/* * Adaptec AIC7xxx device driver for Linux. * * $Id: aic7xxx_linux.c,v 1.1.1.1 2003/06/23 22:18:34 jharrell Exp $ * * Copyright (c) 1994 John Aycock * The University of Calgary Department of Computer Science. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide, * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux, * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual, * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the * ANSI SCSI-2 specification (draft 10c), ... * * -------------------------------------------------------------------------- * * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org): * * Substantially modified to include support for wide and twin bus * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes, * SCB paging, and other rework of the code. * * -------------------------------------------------------------------------- * Copyright (c) 1994-2000 Justin T. Gibbs. * Copyright (c) 2000-2001 Adaptec Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * *--------------------------------------------------------------------------- * * Thanks also go to (in alphabetical order) the following: * * Rory Bolt - Sequencer bug fixes * Jay Estabrook - Initial DEC Alpha support * Doug Ledford - Much needed abort/reset bug fixes * Kai Makisara - DMAing of SCBs * * A Boot time option was also added for not resetting the scsi bus. * * Form: aic7xxx=extended * aic7xxx=no_reset * aic7xxx=verbose * * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97 * * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp */ /* * Further driver modifications made by Doug Ledford * * Copyright (c) 1997-1999 Doug Ledford * * These changes are released under the same licensing terms as the FreeBSD * driver written by Justin Gibbs. Please see his Copyright notice above * for the exact terms and conditions covering my changes as well as the * warranty statement. * * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include * but are not limited to: * * 1: Import of the latest FreeBSD sequencer code for this driver * 2: Modification of kernel code to accomodate different sequencer semantics * 3: Extensive changes throughout kernel portion of driver to improve * abort/reset processing and error hanndling * 4: Other work contributed by various people on the Internet * 5: Changes to printk information and verbosity selection code * 6: General reliability related changes, especially in IRQ management * 7: Modifications to the default probe/attach order for supported cards * 8: SMP friendliness has been improved * */ #include "aic7xxx_osm.h" #include "aic7xxx_inline.h" #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) #include /* __setup */ #endif #include "../sd.h" /* For geometry detection */ #include /* For fetching system memory size */ #include /* * To generate the correct addresses for the controller to issue * on the bus. Originally added for DEC Alpha support. */ #define VIRT_TO_BUS(a) (uint32_t)virt_to_bus((void *)(a)) #if LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) struct proc_dir_entry proc_scsi_aic7xxx = { PROC_SCSI_AIC7XXX, 7, "aic7xxx", S_IFDIR | S_IRUGO | S_IXUGO, 2, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; #endif /* * Set this to the delay in seconds after SCSI bus reset. * Note, we honor this only for the initial bus reset. * The scsi error recovery code performs its own bus settle * delay handling for error recovery actions. */ #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS #else #define AIC7XXX_RESET_DELAY 5000 #endif /* * Control collection of SCSI transfer statistics for the /proc filesystem. * * NOTE: Do NOT enable this when running on kernels version 1.2.x and below. * NOTE: This does affect performance since it has to maintain statistics. */ #ifdef CONFIG_AIC7XXX_PROC_STATS #define AIC7XXX_PROC_STATS #endif /* * To change the default number of tagged transactions allowed per-device, * add a line to the lilo.conf file like: * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}" * which will result in the first four devices on the first two * controllers being set to a tagged queue depth of 32. * * The tag_commands is an array of 16 to allow for wide and twin adapters. * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15 * for channel 1. */ typedef struct { uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */ } adapter_tag_info_t; /* * Modify this as you see fit for your system. * * 0 tagged queuing disabled * 1 <= n <= 253 n == max tags ever dispatched. * * The driver will throttle the number of commands dispatched to a * device if it returns queue full. For devices with a fixed maximum * queue depth, the driver will eventually determine this depth and * lock it in (a console message is printed to indicate that a lock * has occurred). On some devices, queue full is returned for a temporary * resource shortage. These devices will return queue full at varying * depths. The driver will throttle back when the queue fulls occur and * attempt to slowly increase the depth over time as the device recovers * from the resource shortage. * * In this example, the first line will disable tagged queueing for all * the devices on the first probed aic7xxx adapter. * * The second line enables tagged queueing with 4 commands/LUN for IDs * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the * driver to attempt to use up to 64 tags for ID 1. * * The third line is the same as the first line. * * The fourth line disables tagged queueing for devices 0 and 3. It * enables tagged queueing for the other IDs, with 16 commands/LUN * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for * IDs 2, 5-7, and 9-15. */ /* * NOTE: The below structure is for reference only, the actual structure * to modify in order to change things is just below this comment block. adapter_tag_info_t aic7xxx_tag_info[] = { {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}}, {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}} }; */ #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE #else #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE #endif #define AIC7XXX_CONFIGED_TAG_COMMANDS { \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \ } /* * By default, use the number of commands specified by * the users kernel configuration. */ static adapter_tag_info_t aic7xxx_tag_info[] = { {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS}, {AIC7XXX_CONFIGED_TAG_COMMANDS} }; /* * There should be a specific return value for this in scsi.h, but * it seems that most drivers ignore it. */ #define DID_UNDERFLOW DID_ERROR void ahc_print_path(struct ahc_softc *ahc, struct scb *scb) { printk("(scsi%d:%c:%d:%d): ", ahc->platform_data->host->host_no, scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X', scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1, scb != NULL ? SCB_GET_LUN(scb) : -1); } /* * XXX - these options apply unilaterally to _all_ 274x/284x/294x * cards in the system. This should be fixed. Exceptions to this * rule are noted in the comments. */ /* * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This * has no effect on any later resets that might occur due to things like * SCSI bus timeouts. */ static uint32_t aic7xxx_no_reset; /* * Certain PCI motherboards will scan PCI devices from highest to lowest, * others scan from lowest to highest, and they tend to do all kinds of * strange things when they come into contact with PCI bridge chips. The * net result of all this is that the PCI card that is actually used to boot * the machine is very hard to detect. Most motherboards go from lowest * PCI slot number to highest, and the first SCSI controller found is the * one you boot from. The only exceptions to this are when a controller * has its BIOS disabled. So, we by default sort all of our SCSI controllers * from lowest PCI slot number to highest PCI slot number. We also force * all controllers with their BIOS disabled to the end of the list. This * works on *almost* all computers. Where it doesn't work, we have this * option. Setting this option to non-0 will reverse the order of the sort * to highest first, then lowest, but will still leave cards with their BIOS * disabled at the very end. That should fix everyone up unless there are * really strange cirumstances. */ static int aic7xxx_reverse_scan = 0; /* * Should we force EXTENDED translation on a controller. * 0 == Use whatever is in the SEEPROM or default to off * 1 == Use whatever is in the SEEPROM or default to on */ static uint32_t aic7xxx_extended = 0; /* * PCI bus parity checking of the Adaptec controllers. This is somewhat * dubious at best. To my knowledge, this option has never actually * solved a PCI parity problem, but on certain machines with broken PCI * chipset configurations, it can generate tons of false error messages. * It's included in the driver for completeness. * 0 = Shut off PCI parity check * -1 = Normal polarity pci parity checking * 1 = reverse polarity pci parity checking * * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this * variable to -1 you would actually want to simply pass the variable * name without a number. That will invert the 0 which will result in * -1. */ static int aic7xxx_pci_parity = 0; /* * Certain newer motherboards have put new PCI based devices into the * IO spaces that used to typically be occupied by VLB or EISA cards. * This overlap can cause these newer motherboards to lock up when scanned * for older EISA and VLB devices. Setting this option to non-0 will * cause the driver to skip scanning for any VLB or EISA controllers and * only support the PCI controllers. NOTE: this means that if the kernel * os compiled with PCI support disabled, then setting this to non-0 * would result in never finding any devices :) */ int aic7xxx_no_probe; /* * aic7xxx_detect() has been run, so register all device arrivals * immediately with the system rather than deferring to the sorted * attachment performed by aic7xxx_detect(). */ int aic7xxx_detect_complete; /* * So that we can set how long each device is given as a selection timeout. * The table of values goes like this: * 0 - 256ms * 1 - 128ms * 2 - 64ms * 3 - 32ms * We default to 256ms because some older devices need a longer time * to respond to initial selection. */ static int aic7xxx_seltime = 0x00; /* * Certain devices do not perform any aging on commands. Should the * device be saturated by commands in one portion of the disk, it is * possible for transactions on far away sectors to never be serviced. * To handle these devices, we can periodically send an ordered tag to * force all outstanding transactions to be serviced prior to a new * transaction. */ int aic7xxx_periodic_otag; /* * Module information and settable options. */ #ifdef MODULE static char *aic7xxx = NULL; /* * Just in case someone uses commas to separate items on the insmod * command line, we define a dummy buffer here to avoid having insmod * write wild stuff into our code segment */ static char dummy_buffer[60] = "Please don't trounce on me insmod!!\n"; MODULE_AUTHOR("Maintainer: Justin T. Gibbs "); MODULE_DESCRIPTION("Adaptec Aic77XX/78XX SCSI Host Bus Adapter driver"); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,10) MODULE_LICENSE("Dual BSD/GPL"); #endif MODULE_PARM(aic7xxx, "s"); MODULE_PARM_DESC(aic7xxx, "period delimited, options string. verbose Enable verbose/diagnostic logging no_probe Disable EISA/VLB controller probing no_reset Supress initial bus resets extended Enable extended geometry on all controllers periodic_otag Send an ordered tagged transaction periodically to prevent tag starvation. This may be required by some older disk drives/RAID arrays. reverse_scan Sort PCI devices highest Bus/Slot to lowest tag_info: Set per-target tag depth seltime: Selection Timeout(0/256ms,1/128ms,2/64ms,3/32ms) Sample /etc/modules.conf line: Enable verbose logging Disable EISA/VLB probing Set tag depth on Controller 2/Target 2 to 10 tags Shorten the selection timeout to 128ms from its default of 256 options aic7xxx='\"verbose.no_probe.tag_info:{{}.{}.{..10}}.seltime:1\"' "); #endif static void ahc_linux_handle_scsi_status(struct ahc_softc *, struct ahc_linux_device *, struct scb *); static void ahc_linux_filter_command(struct ahc_softc*, Scsi_Cmnd*, struct scb*); static void ahc_linux_sem_timeout(u_long arg); static void ahc_linux_freeze_sim_queue(struct ahc_softc *ahc); static void ahc_linux_release_sim_queue(u_long arg); static int ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag); static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc); static void ahc_linux_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs); static void ahc_linux_device_queue_depth(struct ahc_softc *ahc, Scsi_Device *device); static struct ahc_linux_target* ahc_linux_alloc_target(struct ahc_softc*, u_int, u_int); static void ahc_linux_free_target(struct ahc_softc*, struct ahc_linux_target*); static struct ahc_linux_device* ahc_linux_alloc_device(struct ahc_softc*, struct ahc_linux_target*, u_int); static void ahc_linux_free_device(struct ahc_softc*, struct ahc_linux_device*); static void ahc_linux_run_device_queue(struct ahc_softc*, struct ahc_linux_device*); static void ahc_linux_setup_tag_info(char *p, char *end); static int ahc_linux_next_unit(void); static int ahc_linux_halt(struct notifier_block *nb, u_long event, void *buf); static __inline struct ahc_linux_device* ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, u_int target, u_int lun, int alloc); static __inline void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, Scsi_Cmnd *cmd); static __inline void ahc_linux_run_complete_queue(struct ahc_softc *ahc, struct ahc_cmd *acmd); static __inline void ahc_linux_check_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev); static __inline void ahc_linux_sniff_command(struct ahc_softc*, Scsi_Cmnd*, struct scb*); static __inline void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*); static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, struct ahc_dma_seg *sg, bus_addr_t addr, bus_size_t len); static __inline struct ahc_linux_device* ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, u_int target, u_int lun, int alloc) { struct ahc_linux_target *targ; struct ahc_linux_device *dev; u_int target_offset; target_offset = target; if (channel != 0) target_offset += 8; targ = ahc->platform_data->targets[target_offset]; if (targ == NULL) { if (alloc != 0) { targ = ahc_linux_alloc_target(ahc, channel, target); if (targ == NULL) return (NULL); } else return (NULL); } dev = targ->devices[lun]; if (dev == NULL && alloc != 0) dev = ahc_linux_alloc_device(ahc, targ, lun); return (dev); } static __inline void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, Scsi_Cmnd *cmd) { /* * Typically, the complete queue has very few entries * queued to it before the queue is emptied by * ahc_linux_run_complete_queue, so sorting the entries * by generation number should be inexpensive. * We perform the sort so that commands that complete * with an error are retuned in the order origionally * queued to the controller so that any subsequent retries * are performed in order. The underlying ahc routines do * not guarantee the order that aborted commands will be * returned to us. */ struct ahc_completeq *completeq; struct ahc_cmd *list_cmd; struct ahc_cmd *acmd; /* * If we want the request requeued, make sure there * are sufficent retries. In the old scsi error code, * we used to be able to specify a result code that * bypassed the retry count. Now we must use this * hack. */ if (cmd->result == (CAM_REQUEUE_REQ << 16)) cmd->retries--; completeq = &ahc->platform_data->completeq; list_cmd = TAILQ_FIRST(completeq); acmd = (struct ahc_cmd *)cmd; while (list_cmd != NULL && acmd_scsi_cmd(list_cmd).serial_number < acmd_scsi_cmd(acmd).serial_number) list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe); if (list_cmd != NULL) TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe); else TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe); } static __inline void ahc_linux_run_complete_queue(struct ahc_softc *ahc, struct ahc_cmd *acmd) { u_long done_flags; ahc_done_lock(ahc, &done_flags); while (acmd != NULL) { Scsi_Cmnd *cmd; cmd = &acmd_scsi_cmd(acmd); acmd = TAILQ_NEXT(acmd, acmd_links.tqe); cmd->host_scribble = NULL; cmd->scsi_done(cmd); } ahc_done_unlock(ahc, &done_flags); } static __inline void ahc_linux_check_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev) { if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) != 0 && dev->active == 0) { dev->flags &= ~AHC_DEV_FREEZE_TIL_EMPTY; dev->qfrozen--; } if (TAILQ_FIRST(&dev->busyq) == NULL || dev->openings == 0 || dev->qfrozen != 0) return; ahc_linux_run_device_queue(ahc, dev); } static __inline void ahc_linux_run_device_queues(struct ahc_softc *ahc) { struct ahc_linux_device *dev; while ((ahc->flags & AHC_RESOURCE_SHORTAGE) == 0 && ahc->platform_data->qfrozen == 0 && (dev = TAILQ_FIRST(&ahc->platform_data->device_runq)) != NULL) { TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links); dev->flags &= ~AHC_DEV_ON_RUN_LIST; ahc_linux_check_device_queue(ahc, dev); } } static __inline void ahc_linux_sniff_command(struct ahc_softc *ahc, Scsi_Cmnd *cmd, struct scb *scb) { /* * Determine whether we care to filter * information out of this command. If so, * pass it on to ahc_linux_filter_command() for more * heavy weight processing. */ if (cmd->cmnd[0] == INQUIRY) ahc_linux_filter_command(ahc, cmd, scb); } static __inline void ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb) { Scsi_Cmnd *cmd; cmd = scb->io_ctx; ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE); if (cmd->use_sg != 0) { struct scatterlist *sg; sg = (struct scatterlist *)cmd->request_buffer; pci_unmap_sg(ahc->dev_softc, sg, cmd->use_sg, scsi_to_pci_dma_dir(cmd->sc_data_direction)); } else if (cmd->request_bufflen != 0) { u_int32_t high_addr; high_addr = ahc_le32toh(scb->sg_list[0].len) & AHC_SG_HIGH_ADDR_MASK; pci_unmap_single(ahc->dev_softc, ahc_le32toh(scb->sg_list[0].addr) | (((dma_addr_t)high_addr) << 8), cmd->request_bufflen, scsi_to_pci_dma_dir(cmd->sc_data_direction)); } } static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, struct ahc_dma_seg *sg, bus_addr_t addr, bus_size_t len) { int consumed; if ((scb->sg_count + 1) > AHC_NSEG) panic("Too few segs for dma mapping. " "Increase AHC_NSEG\n"); consumed = 1; sg->addr = ahc_htole32(addr & 0xFFFFFFFF); scb->platform_data->xfer_len += len; if (sizeof(bus_addr_t) > 4 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0) { /* * Due to DAC restrictions, we can't * cross a 4GB boundary. */ if ((addr ^ (addr + len - 1)) & ~0xFFFFFFFF) { struct ahc_dma_seg *next_sg; uint32_t next_len; printf("Crossed Seg\n"); if ((scb->sg_count + 2) > AHC_NSEG) panic("Too few segs for dma mapping. " "Increase AHC_NSEG\n"); consumed++; next_sg = sg + 1; next_sg->addr = 0; next_len = 0x100000000 - (addr & 0xFFFFFFFF); len -= next_len; next_len |= ((addr >> 8) + 0x1000000) & 0x7F000000; next_sg->len = ahc_htole32(next_len); } len |= (addr >> 8) & 0x7F000000; } sg->len = ahc_htole32(len); return (consumed); } /************************ Shutdown/halt/reboot hook ***************************/ #include #include static struct notifier_block ahc_linux_notifier = { ahc_linux_halt, NULL, 0 }; static int ahc_linux_halt(struct notifier_block *nb, u_long event, void *buf) { struct ahc_softc *ahc; if (event == SYS_DOWN || event == SYS_HALT) { TAILQ_FOREACH(ahc, &ahc_tailq, links) { ahc_shutdown(ahc); } } return (NOTIFY_OK); } /******************************** Macros **************************************/ #define BUILD_SCSIID(ahc, cmd) \ ((((cmd)->target << TID_SHIFT) & TID) \ | (((cmd)->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \ | (((cmd)->channel == 0) ? 0 : TWIN_CHNLB)) /******************************** Bus DMA *************************************/ int ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent, bus_size_t alignment, bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag) { bus_dma_tag_t dmat; dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT); if (dmat == NULL) return (ENOMEM); /* * Linux is very simplistic about DMA memory. For now don't * maintain all specification information. Once Linux supplies * better facilities for doing these operations, or the * needs of this particular driver change, we might need to do * more here. */ dmat->alignment = alignment; dmat->boundary = boundary; dmat->maxsize = maxsize; *ret_tag = dmat; return (0); } void ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat) { free(dmat, M_DEVBUF); } int ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { bus_dmamap_t map; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT); if (map == NULL) return (ENOMEM); /* * Although we can dma data above 4GB, our * "consistent" memory is below 4GB for * space efficiency reasons (only need a 4byte * address). For this reason, we have to reset * our dma mask when doing allocations. */ if(ahc->dev_softc) #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,3) pci_set_dma_mask(ahc->dev_softc, 0xFFFFFFFF); #else ahc->dev_softc->dma_mask = 0xFFFFFFFF; #endif *vaddr = pci_alloc_consistent(ahc->dev_softc, dmat->maxsize, &map->bus_addr); if (ahc->dev_softc) #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,3) pci_set_dma_mask(ahc->dev_softc, ahc->platform_data->hw_dma_mask); #else ahc->dev_softc->dma_mask = ahc->platform_data->hw_dma_mask; #endif #else /* LINUX_VERSION_CODE < KERNEL_VERSION(2,3,0) */ /* * At least in 2.2.14, malloc is a slab allocator so all * allocations are aligned. We assume for these kernel versions * that all allocations will be bellow 4Gig, physically contiguous, * and accessable via DMA by the controller. */ map = NULL; /* No additional information to store */ *vaddr = malloc(dmat->maxsize, M_DEVBUF, M_NOWAIT); #endif if (*vaddr == NULL) return (ENOMEM); *mapp = map; return(0); } void ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat, void* vaddr, bus_dmamap_t map) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) pci_free_consistent(ahc->dev_softc, dmat->maxsize, vaddr, map->bus_addr); #else free(vaddr, M_DEVBUF); #endif } int ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb, void *cb_arg, int flags) { /* * Assume for now that this will only be used during * initialization and not for per-transaction buffer mapping. */ bus_dma_segment_t stack_sg; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) stack_sg.ds_addr = map->bus_addr; #else stack_sg.ds_addr = VIRT_TO_BUS(buf); #endif stack_sg.ds_len = dmat->maxsize; cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0); return (0); } void ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) { /* * The map may is NULL in our < 2.3.X implementation. */ if (map != NULL) free(map, M_DEVBUF); } int ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) { /* Nothing to do */ return (0); } /********************* Platform Dependent Functions ***************************/ int ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc) { int value; int rvalue; int lvalue; /* * Under Linux, cards are ordered as follows: * 1) VLB/EISA BIOS enabled devices sorted by BIOS address. * 2) PCI devices with BIOS enabled sorted by bus/slot/func. * 3) All remaining VLB/EISA devices sorted by ioport. * 4) All remaining PCI devices sorted by bus/slot/func. */ value = (lahc->flags & AHC_BIOS_ENABLED) - (rahc->flags & AHC_BIOS_ENABLED); if (value != 0) /* Controllers with BIOS enabled have a *higher* priority */ return (-value); /* * Same BIOS setting, now sort based on bus type. * EISA and VL controllers sort together. EISA/VL * have higher priority than PCI. */ rvalue = (rahc->chip & AHC_BUS_MASK); if (rvalue == AHC_VL) rvalue = AHC_EISA; lvalue = (lahc->chip & AHC_BUS_MASK); if (lvalue == AHC_VL) lvalue = AHC_EISA; value = lvalue - rvalue; if (value != 0) return (value); /* Still equal. Sort by BIOS address, ioport, or bus/slot/func. */ switch (rvalue) { case AHC_PCI: { char primary_channel; if (aic7xxx_reverse_scan != 0) value = ahc_get_pci_bus(rahc->dev_softc) - ahc_get_pci_bus(lahc->dev_softc); else value = ahc_get_pci_bus(lahc->dev_softc) - ahc_get_pci_bus(rahc->dev_softc); if (value != 0) break; if (aic7xxx_reverse_scan != 0) value = ahc_get_pci_slot(rahc->dev_softc) - ahc_get_pci_slot(lahc->dev_softc); else value = ahc_get_pci_slot(lahc->dev_softc) - ahc_get_pci_slot(rahc->dev_softc); if (value != 0) break; /* * On multi-function devices, the user can choose * to have function 1 probed before function 0. * Give whichever channel is the primary channel * the lowest priority. */ primary_channel = (lahc->flags & AHC_PRIMARY_CHANNEL) + 'A'; value = 1; if (lahc->channel == primary_channel) value = -1; break; } case AHC_EISA: if ((rahc->flags & AHC_BIOS_ENABLED) != 0) { value = lahc->platform_data->bios_address - rahc->platform_data->bios_address; } else { value = lahc->bsh.ioport - rahc->bsh.ioport; } break; default: panic("ahc_softc_sort: invalid bus type"); } return (value); } static void ahc_linux_setup_tag_info(char *p, char *end) { char *base; char *tok; char *tok_end; char *tok_end2; int i; int instance; int targ; int done; char tok_list[] = {'.', ',', '{', '}', '\0'}; if (*p != ':') return; instance = -1; targ = -1; done = FALSE; base = p; /* Forward us just past the ':' */ tok = base + 1; tok_end = strchr(tok, '\0'); if (tok_end < end) *tok_end = ','; while (!done) { switch (*tok) { case '{': if (instance == -1) instance = 0; else if (targ == -1) targ = 0; tok++; break; case '}': if (targ != -1) targ = -1; else if (instance != -1) instance = -1; tok++; break; case ',': case '.': if (instance == -1) done = TRUE; else if (targ >= 0) targ++; else if (instance >= 0) instance++; if ((targ >= AHC_NUM_TARGETS) || (instance >= NUM_ELEMENTS(aic7xxx_tag_info))) done = TRUE; tok++; if (!done) { base = tok; } break; case '\0': done = TRUE; break; default: done = TRUE; tok_end = strchr(tok, '\0'); for (i = 0; tok_list[i]; i++) { tok_end2 = strchr(tok, tok_list[i]); if ((tok_end2) && (tok_end2 < tok_end)) { tok_end = tok_end2; done = FALSE; } } if ((instance >= 0) && (targ >= 0) && (instance < NUM_ELEMENTS(aic7xxx_tag_info)) && (targ < AHC_NUM_TARGETS)) { aic7xxx_tag_info[instance].tag_commands[targ] = simple_strtoul(tok, NULL, 0) & 0xff; } tok = tok_end; break; } } while ((p != base) && (p != NULL)) p = strtok(NULL, ",."); } /* * Handle Linux boot parameters. This routine allows for assigning a value * to a parameter with a ':' between the parameter and the value. * ie. aic7xxx=stpwlev:1,extended */ int aic7xxx_setup(char *s) { int i, n; char *p; char *end; static struct { const char *name; uint32_t *flag; } options[] = { { "extended", &aic7xxx_extended }, { "no_reset", &aic7xxx_no_reset }, { "verbose", &aic7xxx_verbose }, { "reverse_scan", &aic7xxx_reverse_scan }, { "no_probe", &aic7xxx_no_probe }, { "periodic_otag", &aic7xxx_periodic_otag }, { "pci_parity", &aic7xxx_pci_parity }, { "seltime", &aic7xxx_seltime }, { "tag_info", NULL } }; end = strchr(s, '\0'); for (p = strtok(s, ",."); p; p = strtok(NULL, ",.")) { for (i = 0; i < NUM_ELEMENTS(options); i++) { n = strlen(options[i].name); if (strncmp(options[i].name, p, n) != 0) continue; if (strncmp(p, "tag_info", n) == 0) { ahc_linux_setup_tag_info(p + n, end); } else if (p[n] == ':') { *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0); } else if (!strncmp(p, "verbose", n)) { *(options[i].flag) = 1; } else { *(options[i].flag) = ~(*(options[i].flag)); } break; } } register_reboot_notifier(&ahc_linux_notifier); return 1; } #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0) __setup("aic7xxx=", aic7xxx_setup); #endif int aic7xxx_verbose; /* * Try to detect an Adaptec 7XXX controller. */ int ahc_linux_detect(Scsi_Host_Template *template) { struct ahc_softc *ahc; int found; /* * Sanity checking of Linux SCSI data structures so * that some of our hacks^H^H^H^H^Hassumptions aren't * violated. */ if (offsetof(struct ahc_cmd_internal, end) > offsetof(struct scsi_cmnd, host_scribble)) { printf("ahc_linux_detect: SCSI data structures changed.\n"); printf("ahc_linux_detect: Unable to attach\n"); return (0); } #ifdef MODULE /* * If we've been passed any parameters, process them now. */ if (aic7xxx) aic7xxx_setup(aic7xxx); if (dummy_buffer[0] != 'P') printk(KERN_WARNING "aic7xxx: Please read the file /usr/src/linux/drivers/scsi/README.aic7xxx\n" "aic7xxx: to see the proper way to specify options to the aic7xxx module\n" "aic7xxx: Specifically, don't use any commas when passing arguments to\n" "aic7xxx: insmod or else it might trash certain memory areas.\n"); #endif #if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,0) template->proc_name = "aic7xxx"; #else template->proc_dir = &proc_scsi_aic7xxx; #endif template->sg_tablesize = AHC_NSEG; #ifdef CONFIG_PCI ahc_linux_pci_probe(template); #endif if (aic7xxx_no_probe == 0) aic7770_linux_probe(template); /* * Register with the SCSI layer all * controllers we've found. */ found = 0; TAILQ_FOREACH(ahc, &ahc_tailq, links) { if (ahc_linux_register_host(ahc, template) == 0) found++; } aic7xxx_detect_complete++; return (found); } int ahc_linux_register_host(struct ahc_softc *ahc, Scsi_Host_Template *template) { char buf[80]; struct Scsi_Host *host; char *new_name; u_long s; template->name = ahc->description; host = scsi_register(template, sizeof(struct ahc_softc *)); if (host == NULL) return (ENOMEM); ahc_lock(ahc, &s); *((struct ahc_softc **)host->hostdata) = ahc; ahc->platform_data->host = host; host->can_queue = AHC_MAX_QUEUE; host->cmd_per_lun = 2; host->sg_tablesize = AHC_NSEG; host->select_queue_depths = ahc_linux_select_queue_depth; /* XXX No way to communicate the ID for multiple channels */ host->this_id = ahc->our_id; host->irq = ahc->platform_data->irq; host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8; host->max_lun = AHC_NUM_LUNS; host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0; ahc_set_unit(ahc, ahc_linux_next_unit()); sprintf(buf, "scsi%d", host->host_no); new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT); if (new_name != NULL) { strcpy(new_name, buf); ahc_set_name(ahc, new_name); } host->unique_id = ahc->unit; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,4) scsi_set_pci_device(host, ahc->dev_softc); #endif ahc_linux_initialize_scsi_bus(ahc); ahc_unlock(ahc, &s); return (0); } uint64_t ahc_linux_get_memsize() { struct sysinfo si; si_meminfo(&si); return (si.totalram << PAGE_SHIFT); } /* * Find the smallest available unit number to use * for a new device. We don't just use a static * count to handle the "repeated hot-(un)plug" * scenario. */ static int ahc_linux_next_unit() { struct ahc_softc *ahc; int unit; unit = 0; retry: TAILQ_FOREACH(ahc, &ahc_tailq, links) { if (ahc->unit == unit) { unit++; goto retry; } } return (unit); } /* * Place the SCSI bus into a known state by either resetting it, * or forcing transfer negotiations on the next command to any * target. */ void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc) { int i; int numtarg; i = 0; numtarg = 0; if (aic7xxx_no_reset != 0) ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B); if ((ahc->flags & AHC_RESET_BUS_A) != 0) ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE); else numtarg = (ahc->features & AHC_WIDE) ? 16 : 8; if ((ahc->features & AHC_TWIN) != 0) { if ((ahc->flags & AHC_RESET_BUS_B) != 0) { ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE); } else { if (numtarg == 0) i = 8; numtarg += 8; } } for (; i < numtarg; i++) { struct ahc_devinfo devinfo; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; u_int our_id; u_int target_id; char channel; channel = 'A'; our_id = ahc->our_id; target_id = i; if (i > 7 && (ahc->features & AHC_TWIN) != 0) { channel = 'B'; our_id = ahc->our_id_b; target_id = i % 8; } tinfo = ahc_fetch_transinfo(ahc, channel, our_id, target_id, &tstate); tinfo->goal = tinfo->user; /* * Don't try negotiations that require PPR messages * until we successfully retrieve Inquiry data. */ tinfo->goal.ppr_options = 0; if (tinfo->goal.transport_version > SCSI_REV_2) tinfo->goal.transport_version = SCSI_REV_2; ahc_compile_devinfo(&devinfo, our_id, target_id, CAM_LUN_WILDCARD, channel, ROLE_INITIATOR); ahc_update_neg_request(ahc, &devinfo, tstate, tinfo, /*force*/FALSE); } /* Give the bus some time to recover */ if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) { ahc_linux_freeze_sim_queue(ahc); init_timer(&ahc->platform_data->reset_timer); ahc->platform_data->reset_timer.data = (u_long)ahc; ahc->platform_data->reset_timer.expires = jiffies + (AIC7XXX_RESET_DELAY * HZ)/1000; ahc->platform_data->reset_timer.function = ahc_linux_release_sim_queue; add_timer(&ahc->platform_data->reset_timer); } } int ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg) { ahc->platform_data = malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT); if (ahc->platform_data == NULL) return (ENOMEM); memset(ahc->platform_data, 0, sizeof(struct ahc_platform_data)); TAILQ_INIT(&ahc->platform_data->completeq); TAILQ_INIT(&ahc->platform_data->device_runq); ahc->platform_data->hw_dma_mask = 0xFFFFFFFF; ahc_lockinit(ahc); ahc_done_lockinit(ahc); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) init_MUTEX_LOCKED(&ahc->platform_data->eh_sem); #else ahc->platform_data->eh_sem = MUTEX_LOCKED; #endif ahc->seltime = (aic7xxx_seltime & 0x3) << 4; ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4; return (0); } void ahc_platform_free(struct ahc_softc *ahc) { if (ahc->platform_data != NULL) { if (ahc->platform_data->host != NULL) scsi_unregister(ahc->platform_data->host); if (ahc->platform_data->irq) free_irq(ahc->platform_data->irq, ahc); if (ahc->tag == BUS_SPACE_PIO && ahc->bsh.ioport != 0) release_region(ahc->bsh.ioport, 256); if (ahc->tag == BUS_SPACE_MEMIO && ahc->bsh.maddr != NULL) { u_long base_addr; base_addr = (u_long)ahc->bsh.maddr; base_addr &= PAGE_MASK; iounmap((void *)base_addr); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) release_mem_region(ahc->platform_data->mem_busaddr, 0x1000); #endif } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) /* XXX Need an instance detach in the PCI code */ if (ahc->dev_softc != NULL) ahc->dev_softc->driver = NULL; #endif free(ahc->platform_data, M_DEVBUF); } } void ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb) { ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb), SCB_GET_CHANNEL(ahc, scb), SCB_GET_LUN(scb), SCB_LIST_NULL, ROLE_UNKNOWN, CAM_REQUEUE_REQ); } void ahc_platform_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, ahc_queue_alg alg) { struct ahc_linux_device *dev; int was_queuing; int now_queuing; dev = ahc_linux_get_device(ahc, devinfo->channel - 'A', devinfo->target, devinfo->lun, /*alloc*/FALSE); if (dev == NULL) return; was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED); now_queuing = alg != AHC_QUEUE_NONE; if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0 && (was_queuing != now_queuing) && (dev->active != 0)) { dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY; dev->qfrozen++; } dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG); if (now_queuing) { if (!was_queuing) { /* * Start out agressively and allow our * dynamic queue depth algorithm to take * care of the rest. */ dev->maxtags = AHC_MAX_QUEUE; dev->openings = dev->maxtags - dev->active; } if (alg == AHC_QUEUE_TAGGED) { dev->flags |= AHC_DEV_Q_TAGGED; if (aic7xxx_periodic_otag != 0) dev->flags |= AHC_DEV_PERIODIC_OTAG; } else dev->flags |= AHC_DEV_Q_BASIC; } else { /* We can only have one opening */ dev->maxtags = 0; dev->openings = 1 - dev->active; } } int ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel, int lun, u_int tag, role_t role, uint32_t status) { int chan; int maxchan; int targ; int maxtarg; int clun; int maxlun; int count; if (tag != SCB_LIST_NULL) return (0); chan = 0; if (channel != ALL_CHANNELS) { chan = channel - 'A'; maxchan = chan + 1; } else { maxchan = (ahc->features & AHC_TWIN) ? 2 : 1; } targ = 0; if (target != CAM_TARGET_WILDCARD) { targ = target; maxtarg = targ + 1; } else { maxtarg = (ahc->features & AHC_WIDE) ? 16 : 8; } clun = 0; if (lun != CAM_LUN_WILDCARD) { clun = lun; maxlun = clun + 1; } else { maxlun = 16; } count = 0; for (; chan < maxchan; chan++) { for (; targ < maxtarg; targ++) { for (; clun < maxlun; clun++) { struct ahc_linux_device *dev; struct ahc_busyq *busyq; struct ahc_cmd *acmd; dev = ahc_linux_get_device(ahc, chan, targ, clun, /*alloc*/FALSE); if (dev == NULL) continue; busyq = &dev->busyq; while ((acmd = TAILQ_FIRST(busyq)) != NULL) { Scsi_Cmnd *cmd; cmd = &acmd_scsi_cmd(acmd); TAILQ_REMOVE(busyq, acmd, acmd_links.tqe); count++; cmd->result = status << 16; ahc_linux_queue_cmd_complete(ahc, cmd); } } } } return (count); } /* * Sets the queue depth for each SCSI device hanging * off the input host adapter. */ static void ahc_linux_select_queue_depth(struct Scsi_Host * host, Scsi_Device * scsi_devs) { Scsi_Device *device; struct ahc_softc *ahc; u_long flags; int scbnum; ahc = *((struct ahc_softc **)host->hostdata); ahc_lock(ahc, &flags); scbnum = 0; for (device = scsi_devs; device != NULL; device = device->next) { if (device->host == host) { ahc_linux_device_queue_depth(ahc, device); scbnum += device->queue_depth; } } ahc_unlock(ahc, &flags); } /* * Determines the queue depth for a given device. */ static void ahc_linux_device_queue_depth(struct ahc_softc *ahc, Scsi_Device * device) { struct ahc_devinfo devinfo; struct ahc_initiator_tinfo *targ_info; struct ahc_tmode_tstate *tstate; uint8_t tags; ahc_compile_devinfo(&devinfo, device->channel == 0 ? ahc->our_id : ahc->our_id_b, device->id, device->lun, device->channel == 0 ? 'A' : 'B', ROLE_INITIATOR); targ_info = ahc_fetch_transinfo(ahc, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); tags = 0; if (device->tagged_supported != 0 && (ahc->user_discenable & devinfo.target_mask) != 0) { if (ahc->unit >= NUM_ELEMENTS(aic7xxx_tag_info)) { printf("aic7xxx: WARNING, insufficient " "tag_info instances for installed " "controllers. Using defaults\n"); printf("aic7xxx: Please update the " "aic7xxx_tag_info array in the " "aic7xxx.c source file.\n"); tags = AHC_MAX_QUEUE; } else { adapter_tag_info_t *tag_info; tag_info = &aic7xxx_tag_info[ahc->unit]; tags = tag_info->tag_commands[devinfo.target_offset]; if (tags > AHC_MAX_QUEUE) tags = AHC_MAX_QUEUE; } } if (tags != 0) { device->queue_depth = tags; ahc_set_tags(ahc, &devinfo, AHC_QUEUE_TAGGED); printf("scsi%d:%c:%d:%d: Tagged Queuing enabled. Depth %d\n", ahc->platform_data->host->host_no, device->channel + 'A', device->id, device->lun, tags); } else { /* * We allow the OS to queue 2 untagged transactions to * us at any time even though we can only execute them * serially on the controller/device. This should remove * some latency. */ device->queue_depth = 2; } } /* * Queue an SCB to the controller. */ int ahc_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *)) { struct ahc_softc *ahc; struct ahc_linux_device *dev; u_long flags; ahc = *(struct ahc_softc **)cmd->host->hostdata; /* * Save the callback on completion function. */ cmd->scsi_done = scsi_done; ahc_lock(ahc, &flags); dev = ahc_linux_get_device(ahc, cmd->channel, cmd->target, cmd->lun, /*alloc*/TRUE); if (dev == NULL) { ahc_unlock(ahc, &flags); printf("aic7xxx_linux_queue: Unable to allocate device!\n"); return (-ENOMEM); } cmd->result = CAM_REQ_INPROG << 16; TAILQ_INSERT_TAIL(&dev->busyq, (struct ahc_cmd *)cmd, acmd_links.tqe); if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) { TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); dev->flags |= AHC_DEV_ON_RUN_LIST; ahc_linux_run_device_queues(ahc); } ahc_unlock(ahc, &flags); return (0); } static void ahc_linux_run_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev) { struct ahc_cmd *acmd; struct scsi_cmnd *cmd; struct scb *scb; struct hardware_scb *hscb; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; uint16_t mask; if ((dev->flags & AHC_DEV_ON_RUN_LIST) != 0) panic("running device on run list"); while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL && dev->openings > 0 && dev->qfrozen == 0) { /* * Schedule us to run later. The only reason we are not * running is because the whole controller Q is frozen. */ if (ahc->platform_data->qfrozen != 0) { TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); dev->flags |= AHC_DEV_ON_RUN_LIST; return; } /* * Get an scb to use. */ if ((scb = ahc_get_scb(ahc)) == NULL) { TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); dev->flags |= AHC_DEV_ON_RUN_LIST; ahc->flags |= AHC_RESOURCE_SHORTAGE; return; } TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe); cmd = &acmd_scsi_cmd(acmd); scb->io_ctx = cmd; scb->platform_data->dev = dev; hscb = scb->hscb; cmd->host_scribble = (char *)scb; /* * Fill out basics of the HSCB. */ hscb->control = 0; hscb->scsiid = BUILD_SCSIID(ahc, cmd); hscb->lun = cmd->lun; mask = SCB_GET_TARGET_MASK(ahc, scb); tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb), SCB_GET_OUR_ID(scb), SCB_GET_TARGET(ahc, scb), &tstate); hscb->scsirate = tinfo->scsirate; hscb->scsioffset = tinfo->curr.offset; if ((tstate->ultraenb & mask) != 0) hscb->control |= ULTRAENB; if ((ahc->user_discenable & mask) != 0) hscb->control |= DISCENB; if ((tstate->auto_negotiate & mask) != 0) { scb->flags |= SCB_AUTO_NEGOTIATE; scb->hscb->control |= MK_MESSAGE; } if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) { if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH && (dev->flags & AHC_DEV_Q_TAGGED) != 0) { hscb->control |= MSG_ORDERED_TASK; dev->commands_since_idle_or_otag = 0; } else { hscb->control |= MSG_SIMPLE_TASK; } } hscb->cdb_len = cmd->cmd_len; if (hscb->cdb_len <= 12) { memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len); } else { memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len); scb->flags |= SCB_CDB32_PTR; } scb->platform_data->xfer_len = 0; ahc_set_residual(scb, 0); ahc_set_sense_residual(scb, 0); if (cmd->use_sg != 0) { struct ahc_dma_seg *sg; struct scatterlist *cur_seg; struct scatterlist *end_seg; int nseg; cur_seg = (struct scatterlist *)cmd->request_buffer; nseg = pci_map_sg(ahc->dev_softc, cur_seg, cmd->use_sg, scsi_to_pci_dma_dir(cmd ->sc_data_direction)); end_seg = cur_seg + nseg; /* Copy the segments into the SG list. */ sg = scb->sg_list; /* * The sg_count may be larger than nseg if * a transfer crosses a 32bit page. */ scb->sg_count = 0; while(cur_seg < end_seg) { bus_addr_t addr; bus_size_t len; int consumed; addr = sg_dma_address(cur_seg); len = sg_dma_len(cur_seg); consumed = ahc_linux_map_seg(ahc, scb, sg, addr, len); sg += consumed; scb->sg_count += consumed; cur_seg++; } sg--; sg->len |= ahc_htole32(AHC_DMA_LAST_SEG); /* * Reset the sg list pointer. */ scb->hscb->sgptr = ahc_htole32(scb->sg_list_phys | SG_FULL_RESID); /* * Copy the first SG into the "current" * data pointer area. */ scb->hscb->dataptr = scb->sg_list->addr; scb->hscb->datacnt = scb->sg_list->len; } else if (cmd->request_bufflen != 0) { struct ahc_dma_seg *sg; bus_addr_t addr; sg = scb->sg_list; addr = pci_map_single(ahc->dev_softc, cmd->request_buffer, cmd->request_bufflen, scsi_to_pci_dma_dir(cmd->sc_data_direction)); scb->sg_count = ahc_linux_map_seg(ahc, scb, sg, addr, cmd->request_bufflen); sg->len |= ahc_htole32(AHC_DMA_LAST_SEG); /* * Reset the sg list pointer. */ scb->hscb->sgptr = ahc_htole32(scb->sg_list_phys | SG_FULL_RESID); /* * Copy the first SG into the "current" * data pointer area. */ scb->hscb->dataptr = sg->addr; scb->hscb->datacnt = sg->len; } else { scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL); scb->hscb->dataptr = 0; scb->hscb->datacnt = 0; scb->sg_count = 0; } ahc_sync_sglist(ahc, scb, BUS_DMASYNC_PREWRITE); LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links); dev->openings--; dev->active++; dev->commands_issued++; if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0) dev->commands_since_idle_or_otag++; /* * We only allow one untagged transaction * per target in the initiator role unless * we are storing a full busy target *lun* * table in SCB space. */ if ((scb->hscb->control & (TARGET_SCB|TAG_ENB)) == 0 && (ahc->features & AHC_SCB_BTT) == 0) { struct scb_tailq *untagged_q; int target_offset; target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); untagged_q = &(ahc->untagged_queues[target_offset]); TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe); scb->flags |= SCB_UNTAGGEDQ; if (TAILQ_FIRST(untagged_q) != scb) continue; } scb->flags |= SCB_ACTIVE; ahc_queue_scb(ahc, scb); } } /* * SCSI controller interrupt handler. */ void ahc_linux_isr(int irq, void *dev_id, struct pt_regs * regs) { struct ahc_softc *ahc; struct ahc_cmd *acmd; u_long flags; ahc = (struct ahc_softc *) dev_id; ahc_lock(ahc, &flags); ahc_intr(ahc); /* * It would be nice to run the device queues from a * bottom half handler, but as there is no way to * dynamically register one, we'll have to postpone * that until we get integrated into the kernel. */ ahc_linux_run_device_queues(ahc); acmd = TAILQ_FIRST(&ahc->platform_data->completeq); TAILQ_INIT(&ahc->platform_data->completeq); ahc_unlock(ahc, &flags); if (acmd != NULL) ahc_linux_run_complete_queue(ahc, acmd); } void ahc_platform_flushwork(struct ahc_softc *ahc) { struct ahc_cmd *acmd; acmd = TAILQ_FIRST(&ahc->platform_data->completeq); TAILQ_INIT(&ahc->platform_data->completeq); if (acmd != NULL) ahc_linux_run_complete_queue(ahc, acmd); } static struct ahc_linux_target* ahc_linux_alloc_target(struct ahc_softc *ahc, u_int channel, u_int target) { struct ahc_linux_target *targ; u_int target_offset; targ = malloc(sizeof(*targ), M_DEVBUG, M_NOWAIT); if (targ == NULL) return (NULL); memset(targ, 0, sizeof(*targ)); targ->channel = channel; targ->target = target; target_offset = target; if (channel != 0) target_offset += 8; ahc->platform_data->targets[target_offset] = targ; return (targ); } static void ahc_linux_free_target(struct ahc_softc *ahc, struct ahc_linux_target *targ) { u_int target_offset; target_offset = targ->target; if (targ->channel != 0) target_offset += 8; ahc->platform_data->targets[target_offset] = NULL; free(targ, M_DEVBUF); } static struct ahc_linux_device* ahc_linux_alloc_device(struct ahc_softc *ahc, struct ahc_linux_target *targ, u_int lun) { struct ahc_linux_device *dev; dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT); if (dev == NULL) return (NULL); memset(dev, 0, sizeof(*dev)); TAILQ_INIT(&dev->busyq); dev->flags = AHC_DEV_UNCONFIGURED; dev->lun = lun; dev->target = targ; /* * We start out life using untagged * transactions of which we allow one. */ dev->openings = 1; /* * Set maxtags to 0. This will be changed if we * later determine that we are dealing with * a tagged queuing capable device. */ dev->maxtags = 0; targ->refcount++; targ->devices[lun] = dev; return (dev); } static void ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev) { struct ahc_linux_target *targ; targ = dev->target; targ->devices[dev->lun] = NULL; free(dev, M_DEVBUF); targ->refcount--; if (targ->refcount == 0) ahc_linux_free_target(ahc, targ); } /* * Return a string describing the driver. */ const char * ahc_linux_info(struct Scsi_Host *host) { static char buffer[512]; char ahc_info[256]; char *bp; struct ahc_softc *ahc; bp = &buffer[0]; ahc = *(struct ahc_softc **)host->hostdata; memset(bp, 0, sizeof(buffer)); strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev "); strcat(bp, AIC7XXX_DRIVER_VERSION); strcat(bp, "\n"); strcat(bp, " <"); strcat(bp, ahc->description); strcat(bp, ">\n"); strcat(bp, " "); ahc_controller_info(ahc, ahc_info); strcat(bp, ahc_info); strcat(bp, "\n"); return (bp); } void ahc_send_async(struct ahc_softc *ahc, char channel, u_int target, u_int lun, ac_code code, void *arg) { switch (code) { case AC_TRANSFER_NEG: { char buf[80]; struct ahc_linux_target *targ; struct info_str info; struct ahc_initiator_tinfo *tinfo; struct ahc_tmode_tstate *tstate; int target_offset; info.buffer = buf; info.length = sizeof(buf); info.offset = 0; info.pos = 0; tinfo = ahc_fetch_transinfo(ahc, channel, channel == 'A' ? ahc->our_id : ahc->our_id_b, target, &tstate); /* * Don't bother reporting results while * negotiations are still pending. */ if (tinfo->curr.period != tinfo->goal.period || tinfo->curr.width != tinfo->goal.width || tinfo->curr.offset != tinfo->goal.offset || tinfo->curr.ppr_options != tinfo->goal.ppr_options) if (bootverbose == 0) break; /* * Don't bother reporting results that * are identical to those last reported. */ target_offset = target; if (channel == 'B') target_offset += 8; targ = ahc->platform_data->targets[target_offset]; if (targ != NULL && tinfo->curr.period == targ->last_tinfo.period && tinfo->curr.width == targ->last_tinfo.width && tinfo->curr.offset == targ->last_tinfo.offset && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options) if (bootverbose == 0) break; targ->last_tinfo.period = tinfo->curr.period; targ->last_tinfo.width = tinfo->curr.width; targ->last_tinfo.offset = tinfo->curr.offset; targ->last_tinfo.ppr_options = tinfo->curr.ppr_options; printf("(%s:%c:", ahc_name(ahc), channel); if (target == CAM_TARGET_WILDCARD) printf("*): "); else printf("%d): ", target); ahc_format_transinfo(&info, &tinfo->curr); if (info.pos < info.length) *info.buffer = '\0'; else buf[info.length - 1] = '\0'; printf("%s", buf); break; } case AC_SENT_BDR: break; case AC_BUS_RESET: #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,0) if (ahc->platform_data->host != NULL) { scsi_report_bus_reset(ahc->platform_data->host, channel - 'A'); } #endif break; default: panic("ahc_send_async: Unexpected async event"); } } /* * Calls the higher level scsi done function and frees the scb. */ void ahc_done(struct ahc_softc *ahc, struct scb * scb) { Scsi_Cmnd *cmd; struct ahc_linux_device *dev; LIST_REMOVE(scb, pending_links); if ((scb->flags & SCB_UNTAGGEDQ) != 0) { struct scb_tailq *untagged_q; int target_offset; target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); untagged_q = &(ahc->untagged_queues[target_offset]); TAILQ_REMOVE(untagged_q, scb, links.tqe); ahc_run_untagged_queue(ahc, untagged_q); } if ((scb->flags & SCB_ACTIVE) == 0) { printf("SCB %d done'd twice\n", scb->hscb->tag); ahc_dump_card_state(ahc); panic("Stopping for safety"); } cmd = scb->io_ctx; dev = scb->platform_data->dev; dev->active--; dev->openings++; ahc_linux_unmap_scb(ahc, scb); if (scb->flags & SCB_SENSE) { memcpy(cmd->sense_buffer, ahc_get_sense_buf(ahc, scb), MIN(sizeof(struct scsi_sense_data), sizeof(cmd->sense_buffer))); cmd->result |= (DRIVER_SENSE << 24); } else { /* * Guard against stale sense data. * The Linux mid-layer assumes that sense * was retrieved anytime the first byte of * the sense buffer looks "sane". */ cmd->sense_buffer[0] = 0; } if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) { uint32_t amount_xferred; amount_xferred = ahc_get_transfer_length(scb) - ahc_get_residual(scb); if (amount_xferred < scb->io_ctx->underflow) { printf("Saw underflow (%ld of %ld bytes). " "Treated as error\n", ahc_get_residual(scb), ahc_get_transfer_length(scb)); ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR); } else { ahc_set_transaction_status(scb, CAM_REQ_CMP); ahc_linux_sniff_command(ahc, cmd, scb); } } else if (ahc_get_transaction_status(scb) == DID_OK) { ahc_linux_handle_scsi_status(ahc, dev, scb); } else if (ahc_get_transaction_status(scb) == DID_NO_CONNECT) { /* * Should a selection timeout kill the device? * That depends on whether the selection timeout * is persistent. Since we have no guarantee that * the mid-layer will issue an inquiry for this device * again, we can't just kill it off. dev->flags |= AHC_DEV_UNCONFIGURED; */ } if (dev->openings == 1 && ahc_get_transaction_status(scb) == CAM_REQ_CMP && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL) dev->tag_success_count++; /* * Some devices deal with temporary internal resource * shortages by returning queue full. When the queue * full occurrs, we throttle back. Slowly try to get * back to our previous queue depth. */ if ((dev->openings + dev->active) < dev->maxtags && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) { dev->tag_success_count = 0; dev->openings++; } if (dev->active == 0) dev->commands_since_idle_or_otag = 0; if (TAILQ_EMPTY(&dev->busyq)) { if ((dev->flags & AHC_DEV_UNCONFIGURED) != 0 && dev->active == 0) ahc_linux_free_device(ahc, dev); } else if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) { TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); dev->flags |= AHC_DEV_ON_RUN_LIST; } if ((scb->flags & SCB_RECOVERY_SCB) != 0) { printf("Recovery SCB completes\n"); up(&ahc->platform_data->eh_sem); } ahc_free_scb(ahc, scb); ahc_linux_queue_cmd_complete(ahc, cmd); } static void ahc_linux_handle_scsi_status(struct ahc_softc *ahc, struct ahc_linux_device *dev, struct scb *scb) { /* * We don't currently trust the mid-layer to * properly deal with queue full or busy. So, * when one occurs, we tell the mid-layer to * unconditionally requeue the command to us * so that we can retry it ourselves. We also * implement our own throttling mechanism so * we don't clobber the device with too many * commands. */ switch (ahc_get_scsi_status(scb)) { default: break; case SCSI_STATUS_QUEUE_FULL: { /* * By the time the core driver has returned this * command, all other commands that were queued * to us but not the device have been returned. * This ensures that dev->active is equal to * the number of commands actually queued to * the device. */ dev->tag_success_count = 0; if (dev->active != 0) { /* * Drop our opening count to the number * of commands currently outstanding. */ dev->openings = 0; /* ahc_print_path(ahc, scb); printf("Dropping tag count to %d\n", dev->active); */ if (dev->active == dev->tags_on_last_queuefull) { dev->last_queuefull_same_count++; /* * If we repeatedly see a queue full * at the same queue depth, this * device has a fixed number of tag * slots. Lock in this tag depth * so we stop seeing queue fulls from * this device. */ if (dev->last_queuefull_same_count == AHC_LOCK_TAGS_COUNT) { dev->maxtags = dev->active; ahc_print_path(ahc, scb); printf("Locking max tag count at %d\n", dev->active); } } else { dev->tags_on_last_queuefull = dev->active; dev->last_queuefull_same_count = 0; } ahc_set_transaction_status(scb, CAM_REQUEUE_REQ); ahc_set_scsi_status(scb, SCSI_STATUS_OK); break; } /* * Drop down to a single opening, and treat this * as if the target return BUSY SCSI status. */ dev->openings = 1; /* FALLTHROUGH */ } case SCSI_STATUS_BUSY: /* * XXX Set a timer and handle ourselves???? * For now we pray that the mid-layer does something * sane for devices that are busy. */ ahc_set_scsi_status(scb, SCSI_STATUS_BUSY); break; } } static void ahc_linux_filter_command(struct ahc_softc *ahc, Scsi_Cmnd *cmd, struct scb *scb) { switch (cmd->cmnd[0]) { case INQUIRY: { struct ahc_devinfo devinfo; struct scsi_inquiry *inq; struct scsi_inquiry_data *sid; struct ahc_initiator_tinfo *targ_info; struct ahc_tmode_tstate *tstate; struct ahc_syncrate *syncrate; struct ahc_linux_device *dev; u_int scsiid; u_int maxsync; int transferred_len; int minlen; u_int width; u_int period; u_int offset; u_int ppr_options; /* * Validate the command. We only want to filter * standard inquiry commands, not those querying * Vital Product Data. */ inq = (struct scsi_inquiry *)cmd->cmnd; if ((inq->byte2 & SI_EVPD) != 0 || inq->page_code != 0) break; if (cmd->use_sg != 0) { printf("%s: SG Inquiry response ignored\n", ahc_name(ahc)); break; } transferred_len = ahc_get_transfer_length(scb) - ahc_get_residual(scb); sid = (struct scsi_inquiry_data *)cmd->request_buffer; /* * Determine if this lun actually exists. If so, * hold on to its corresponding device structure. * If not, make sure we release the device and * don't bother processing the rest of this inquiry * command. */ dev = ahc_linux_get_device(ahc, cmd->channel, cmd->target, cmd->lun, /*alloc*/FALSE); if (transferred_len >= 1 && SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) { dev->flags &= ~AHC_DEV_UNCONFIGURED; } else { dev->flags |= AHC_DEV_UNCONFIGURED; break; } /* * Update our notion of this device's transfer * negotiation capabilities. */ scsiid = BUILD_SCSIID(ahc, cmd); ahc_compile_devinfo(&devinfo, SCSIID_OUR_ID(scsiid), cmd->target, cmd->lun, SCSIID_CHANNEL(ahc, scsiid), ROLE_INITIATOR); targ_info = ahc_fetch_transinfo(ahc, devinfo.channel, devinfo.our_scsiid, devinfo.target, &tstate); width = targ_info->user.width; period = targ_info->user.period; offset = targ_info->user.offset; ppr_options = targ_info->user.ppr_options; minlen = offsetof(struct scsi_inquiry_data, version) + 1; if (transferred_len >= minlen) { targ_info->curr.protocol_version = SID_ANSI_REV(sid); /* * Only attempt SPI3 once we've verified that * the device claims to support SPI3 features. */ if (targ_info->curr.protocol_version < SCSI_REV_2) targ_info->curr.transport_version = SID_ANSI_REV(sid); else targ_info->curr.transport_version = SCSI_REV_2; } minlen = offsetof(struct scsi_inquiry_data, flags) + 1; if (transferred_len >= minlen && (sid->additional_length + 4) >= minlen) { if ((sid->flags & SID_WBus16) == 0) width = MSG_EXT_WDTR_BUS_8_BIT; if ((sid->flags & SID_Sync) == 0) { period = 0; offset = 0; ppr_options = 0; } } else { /* Keep current settings */ break; } minlen = offsetof(struct scsi_inquiry_data, spi3data) + 1; /* * This is a kludge to deal with inquiry requests that * are not large enough for us to pull the spi3 bits. * In this case, we assume that a device that tells us * they can provide inquiry data that spans the SPI3 * bits and says its SCSI3 can handle a PPR request. * If the inquiry request has sufficient buffer space to * cover these bits, we check them to see if any ppr options * are available. */ if ((sid->additional_length + 4) >= minlen) { if (transferred_len >= minlen && (sid->spi3data & SID_SPI_CLOCK_DT) == 0) ppr_options = 0; if (targ_info->curr.protocol_version > SCSI_REV_2) targ_info->curr.transport_version = 3; else ppr_options = 0; } else { ppr_options = 0; } ahc_validate_width(ahc, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN); if ((ahc->features & AHC_ULTRA2) != 0) maxsync = AHC_SYNCRATE_DT; else if ((ahc->features & AHC_ULTRA) != 0) maxsync = AHC_SYNCRATE_ULTRA; else maxsync = AHC_SYNCRATE_FAST; syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, maxsync); ahc_validate_offset(ahc, /*tinfo limit*/NULL, syncrate, &offset, width, ROLE_UNKNOWN); if (offset == 0 || period == 0) { period = 0; offset = 0; ppr_options = 0; } /* Apply our filtered user settings. */ ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, /*paused*/FALSE); ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset, ppr_options, AHC_TRANS_GOAL, /*paused*/FALSE); break; } default: panic("ahc_linux_filter_command: Unexpected Command type %x\n", cmd->cmnd[0]); break; } } static void ahc_linux_sem_timeout(u_long arg) { struct semaphore *sem; sem = (struct semaphore *)arg; up(sem); } static void ahc_linux_freeze_sim_queue(struct ahc_softc *ahc) { ahc->platform_data->qfrozen++; if (ahc->platform_data->qfrozen == 1) scsi_block_requests(ahc->platform_data->host); } static void ahc_linux_release_sim_queue(u_long arg) { struct ahc_softc *ahc; u_long s; int unblock_reqs; ahc = (struct ahc_softc *)arg; unblock_reqs = 0; ahc_lock(ahc, &s); if (ahc->platform_data->qfrozen > 0) ahc->platform_data->qfrozen--; if (ahc->platform_data->qfrozen == 0) { unblock_reqs = 1; ahc_linux_run_device_queues(ahc); } ahc_unlock(ahc, &s); /* * There is still a race here. The mid-layer * should keep its own freeze count and use * a bottom half handler to run the queues * so we can unblock with our own lock held. */ if (unblock_reqs) scsi_unblock_requests(ahc->platform_data->host); } static int ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag) { struct ahc_softc *ahc; struct ahc_cmd *acmd; struct ahc_cmd *list_acmd; struct ahc_linux_device *dev; struct scb *pending_scb; u_long s; u_int saved_scbptr; u_int active_scb_index; u_int last_phase; int retval; int paused; int wait; int disconnected; paused = FALSE; wait = FALSE; ahc = *(struct ahc_softc **)cmd->host->hostdata; acmd = (struct ahc_cmd *)cmd; printf("%s:%d:%d:%d: Attempting to queue a%s message\n", ahc_name(ahc), cmd->channel, cmd->target, cmd->lun, flag == SCB_ABORT ? "n ABORT" : " TARGET RESET"); /* * It is a bug that the upper layer takes * this lock just prior to calling us. */ spin_unlock_irq(&io_request_lock); ahc_lock(ahc, &s); /* * First determine if we currently own this command. * Start by searching the device queue. If not found * there, check the pending_scb list. If not found * at all, and the system wanted us to just abort the * command return success. */ dev = ahc_linux_get_device(ahc, cmd->channel, cmd->target, cmd->lun, /*alloc*/FALSE); if (dev == NULL) { /* * No target device for this command exists, * so we must not still own the command. */ printf("%s:%d:%d:%d: Is not an active device\n", ahc_name(ahc), cmd->channel, cmd->target, cmd->lun); retval = SUCCESS; goto no_cmd; } TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) { if (list_acmd == acmd) break; } if (list_acmd != NULL) { printf("%s:%d:%d:%d: Command found on device queue\n", ahc_name(ahc), cmd->channel, cmd->target, cmd->lun); if (flag == SCB_ABORT) { TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe); cmd->result = DID_ABORT << 16; ahc_linux_queue_cmd_complete(ahc, cmd); retval = SUCCESS; goto done; } } /* * See if we can find a matching cmd in the pending list. */ LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { if (pending_scb->io_ctx == cmd) break; } if (pending_scb == NULL && flag == SCB_DEVICE_RESET) { /* Any SCB for this device will do for a target reset */ LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { if (ahc_match_scb(ahc, pending_scb, cmd->target, cmd->channel, CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_INITIATOR) == 0) break; } } if (pending_scb == NULL) { printf("%s:%d:%d:%d: Command not found\n", ahc_name(ahc), cmd->channel, cmd->target, cmd->lun); goto no_cmd; } if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) { /* * We can't queue two recovery actions using the same SCB */ retval = FAILED; goto done; } /* * Ensure that the card doesn't do anything * behind our back. Also make sure that we * didn't "just" miss an interrupt that would * affect this cmd. */ ahc->flags |= AHC_ALL_INTERRUPTS; do { ahc_intr(ahc); ahc_pause(ahc); ahc_clear_critical_section(ahc); } while (ahc_inb(ahc, INTSTAT) & INT_PEND); ahc->flags &= ~AHC_ALL_INTERRUPTS; paused = TRUE; ahc_dump_card_state(ahc); if ((pending_scb->flags & SCB_ACTIVE) == 0) { printf("%s:%d:%d:%d: Command already completed\n", ahc_name(ahc), cmd->channel, cmd->target, cmd->lun); goto no_cmd; } disconnected = TRUE; if (flag == SCB_ABORT) { if (ahc_search_qinfifo(ahc, cmd->target, cmd->channel + 'A', cmd->lun, pending_scb->hscb->tag, ROLE_INITIATOR, CAM_REQ_ABORTED, SEARCH_COMPLETE) > 0) { printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n", ahc_name(ahc), cmd->channel, cmd->target, cmd->lun); retval = SUCCESS; goto done; } } else if (ahc_search_qinfifo(ahc, cmd->target, cmd->channel + 'A', cmd->lun, pending_scb->hscb->tag, ROLE_INITIATOR, /*status*/0, SEARCH_COUNT) > 0) { disconnected = FALSE; } /* * At this point, pending_scb is the scb associated with the * passed in command. That command is currently active on the * bus, is in the disconnected state, or we're hoping to find * a command for the same target active on the bus to abuse to * send a BDR. Queue the appropriate message based on which of * these states we are in. */ last_phase = ahc_inb(ahc, LASTPHASE); saved_scbptr = ahc_inb(ahc, SCBPTR); active_scb_index = ahc_inb(ahc, SCB_TAG); if (last_phase != P_BUSFREE && (pending_scb->hscb->tag == active_scb_index || (flag == SCB_DEVICE_RESET && SCSIID_TARGET(ahc, ahc_inb(ahc, SAVED_SCSIID)) == cmd->target))) { /* * We're active on the bus, so assert ATN * and hope that the target responds. */ pending_scb = ahc_lookup_scb(ahc, active_scb_index); pending_scb->flags |= SCB_RECOVERY_SCB|flag; ahc_outb(ahc, MSG_OUT, HOST_MSG); ahc_outb(ahc, SCSISIGO, last_phase|ATNO); printf("%s:%d:%d:%d: Device is active, asserting ATN\n", ahc_name(ahc), cmd->channel, cmd->target, cmd->lun); wait = TRUE; } else if (disconnected) { /* * Actually re-queue this SCB in an attempt * to select the device before it reconnects. * In either case (selection or reselection), * we will now issue the approprate message * to the timed-out device. * * Set the MK_MESSAGE control bit indicating * that we desire to send a message. We * also set the disconnected flag since * in the paging case there is no guarantee * that our SCB control byte matches the * version on the card. We don't want the * sequencer to abort the command thinking * an unsolicited reselection occurred. */ pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED; pending_scb->flags |= SCB_RECOVERY_SCB|flag; /* * Remove any cached copy of this SCB in the * disconnected list in preparation for the * queuing of our abort SCB. We use the * same element in the SCB, SCB_NEXT, for * both the qinfifo and the disconnected list. */ ahc_search_disc_list(ahc, cmd->target, cmd->channel + 'A', cmd->lun, pending_scb->hscb->tag, /*stop_on_first*/TRUE, /*remove*/TRUE, /*save_state*/FALSE); /* * In the non-paging case, the sequencer will * never re-reference the in-core SCB. * To make sure we are notified during * reslection, set the MK_MESSAGE flag in * the card's copy of the SCB. */ if ((ahc->flags & AHC_PAGESCBS) == 0) { ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag); ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE); } /* * Clear out any entries in the QINFIFO first * so we are the next SCB for this target * to run. */ ahc_search_qinfifo(ahc, cmd->target, cmd->channel + 'A', cmd->lun, SCB_LIST_NULL, ROLE_INITIATOR, CAM_REQUEUE_REQ, SEARCH_COMPLETE); ahc_print_path(ahc, pending_scb); printf("Queuing a recovery SCB\n"); ahc_qinfifo_requeue_tail(ahc, pending_scb); ahc_outb(ahc, SCBPTR, saved_scbptr); printf("%s:%d:%d:%d: Device is disconnected, re-queuing SCB\n", ahc_name(ahc), cmd->channel, cmd->target, cmd->lun); wait = TRUE; } else { printf("%s:%d:%d:%d: Unable to deliver message\n", ahc_name(ahc), cmd->channel, cmd->target, cmd->lun); retval = FAILED; goto done; } no_cmd: /* * Our assumption is that if we don't have the command, no * recovery action was required, so we return success. Again, * the semantics of the mid-layer recovery engine are not * well defined, so this may change in time. */ retval = SUCCESS; done: if (paused) ahc_unpause(ahc); if (wait) { struct timer_list timer; int ret; ahc_unlock(ahc, &s); init_timer(&timer); timer.data = (u_long)&ahc->platform_data->eh_sem; timer.expires = jiffies + (5 * HZ); timer.function = ahc_linux_sem_timeout; add_timer(&timer); printf("Recovery code sleeping\n"); down(&ahc->platform_data->eh_sem); printf("Recovery code awake\n"); ret = del_timer(&timer); if (ret == 0) { printf("Timer Expired\n"); retval = FAILED; } ahc_lock(ahc, &s); } ahc_linux_run_device_queues(ahc); acmd = TAILQ_FIRST(&ahc->platform_data->completeq); TAILQ_INIT(&ahc->platform_data->completeq); ahc_unlock(ahc, &s); if (acmd != NULL) ahc_linux_run_complete_queue(ahc, acmd); spin_lock_irq(&io_request_lock); return (retval); } /* * Abort the current SCSI command(s). */ int ahc_linux_abort(Scsi_Cmnd *cmd) { int error; error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT); if (error != 0) printf("aic7xxx_abort returns 0x%x\n", error); return (error); } /* * Attempt to send a target reset message to the device that timed out. */ int ahc_linux_dev_reset(Scsi_Cmnd *cmd) { int error; error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET); if (error != 0) printf("aic7xxx_dev_reset returns 0x%x\n", error); return (error); } /* * Reset the SCSI bus. */ int ahc_linux_bus_reset(Scsi_Cmnd *cmd) { struct ahc_softc *ahc; struct ahc_cmd *acmd; u_long s; int found; /* * It is a bug that the upper layer takes * this lock just prior to calling us. */ spin_unlock_irq(&io_request_lock); ahc = *(struct ahc_softc **)cmd->host->hostdata; ahc_lock(ahc, &s); found = ahc_reset_channel(ahc, cmd->channel + 'A', /*initiate reset*/TRUE); acmd = TAILQ_FIRST(&ahc->platform_data->completeq); TAILQ_INIT(&ahc->platform_data->completeq); ahc_unlock(ahc, &s); if (bootverbose) printf("%s: SCSI bus reset delivered. " "%d SCBs aborted.\n", ahc_name(ahc), found); if (acmd != NULL) ahc_linux_run_complete_queue(ahc, acmd); spin_lock_irq(&io_request_lock); return SUCCESS; } /* * Return the disk geometry for the given SCSI device. */ int ahc_linux_biosparam(Disk *disk, kdev_t dev, int geom[]) { int heads; int sectors; int cylinders; int ret; int extended; struct ahc_softc *ahc; struct buffer_head *bh; ahc = *((struct ahc_softc **)disk->device->host->hostdata); bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev)); if (bh) { ret = scsi_partsize(bh, disk->capacity, &geom[2], &geom[0], &geom[1]); brelse(bh); if (ret != -1) return (ret); } heads = 64; sectors = 32; cylinders = disk->capacity / (heads * sectors); if (aic7xxx_extended != 0) extended = 1; else if (disk->device->channel == 0) extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0; else extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0; if (extended && cylinders >= 1024) { heads = 255; sectors = 63; cylinders = disk->capacity / (heads * sectors); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return (0); } /* * Free the passed in Scsi_Host memory structures prior to unloading the * module. */ int ahc_linux_release(struct Scsi_Host * host) { struct ahc_softc *ahc; if (host != NULL) { ahc = *(struct ahc_softc **)host->hostdata; ahc_free(ahc); } if (TAILQ_EMPTY(&ahc_tailq)) { unregister_reboot_notifier(&ahc_linux_notifier); #ifdef CONFIG_PCI #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) pci_unregister_driver(&aic7xxx_pci_driver); #endif #endif } return (0); } void ahc_platform_dump_card_state(struct ahc_softc *ahc) { struct ahc_linux_device *dev; int channel; int maxchannel; int target; int maxtarget; int lun; int i; maxchannel = (ahc->features & AHC_TWIN) ? 1 : 0; maxtarget = (ahc->features & AHC_WIDE) ? 15 : 7; for (channel = 0; channel <= maxchannel; channel++) { for (target = 0; target <=maxtarget; target++) { for (lun = 0; lun < AHC_NUM_LUNS; lun++) { struct ahc_cmd *acmd; dev = ahc_linux_get_device(ahc, channel, target, lun, /*alloc*/FALSE); if (dev == NULL) continue; printf("DevQ(%d:%d:%d): ", channel, target, lun); i = 0; TAILQ_FOREACH(acmd, &dev->busyq, acmd_links.tqe) { if (i++ > 256) break; } printf("%d waiting\n", i); } } } } #if defined(MODULE) || LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0) static Scsi_Host_Template driver_template = AIC7XXX; Scsi_Host_Template *aic7xxx_driver_template = &driver_template; #include "../scsi_module.c" #endif