u32)(dpriv->rx_fd_dma + i*sizeof(struct RxFD)); rx_fd++; } (--rx_fd)->next = (u32)dpriv->rx_fd_dma; rx_fd->state1 |= 0x40000000; /* Hold */ return 0; err_free_dma_tx: pci_free_consistent(dpriv->pci_priv->pdev, TX_RING_SIZE*sizeof(*tx_fd), tx_fd, dpriv->tx_fd_dma); err_out: return -1; } static struct net_device_stats *dscc4_get_stats(struct net_device *dev) { struct dscc4_dev_priv *priv = (struct dscc4_dev_priv *)dev->priv; return &priv->stats; } static void __exit dscc4_remove_one(struct pci_dev *pdev) { struct dscc4_pci_priv *ppriv; struct net_device *root; int i; ppriv = pci_get_drvdata(pdev); root = ppriv->root; free_irq(pdev->irq, root); pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg, ppriv->iqcfg_dma); for (i=0; i < dev_per_card; i++) { struct dscc4_dev_priv *dpriv; struct net_device *dev; dev = ppriv->root + i; dscc4_unattach_hdlc_device(dev); dpriv = (struct dscc4_dev_priv *)dev->priv; pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), dpriv->iqrx, dpriv->iqrx_dma); pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), dpriv->iqtx, dpriv->iqtx_dma); unregister_netdev(dev); } kfree(root->priv); iounmap((void *)root->base_addr); kfree(root); kfree(ppriv); release_mem_region(pci_resource_start(pdev, 1), pci_resource_len(pdev, 1)); release_mem_region(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); } static int dscc4_hdlc_ioctl(struct hdlc_device_struct *hdlc, struct ifreq *ifr, int cmd) { struct net_device *dev = (struct net_device *)hdlc->netdev.base_addr; int result; /* FIXME: locking ? */ result = dscc4_ioctl(dev, ifr, cmd); return result; } static int dscc4_hdlc_open(struct hdlc_device_struct *hdlc) { struct net_device *dev = (struct net_device *)(hdlc->netdev.base_addr); if (netif_running(dev)) { printk(KERN_DEBUG "%s: already running\n", dev->name); // DEBUG return 0; } return dscc4_open(dev); } static int dscc4_hdlc_xmit(hdlc_device *hdlc, struct sk_buff *skb) { struct net_device *dev = (struct net_device *)hdlc->netdev.base_addr; return dscc4_start_xmit(skb, dev); } static void dscc4_hdlc_close(struct hdlc_device_struct *hdlc) { struct net_device *dev = (struct net_device *)hdlc->netdev.base_addr; struct dscc4_dev_priv *dpriv; dpriv = dev->priv; --dpriv->usecount; } /* Operated under dev lock */ static int dscc4_attach_hdlc_device(struct net_device *dev) { struct dscc4_dev_priv *dpriv = dev->priv; struct hdlc_device_struct *hdlc; int result; hdlc = &dpriv->hdlc; /* XXX: Don't look at the next line */ hdlc->netdev.base_addr = (unsigned long)dev; hdlc->set_mode = NULL; hdlc->open = dscc4_hdlc_open; hdlc->close = dscc4_hdlc_close; hdlc->ioctl = dscc4_hdlc_ioctl; hdlc->xmit = dscc4_hdlc_xmit; result = register_hdlc_device(hdlc); if (!result) dpriv->usecount++; return result; } /* Operated under dev lock */ static void dscc4_unattach_hdlc_device(struct net_device *dev) { struct dscc4_dev_priv *dpriv = dev->priv; unregister_hdlc_device(&dpriv->hdlc); dpriv->usecount--; } static struct pci_device_id dscc4_pci_tbl[] __devinitdata = { { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4, PCI_ANY_ID, PCI_ANY_ID, }, { 0,} }; MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl); static struct pci_driver dscc4_driver = { name: "dscc4", id_table: dscc4_pci_tbl, probe: dscc4_init_one, remove: dscc4_remove_one, }; static int __init dscc4_init_module(void) { return pci_module_init(&dscc4_driver); } static void __exit dscc4_cleanup_module(void) { pci_unregister_driver(&dscc4_driver); } module_init(dscc4_init_module); module_exit(dscc4_cleanup_module);