/*****************************************************************************/ /* * cmpci.c -- C-Media PCI audio driver. * * Copyright (C) 1999 ChenLi Tien (cltien@cmedia.com.tw) * C-media support (support@cmedia.com.tw) * * Based on the PCI drivers by Thomas Sailer (sailer@ife.ee.ethz.ch) * * For update, visit: * http://members.home.net/puresoft/cmedia.html * http://www.cmedia.com.tw * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Special thanks to David C. Niemi, Jan Pfeifer * * * Module command line parameters: * none so far * * * Supported devices: * /dev/dsp standard /dev/dsp device, (mostly) OSS compatible * /dev/mixer standard /dev/mixer device, (mostly) OSS compatible * /dev/midi simple MIDI UART interface, no ioctl * * The card has both an FM and a Wavetable synth, but I have to figure * out first how to drive them... * * Revision history * 06.05.98 0.1 Initial release * 10.05.98 0.2 Fixed many bugs, esp. ADC rate calculation * First stab at a simple midi interface (no bells&whistles) * 13.05.98 0.3 Fix stupid cut&paste error: set_adc_rate was called instead of * set_dac_rate in the FMODE_WRITE case in cm_open * Fix hwptr out of bounds (now mpg123 works) * 14.05.98 0.4 Don't allow excessive interrupt rates * 08.06.98 0.5 First release using Alan Cox' soundcore instead of miscdevice * 03.08.98 0.6 Do not include modversions.h * Now mixer behaviour can basically be selected between * "OSS documented" and "OSS actual" behaviour * 31.08.98 0.7 Fix realplayer problems - dac.count issues * 10.12.98 0.8 Fix drain_dac trying to wait on not yet initialized DMA * 16.12.98 0.9 Fix a few f_file & FMODE_ bugs * 06.01.99 0.10 remove the silly SA_INTERRUPT flag. * hopefully killed the egcs section type conflict * 12.03.99 0.11 cinfo.blocks should be reset after GETxPTR ioctl. * reported by Johan Maes * 22.03.99 0.12 return EAGAIN instead of EBUSY when O_NONBLOCK * read/write cannot be executed * 18.08.99 1.5 Only deallocate DMA buffer when unloading. * 02.09.99 1.6 Enable SPDIF LOOP * Change the mixer read back * 21.09.99 2.33 Use RCS version as driver version. * Add support for modem, S/PDIF loop and 4 channels. * (8738 only) * Fix bug cause x11amp cannot play. * * Fixes: * Arnaldo Carvalho de Melo * 18/05/2001 - .bss nitpicks, fix a bug in set_dac_channels where it * was calling prog_dmabuf with s->lock held, call missing * unlock_kernel in cm_midi_release * 08/10/2001 - use set_current_state in some more places * * Carlos Eduardo Gorges * Fri May 25 2001 * - SMP support ( spin[un]lock* revision ) * - speaker mixer support * Mon Aug 13 2001 * - optimizations and cleanups * */ /*****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dm.h" /* --------------------------------------------------------------------- */ #undef OSS_DOCUMENTED_MIXER_SEMANTICS #undef DMABYTEIO /* --------------------------------------------------------------------- */ #define CM_MAGIC ((PCI_VENDOR_ID_CMEDIA<<16)|PCI_DEVICE_ID_CMEDIA_CM8338A) /* CM8338 registers definition ****************/ #define CODEC_CMI_FUNCTRL0 (0x00) #define CODEC_CMI_FUNCTRL1 (0x04) #define CODEC_CMI_CHFORMAT (0x08) #define CODEC_CMI_INT_HLDCLR (0x0C) #define CODEC_CMI_INT_STATUS (0x10) #define CODEC_CMI_LEGACY_CTRL (0x14) #define CODEC_CMI_MISC_CTRL (0x18) #define CODEC_CMI_TDMA_POS (0x1C) #define CODEC_CMI_MIXER (0x20) #define CODEC_SB16_DATA (0x22) #define CODEC_SB16_ADDR (0x23) #define CODEC_CMI_MIXER1 (0x24) #define CODEC_CMI_MIXER2 (0x25) #define CODEC_CMI_AUX_VOL (0x26) #define CODEC_CMI_MISC (0x27) #define CODEC_CMI_AC97 (0x28) #define CODEC_CMI_CH0_FRAME1 (0x80) #define CODEC_CMI_CH0_FRAME2 (0x84) #define CODEC_CMI_CH1_FRAME1 (0x88) #define CODEC_CMI_CH1_FRAME2 (0x8C) #define CODEC_CMI_EXT_REG (0xF0) /* Mixer registers for SB16 ******************/ #define DSP_MIX_DATARESETIDX ((unsigned char)(0x00)) #define DSP_MIX_MASTERVOLIDX_L ((unsigned char)(0x30)) #define DSP_MIX_MASTERVOLIDX_R ((unsigned char)(0x31)) #define DSP_MIX_VOICEVOLIDX_L ((unsigned char)(0x32)) #define DSP_MIX_VOICEVOLIDX_R ((unsigned char)(0x33)) #define DSP_MIX_FMVOLIDX_L ((unsigned char)(0x34)) #define DSP_MIX_FMVOLIDX_R ((unsigned char)(0x35)) #define DSP_MIX_CDVOLIDX_L ((unsigned char)(0x36)) #define DSP_MIX_CDVOLIDX_R ((unsigned char)(0x37)) #define DSP_MIX_LINEVOLIDX_L ((unsigned char)(0x38)) #define DSP_MIX_LINEVOLIDX_R ((unsigned char)(0x39)) #define DSP_MIX_MICVOLIDX ((unsigned char)(0x3A)) #define DSP_MIX_SPKRVOLIDX ((unsigned char)(0x3B)) #define DSP_MIX_OUTMIXIDX ((unsigned char)(0x3C)) #define DSP_MIX_ADCMIXIDX_L ((unsigned char)(0x3D)) #define DSP_MIX_ADCMIXIDX_R ((unsigned char)(0x3E)) #define DSP_MIX_INGAINIDX_L ((unsigned char)(0x3F)) #define DSP_MIX_INGAINIDX_R ((unsigned char)(0x40)) #define DSP_MIX_OUTGAINIDX_L ((unsigned char)(0x41)) #define DSP_MIX_OUTGAINIDX_R ((unsigned char)(0x42)) #define DSP_MIX_AGCIDX ((unsigned char)(0x43)) #define DSP_MIX_TREBLEIDX_L ((unsigned char)(0x44)) #define DSP_MIX_TREBLEIDX_R ((unsigned char)(0x45)) #define DSP_MIX_BASSIDX_L ((unsigned char)(0x46)) #define DSP_MIX_BASSIDX_R ((unsigned char)(0x47)) #define CM_CH0_RESET 0x04 #define CM_CH1_RESET 0x08 #define CM_EXTENT_CODEC 0x100 #define CM_EXTENT_MIDI 0x2 #define CM_EXTENT_SYNTH 0x4 #define CM_INT_CH0 1 #define CM_INT_CH1 2 #define CM_CFMT_STEREO 0x01 #define CM_CFMT_16BIT 0x02 #define CM_CFMT_MASK 0x03 #define CM_CFMT_DACSHIFT 2 #define CM_CFMT_ADCSHIFT 0 static const unsigned sample_shift[] = { 0, 1, 1, 2 }; #define CM_ENABLE_CH1 0x2 #define CM_ENABLE_CH0 0x1 /* MIDI buffer sizes **************************/ #define MIDIINBUF 256 #define MIDIOUTBUF 256 #define FMODE_MIDI_SHIFT 2 #define FMODE_MIDI_READ (FMODE_READ << FMODE_MIDI_SHIFT) #define FMODE_MIDI_WRITE (FMODE_WRITE << FMODE_MIDI_SHIFT) #define FMODE_DMFM 0x10 #define SND_DEV_DSP16 5 #define NR_DEVICE 3 /* maximum number of devices */ /*********************************************/ struct cm_state { unsigned int magic; /* magic */ struct cm_state *next; /* we keep cm cards in a linked list */ int dev_audio; /* soundcore stuff */ int dev_mixer; int dev_midi; int dev_dmfm; unsigned int iosb, iobase, iosynth, iomidi, iogame, irq; /* hardware resources */ unsigned short deviceid; /* pci_id */ struct { /* mixer stuff */ unsigned int modcnt; unsigned short vol[13]; } mix; unsigned int rateadc, ratedac; /* wave stuff */ unsigned char fmt, enable; spinlock_t lock; struct semaphore open_sem; mode_t open_mode; wait_queue_head_t open_wait; struct dmabuf { void *rawbuf; unsigned rawphys; unsigned buforder; unsigned numfrag; unsigned fragshift; unsigned hwptr, swptr; unsigned total_bytes; int count; unsigned error; /* over/underrun */ wait_queue_head_t wait; unsigned fragsize; /* redundant, but makes calculations easier */ unsigned dmasize; unsigned fragsamples; unsigned dmasamples; unsigned mapped:1; /* OSS stuff */ unsigned ready:1; unsigned endcleared:1; unsigned ossfragshift; int ossmaxfrags; unsigned subdivision; } dma_dac, dma_adc; struct { /* midi stuff */ unsigned ird, iwr, icnt; unsigned ord, owr, ocnt; wait_queue_head_t iwait; wait_queue_head_t owait; struct timer_list timer; unsigned char ibuf[MIDIINBUF]; unsigned char obuf[MIDIOUTBUF]; } midi; int chip_version; int max_channels; int curr_channels; int speakers; /* number of speakers */ int capability; /* HW capability, various for chip versions */ int status; /* HW or SW state */ int spdif_counter; /* spdif frame counter */ }; /* flags used for capability */ #define CAN_AC3_HW 0x00000001 /* 037 or later */ #define CAN_AC3_SW 0x00000002 /* 033 or later */ #define CAN_AC3 (CAN_AC3_HW | CAN_AC3_SW) #define CAN_DUAL_DAC 0x00000004 /* 033 or later */ #define CAN_MULTI_CH_HW 0x00000008 /* 039 or later */ #define CAN_MULTI_CH (CAN_MULTI_CH_HW | CAN_DUAL_DAC) #define CAN_LINE_AS_REAR 0x00000010 /* 033 or later */ #define CAN_LINE_AS_BASS 0x00000020 /* 039 or later */ #define CAN_MIC_AS_BASS 0x00000040 /* 039 or later */ /* flags used for status */ #define DO_AC3_HW 0x00000001 #define DO_AC3_SW 0x00000002 #define DO_AC3 (DO_AC3_HW | DO_AC3_SW) #define DO_DUAL_DAC 0x00000004 #define DO_MULTI_CH_HW 0x00000008 #define DO_MULTI_CH (DO_MULTI_CH_HW | DO_DUAL_DAC) #define DO_LINE_AS_REAR 0x00000010 /* 033 or later */ #define DO_LINE_AS_BASS 0x00000020 /* 039 or later */ #define DO_MIC_AS_BASS 0x00000040 /* 039 or later */ #define DO_SPDIF_OUT 0x00000100 #define DO_SPDIF_IN 0x00000200 #define DO_SPDIF_LOOP 0x00000400 static struct cm_state *devs; static unsigned long wavetable_mem; /* --------------------------------------------------------------------- */ static inline unsigned ld2(unsigned int x) { unsigned exp=16,l=5,r=0; static const unsigned num[]={0x2,0x4,0x10,0x100,0x10000}; /* num: 2, 4, 16, 256, 65536 */ /* exp: 1, 2, 4, 8, 16 */ while(l--) { if( x >= num[l] ) { if(num[l]>2) x >>= exp; r+=exp; } exp>>=1; } return r; } /* --------------------------------------------------------------------- */ static void maskb(unsigned int addr, unsigned int mask, unsigned int value) { outb((inb(addr) & mask) | value, addr); } static void maskw(unsigned int addr, unsigned int mask, unsigned int value) { outw((inw(addr) & mask) | value, addr); } static void maskl(unsigned int addr, unsigned int mask, unsigned int value) { outl((inl(addr) & mask) | value, addr); } static void set_dmadac1(struct cm_state *s, unsigned int addr, unsigned int count) { if (addr) outl(addr, s->iobase + CODEC_CMI_CH0_FRAME1); outw(count - 1, s->iobase + CODEC_CMI_CH0_FRAME2); maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~1, 0); } static void set_dmaadc(struct cm_state *s, unsigned int addr, unsigned int count) { outl(addr, s->iobase + CODEC_CMI_CH0_FRAME1); outw(count - 1, s->iobase + CODEC_CMI_CH0_FRAME2); maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, 1); } static void set_dmadac(struct cm_state *s, unsigned int addr, unsigned int count) { outl(addr, s->iobase + CODEC_CMI_CH1_FRAME1); outw(count - 1, s->iobase + CODEC_CMI_CH1_FRAME2); maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~2, 0); if (s->status & DO_DUAL_DAC) set_dmadac1(s, 0, count); } static void set_countadc(struct cm_state *s, unsigned count) { outw(count - 1, s->iobase + CODEC_CMI_CH0_FRAME2 + 2); } static void set_countdac(struct cm_state *s, unsigned count) { outw(count - 1, s->iobase + CODEC_CMI_CH1_FRAME2 + 2); if (s->status & DO_DUAL_DAC) set_countadc(s, count); } static inline unsigned get_dmadac(struct cm_state *s) { unsigned int curr_addr; curr_addr = inw(s->iobase + CODEC_CMI_CH1_FRAME2) + 1; curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK]; curr_addr = s->dma_dac.dmasize - curr_addr; return curr_addr; } static inline unsigned get_dmaadc(struct cm_state *s) { unsigned int curr_addr; curr_addr = inw(s->iobase + CODEC_CMI_CH0_FRAME2) + 1; curr_addr <<= sample_shift[(s->fmt >> CM_CFMT_ADCSHIFT) & CM_CFMT_MASK]; curr_addr = s->dma_adc.dmasize - curr_addr; return curr_addr; } static void wrmixer(struct cm_state *s, unsigned char idx, unsigned char data) { outb(idx, s->iobase + CODEC_SB16_ADDR); udelay(10); outb(data, s->iobase + CODEC_SB16_DATA); udelay(10); } static unsigned char rdmixer(struct cm_state *s, unsigned char idx) { unsigned char v; unsigned long flags; spin_lock_irqsave(&s->lock, flags); outb(idx, s->iobase + CODEC_SB16_ADDR); udelay(10); v = inb(s->iobase + CODEC_SB16_DATA); udelay(10); spin_unlock_irqrestore(&s->lock, flags); return v; } static void set_fmt_unlocked(struct cm_state *s, unsigned char mask, unsigned char data) { if (mask) { s->fmt = inb(s->iobase + CODEC_CMI_CHFORMAT); udelay(10); } s->fmt = (s->fmt & mask) | data; outb(s->fmt, s->iobase + CODEC_CMI_CHFORMAT); udelay(10); } static void set_fmt(struct cm_state *s, unsigned char mask, unsigned char data) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); set_fmt_unlocked(s,mask,data); spin_unlock_irqrestore(&s->lock, flags); } static void frobindir(struct cm_state *s, unsigned char idx, unsigned char mask, unsigned char data) { outb(idx, s->iobase + CODEC_SB16_ADDR); udelay(10); outb((inb(s->iobase + CODEC_SB16_DATA) & mask) | data, s->iobase + CODEC_SB16_DATA); udelay(10); } static struct { unsigned rate; unsigned lower; unsigned upper; unsigned char freq; } rate_lookup[] = { { 5512, (0 + 5512) / 2, (5512 + 8000) / 2, 0 }, { 8000, (5512 + 8000) / 2, (8000 + 11025) / 2, 4 }, { 11025, (8000 + 11025) / 2, (11025 + 16000) / 2, 1 }, { 16000, (11025 + 16000) / 2, (16000 + 22050) / 2, 5 }, { 22050, (16000 + 22050) / 2, (22050 + 32000) / 2, 2 }, { 32000, (22050 + 32000) / 2, (32000 + 44100) / 2, 6 }, { 44100, (32000 + 44100) / 2, (44100 + 48000) / 2, 3 }, { 48000, (44100 + 48000) / 2, 48000, 7 } }; static void set_spdifout_unlocked(struct cm_state *s, unsigned rate) { if (rate == 48000 || rate == 44100) { // SPDIFI48K SPDF_ACc97 maskl(s->iobase + CODEC_CMI_MISC_CTRL, ~0x01008000, rate == 48000 ? 0x01008000 : 0); // ENSPDOUT maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~0, 0x80); // SPDF_1 SPD2DAC maskw(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x240); // CDPLAY if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MIXER1, ~0, 1); s->status |= DO_SPDIF_OUT; } else { maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 2, ~0x80, 0); maskw(s->iobase + CODEC_CMI_FUNCTRL1, ~0x240, 0); if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MIXER1, ~1, 0); s->status &= ~DO_SPDIF_OUT; } } static void set_spdifout(struct cm_state *s, unsigned rate) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); set_spdifout_unlocked(s,rate); spin_unlock_irqrestore(&s->lock, flags); } /* find parity for bit 4~30 */ static unsigned parity(unsigned data) { unsigned parity = 0; int counter = 4; data >>= 4; // start from bit 4 while (counter <= 30) { if (data & 1) parity++; data >>= 1; counter++; } return parity & 1; } static void set_ac3_unlocked(struct cm_state *s, unsigned rate) { /* enable AC3 */ if (rate == 48000 || rate == 44100) { // mute DAC maskb(s->iobase + CODEC_CMI_MIXER1, ~0, 0x40); // AC3EN for 037, 0x10 maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x10); // AC3EN for 039, 0x04 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, 0x04); if (s->capability & CAN_AC3_HW) { // SPD24SEL for 037, 0x02 // SPD24SEL for 039, 0x20, but cannot be set maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 0x02); s->status |= DO_AC3_HW; if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MIXER1, ~1, 0); } else { // SPD32SEL for 037 & 039, 0x20 maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, 0x20); // set 176K sample rate to fix 033 HW bug if (s->chip_version == 33) { if (rate == 48000) maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0, 0x08); else maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0); } s->status |= DO_AC3_SW; } } else { maskb(s->iobase + CODEC_CMI_MIXER1, ~0x40, 0); maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0x32, 0); maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0x24, 0); maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0); if (s->chip_version == 33) maskb(s->iobase + CODEC_CMI_CHFORMAT + 1, ~0x08, 0); if (s->chip_version >= 39) maskb(s->iobase + CODEC_CMI_MIXER1, ~0, 1); s->status &= ~DO_AC3; } s->spdif_counter = 0; } static void set_ac3(struct cm_state *s, unsigned rate) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); set_spdifout_unlocked(s, rate); set_ac3_unlocked(s,rate); spin_unlock_irqrestore(&s->lock, flags); } static void trans_ac3(struct cm_state *s, void *dest, const char *source, int size) { int i = size / 2; unsigned long data; unsigned long *dst = (unsigned long *) dest; unsigned short *src = (unsigned short *)source; do { data = (unsigned long) *src++; data <<= 12; // ok for 16-bit data if (s->spdif_counter == 2 || s->spdif_counter == 3) data |= 0x40000000; // indicate AC-3 raw data if (parity(data)) data |= 0x80000000; // parity if (s->spdif_counter == 0) data |= 3; // preamble 'M' else if (s->spdif_counter & 1) data |= 5; // odd, 'W' else data |= 9; // even, 'M' *dst++ = data; s->spdif_counter++; if (s->spdif_counter == 384) s->spdif_counter = 0; } while (--i); } static void set_adc_rate_unlocked(struct cm_state *s, unsigned rate) { unsigned char freq = 4; int i; if (rate > 48000) rate = 48000; if (rate < 8000) rate = 8000; for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) { if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) { rate = rate_lookup[i].rate; freq = rate_lookup[i].freq; break; } } s->rateadc = rate; freq <<= 2; maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0x1c, freq); } static void set_adc_rate(struct cm_state *s, unsigned rate) { unsigned long flags; unsigned char freq = 4; int i; if (rate > 48000) rate = 48000; if (rate < 8000) rate = 8000; for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) { if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) { rate = rate_lookup[i].rate; freq = rate_lookup[i].freq; break; } } s->rateadc = rate; freq <<= 2; spin_lock_irqsave(&s->lock, flags); maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0x1c, freq); spin_unlock_irqrestore(&s->lock, flags); } static void set_dac_rate(struct cm_state *s, unsigned rate) { unsigned long flags; unsigned char freq = 4; int i; if (rate > 48000) rate = 48000; if (rate < 8000) rate = 8000; for (i = 0; i < sizeof(rate_lookup) / sizeof(rate_lookup[0]); i++) { if (rate > rate_lookup[i].lower && rate <= rate_lookup[i].upper) { rate = rate_lookup[i].rate; freq = rate_lookup[i].freq; break; } } s->ratedac = rate; freq <<= 5; spin_lock_irqsave(&s->lock, flags); maskb(s->iobase + CODEC_CMI_FUNCTRL1 + 1, ~0xe0, freq); if (s->curr_channels <= 2) set_spdifout_unlocked(s, rate); if (s->status & DO_DUAL_DAC) set_adc_rate_unlocked(s, rate); spin_unlock_irqrestore(&s->lock, flags); } /* --------------------------------------------------------------------- */ static inline void reset_adc(struct cm_state *s) { /* reset bus master */ outb(s->enable | CM_CH0_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2); udelay(10); outb(s->enable & ~CM_CH0_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } static inline void reset_dac(struct cm_state *s) { /* reset bus master */ outb(s->enable | CM_CH1_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2); outb(s->enable & ~CM_CH1_RESET, s->iobase + CODEC_CMI_FUNCTRL0 + 2); if (s->status & DO_DUAL_DAC) reset_adc(s); } static inline void pause_adc(struct cm_state *s) { maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, 4); } static inline void pause_dac(struct cm_state *s) { maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~0, 8); if (s->status & DO_DUAL_DAC) pause_adc(s); } static inline void disable_adc(struct cm_state *s) { /* disable channel */ s->enable &= ~CM_ENABLE_CH0; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); reset_adc(s); } static inline void disable_dac(struct cm_state *s) { /* disable channel */ s->enable &= ~CM_ENABLE_CH1; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); reset_dac(s); if (s->status & DO_DUAL_DAC) disable_adc(s); } static inline void enable_adc(struct cm_state *s) { if (!(s->enable & CM_ENABLE_CH0)) { /* enable channel */ s->enable |= CM_ENABLE_CH0; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~4, 0); } static inline void enable_dac_unlocked(struct cm_state *s) { if (!(s->enable & CM_ENABLE_CH1)) { /* enable channel */ s->enable |= CM_ENABLE_CH1; outb(s->enable, s->iobase + CODEC_CMI_FUNCTRL0 + 2); } maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~8, 0); if (s->status & DO_DUAL_DAC) enable_adc(s); } static inline void enable_dac(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); enable_dac_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } static inline void stop_adc_unlocked(struct cm_state *s) { if (s->enable & CM_ENABLE_CH0) { /* disable interrupt */ maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~1, 0); disable_adc(s); } } static inline void stop_adc(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); stop_adc_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } static inline void stop_dac_unlocked(struct cm_state *s) { if (s->enable & CM_ENABLE_CH1) { /* disable interrupt */ maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~2, 0); disable_dac(s); } if (s->status & DO_DUAL_DAC) stop_adc_unlocked(s); } static inline void stop_dac(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); stop_dac_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } static void start_adc_unlocked(struct cm_state *s) { if ((s->dma_adc.mapped || s->dma_adc.count < (signed)(s->dma_adc.dmasize - 2*s->dma_adc.fragsize)) && s->dma_adc.ready) { /* enable interrupt */ maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, 1); enable_adc(s); } } static void start_adc(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); start_adc_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } static void start_dac1_unlocked(struct cm_state *s) { if ((s->dma_adc.mapped || s->dma_adc.count > 0) && s->dma_adc.ready) { /* enable interrupt */ // maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, 1); enable_dac_unlocked(s); } } static void start_dac_unlocked(struct cm_state *s) { if ((s->dma_dac.mapped || s->dma_dac.count > 0) && s->dma_dac.ready) { /* enable interrupt */ maskb(s->iobase + CODEC_CMI_INT_HLDCLR + 2, ~0, 2); enable_dac_unlocked(s); } if (s->status & DO_DUAL_DAC) start_dac1_unlocked(s); } static void start_dac(struct cm_state *s) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); start_dac_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } static int prog_dmabuf(struct cm_state *s, unsigned rec); static int set_dac_channels(struct cm_state *s, int channels) { unsigned long flags; spin_lock_irqsave(&s->lock, flags); if ((channels > 2) && (channels <= s->max_channels) && (((s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK) == (CM_CFMT_STEREO | CM_CFMT_16BIT))) { set_spdifout_unlocked(s, 0); if (s->capability & CAN_MULTI_CH_HW) { // NXCHG maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0, 0x80); // CHB3D or CHB3D5C maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~0xa0, channels > 4 ? 0x80 : 0x20); // CHB3D6C maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~0x80, channels == 6 ? 0x80 : 0); // ENCENTER maskb(s->iobase + CODEC_CMI_MISC_CTRL, ~0x80, channels == 6 ? 0x80 : 0); s->status |= DO_MULTI_CH_HW; } else if (s->capability & CAN_DUAL_DAC) { unsigned char fmtm = ~0, fmts = 0; ssize_t ret; // ENDBDAC, turn on double DAC mode // XCHGDAC, CH0 -> back, CH1->front maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, 0xC0); s->status |= DO_DUAL_DAC; // prepare secondary buffer spin_unlock_irqrestore(&s->lock, flags); ret = prog_dmabuf(s, 1); if (ret) return ret; spin_lock_irqsave(&s->lock, flags); // copy the hw state fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT); fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT); // the HW only support 16-bit stereo fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; fmts |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; fmts |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; set_fmt_unlocked(s, fmtm, fmts); set_adc_rate_unlocked(s, s->ratedac); } if (s->speakers > 2) maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~0x04, 0); s->curr_channels = channels; } else { if (s->status & DO_MULTI_CH_HW) { maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x80, 0); maskb(s->iobase + CODEC_CMI_CHFORMAT + 3, ~0xa0, 0); maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~0x80, 0); } else if (s->status & DO_DUAL_DAC) { maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0x80, 0); } // N4SPK3D, enable 4 speaker mode (analog duplicate) if (s->speakers > 2) maskb(s->iobase + CODEC_CMI_MISC_CTRL + 3, ~0, 0x04); s->status &= ~DO_MULTI_CH; s->curr_channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1; } spin_unlock_irqrestore(&s->lock, flags); return s->curr_channels; } /* --------------------------------------------------------------------- */ #define DMABUF_DEFAULTORDER (16-PAGE_SHIFT) #define DMABUF_MINORDER 1 static void dealloc_dmabuf(struct dmabuf *db) { struct page *pstart, *pend; if (db->rawbuf) { /* undo marking the pages as reserved */ pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++) mem_map_unreserve(pstart); free_pages((unsigned long)db->rawbuf, db->buforder); } db->rawbuf = NULL; db->mapped = db->ready = 0; } /* Ch1 is used for playback, Ch0 is used for recording */ static int prog_dmabuf(struct cm_state *s, unsigned rec) { struct dmabuf *db = rec ? &s->dma_adc : &s->dma_dac; unsigned rate = rec ? s->rateadc : s->ratedac; int order; unsigned bytepersec; unsigned bufs; struct page *pstart, *pend; unsigned char fmt; unsigned long flags; fmt = s->fmt; if (rec) { stop_adc(s); fmt >>= CM_CFMT_ADCSHIFT; } else { stop_dac(s); fmt >>= CM_CFMT_DACSHIFT; } fmt &= CM_CFMT_MASK; db->hwptr = db->swptr = db->total_bytes = db->count = db->error = db->endcleared = 0; if (!db->rawbuf) { db->ready = db->mapped = 0; for (order = DMABUF_DEFAULTORDER; order >= DMABUF_MINORDER; order--) if ((db->rawbuf = (void *)__get_free_pages(GFP_KERNEL | GFP_DMA, order))) break; if (!db->rawbuf) return -ENOMEM; db->buforder = order; db->rawphys = virt_to_bus(db->rawbuf); if ((db->rawphys ^ (db->rawphys + (PAGE_SIZE << db->buforder) - 1)) & ~0xffff) printk(KERN_DEBUG "cmpci: DMA buffer crosses 64k boundary: busaddr 0x%lx size %ld\n", (long) db->rawphys, PAGE_SIZE << db->buforder); if ((db->rawphys + (PAGE_SIZE << db->buforder) - 1) & ~0xffffff) printk(KERN_DEBUG "cmpci: DMA buffer beyond 16MB: busaddr 0x%lx size %ld\n", (long) db->rawphys, PAGE_SIZE << db->buforder); /* now mark the pages as reserved; otherwise remap_page_range doesn't do what we want */ pend = virt_to_page(db->rawbuf + (PAGE_SIZE << db->buforder) - 1); for (pstart = virt_to_page(db->rawbuf); pstart <= pend; pstart++) mem_map_reserve(pstart); } bytepersec = rate << sample_shift[fmt]; bufs = PAGE_SIZE << db->buforder; if (db->ossfragshift) { if ((1000 << db->ossfragshift) < bytepersec) db->fragshift = ld2(bytepersec/1000); else db->fragshift = db->ossfragshift; } else { db->fragshift = ld2(bytepersec/100/(db->subdivision ? db->subdivision : 1)); if (db->fragshift < 3) db->fragshift = 3; } db->numfrag = bufs >> db->fragshift; while (db->numfrag < 4 && db->fragshift > 3) { db->fragshift--; db->numfrag = bufs >> db->fragshift; } db->fragsize = 1 << db->fragshift; if (db->ossmaxfrags >= 4 && db->ossmaxfrags < db->numfrag) db->numfrag = db->ossmaxfrags; /* to make fragsize >= 4096 */ db->fragsamples = db->fragsize >> sample_shift[fmt]; db->dmasize = db->numfrag << db->fragshift; db->dmasamples = db->dmasize >> sample_shift[fmt]; memset(db->rawbuf, (fmt & CM_CFMT_16BIT) ? 0 : 0x80, db->dmasize); spin_lock_irqsave(&s->lock, flags); if (rec) { if (s->status & DO_DUAL_DAC) set_dmadac1(s, db->rawphys, db->dmasize >> sample_shift[fmt]); else set_dmaadc(s, db->rawphys, db->dmasize >> sample_shift[fmt]); /* program sample counts */ set_countdac(s, db->fragsamples); } else { set_dmadac(s, db->rawphys, db->dmasize >> sample_shift[fmt]); /* program sample counts */ set_countdac(s, db->fragsamples); } spin_unlock_irqrestore(&s->lock, flags); db->ready = 1; return 0; } static inline void clear_advance(struct cm_state *s) { unsigned char c = (s->fmt & (CM_CFMT_16BIT << CM_CFMT_DACSHIFT)) ? 0 : 0x80; unsigned char *buf = s->dma_dac.rawbuf; unsigned char *buf1 = s->dma_adc.rawbuf; unsigned bsize = s->dma_dac.dmasize; unsigned bptr = s->dma_dac.swptr; unsigned len = s->dma_dac.fragsize; if (bptr + len > bsize) { unsigned x = bsize - bptr; memset(buf + bptr, c, x); if (s->status & DO_DUAL_DAC) memset(buf1 + bptr, c, x); bptr = 0; len -= x; } memset(buf + bptr, c, len); if (s->status & DO_DUAL_DAC) memset(buf1 + bptr, c, len); } /* call with spinlock held! */ static void cm_update_ptr(struct cm_state *s) { unsigned hwptr; int diff; /* update ADC pointer */ if (s->dma_adc.ready) { if (s->status & DO_DUAL_DAC) { hwptr = get_dmaadc(s) % s->dma_adc.dmasize; diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize; s->dma_adc.hwptr = hwptr; s->dma_adc.total_bytes += diff; if (s->dma_adc.mapped) { s->dma_adc.count += diff; if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) wake_up(&s->dma_adc.wait); } else { s->dma_adc.count -= diff; if (s->dma_adc.count <= 0) { pause_adc(s); s->dma_adc.error++; } else if (s->dma_adc.count <= (signed)s->dma_adc.fragsize && !s->dma_adc.endcleared) { clear_advance(s); s->dma_adc.endcleared = 1; } if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize) wake_up(&s->dma_adc.wait); } } else { hwptr = get_dmaadc(s) % s->dma_adc.dmasize; diff = (s->dma_adc.dmasize + hwptr - s->dma_adc.hwptr) % s->dma_adc.dmasize; s->dma_adc.hwptr = hwptr; s->dma_adc.total_bytes += diff; s->dma_adc.count += diff; if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) wake_up(&s->dma_adc.wait); if (!s->dma_adc.mapped) { if (s->dma_adc.count > (signed)(s->dma_adc.dmasize - ((3 * s->dma_adc.fragsize) >> 1))) { pause_adc(s); s->dma_adc.error++; } } } } /* update DAC pointer */ if (s->dma_dac.ready) { hwptr = get_dmadac(s) % s->dma_dac.dmasize; diff = (s->dma_dac.dmasize + hwptr - s->dma_dac.hwptr) % s->dma_dac.dmasize; s->dma_dac.hwptr = hwptr; s->dma_dac.total_bytes += diff; if (s->dma_dac.mapped) { s->dma_dac.count += diff; if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) wake_up(&s->dma_dac.wait); } else { s->dma_dac.count -= diff; if (s->dma_dac.count <= 0) { pause_dac(s); s->dma_dac.error++; } else if (s->dma_dac.count <= (signed)s->dma_dac.fragsize && !s->dma_dac.endcleared) { clear_advance(s); s->dma_dac.endcleared = 1; } if (s->dma_dac.count + (signed)s->dma_dac.fragsize <= (signed)s->dma_dac.dmasize) wake_up(&s->dma_dac.wait); } } } #ifdef CONFIG_SOUND_CMPCI_MIDI /* hold spinlock for the following! */ static void cm_handle_midi(struct cm_state *s) { unsigned char ch; int wake; wake = 0; while (!(inb(s->iomidi+1) & 0x80)) { ch = inb(s->iomidi); if (s->midi.icnt < MIDIINBUF) { s->midi.ibuf[s->midi.iwr] = ch; s->midi.iwr = (s->midi.iwr + 1) % MIDIINBUF; s->midi.icnt++; } wake = 1; } if (wake) wake_up(&s->midi.iwait); wake = 0; while (!(inb(s->iomidi+1) & 0x40) && s->midi.ocnt > 0) { outb(s->midi.obuf[s->midi.ord], s->iomidi); s->midi.ord = (s->midi.ord + 1) % MIDIOUTBUF; s->midi.ocnt--; if (s->midi.ocnt < MIDIOUTBUF-16) wake = 1; } if (wake) wake_up(&s->midi.owait); } #endif static void cm_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct cm_state *s = (struct cm_state *)dev_id; unsigned int intsrc, intstat; unsigned char mask = 0; /* fastpath out, to ease interrupt sharing */ intsrc = inl(s->iobase + CODEC_CMI_INT_STATUS); if (!(intsrc & 0x80000000)) return; spin_lock(&s->lock); intstat = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* acknowledge interrupt */ if (intsrc & CM_INT_CH0) mask |= 1; if (intsrc & CM_INT_CH1) mask |= 2; outb(intstat & ~mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2); outb(intstat | mask, s->iobase + CODEC_CMI_INT_HLDCLR + 2); cm_update_ptr(s); #ifdef CONFIG_SOUND_CMPCI_MIDI cm_handle_midi(s); #endif spin_unlock(&s->lock); } #ifdef CONFIG_SOUND_CMPCI_MIDI static void cm_midi_timer(unsigned long data) { struct cm_state *s = (struct cm_state *)data; unsigned long flags; spin_lock_irqsave(&s->lock, flags); cm_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); s->midi.timer.expires = jiffies+1; add_timer(&s->midi.timer); } #endif /* --------------------------------------------------------------------- */ static const char invalid_magic[] = KERN_CRIT "cmpci: invalid magic value\n"; #ifdef CONFIG_SOUND_CMPCI /* support multiple chips */ #define VALIDATE_STATE(s) #else #define VALIDATE_STATE(s) \ ({ \ if (!(s) || (s)->magic != CM_MAGIC) { \ printk(invalid_magic); \ return -ENXIO; \ } \ }) #endif /* --------------------------------------------------------------------- */ #define MT_4 1 #define MT_5MUTE 2 #define MT_4MUTEMONO 3 #define MT_6MUTE 4 #define MT_5MUTEMONO 5 static const struct { unsigned left; unsigned right; unsigned type; unsigned rec; unsigned play; } mixtable[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_CD] = { DSP_MIX_CDVOLIDX_L, DSP_MIX_CDVOLIDX_R, MT_5MUTE, 0x04, 0x02 }, [SOUND_MIXER_LINE] = { DSP_MIX_LINEVOLIDX_L, DSP_MIX_LINEVOLIDX_R, MT_5MUTE, 0x10, 0x08 }, [SOUND_MIXER_MIC] = { DSP_MIX_MICVOLIDX, DSP_MIX_MICVOLIDX, MT_5MUTEMONO, 0x01, 0x01 }, [SOUND_MIXER_SYNTH] = { DSP_MIX_FMVOLIDX_L, DSP_MIX_FMVOLIDX_R, MT_5MUTE, 0x40, 0x00 }, [SOUND_MIXER_VOLUME] = { DSP_MIX_MASTERVOLIDX_L, DSP_MIX_MASTERVOLIDX_R, MT_5MUTE, 0x00, 0x00 }, [SOUND_MIXER_PCM] = { DSP_MIX_VOICEVOLIDX_L, DSP_MIX_VOICEVOLIDX_R, MT_5MUTE, 0x00, 0x00 }, [SOUND_MIXER_SPEAKER]= { DSP_MIX_SPKRVOLIDX, DSP_MIX_SPKRVOLIDX, MT_5MUTEMONO, 0x01, 0x01 } }; static const unsigned char volidx[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_CD] = 1, [SOUND_MIXER_LINE] = 2, [SOUND_MIXER_MIC] = 3, [SOUND_MIXER_SYNTH] = 4, [SOUND_MIXER_VOLUME] = 5, [SOUND_MIXER_PCM] = 6, [SOUND_MIXER_SPEAKER]= 7 }; static unsigned mixer_recmask(struct cm_state *s) { int i, j, k; j = rdmixer(s, DSP_MIX_ADCMIXIDX_L); j &= 0x7f; for (k = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (j & mixtable[i].rec) k |= 1 << i; return k; } static int mixer_ioctl(struct cm_state *s, unsigned int cmd, unsigned long arg) { unsigned long flags; int i, val, j; unsigned char l, r, rl, rr; VALIDATE_STATE(s); if (cmd == SOUND_MIXER_INFO) { mixer_info info; strncpy(info.id, "cmpci", sizeof(info.id)); strncpy(info.name, "C-Media PCI", sizeof(info.name)); info.modify_counter = s->mix.modcnt; if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == SOUND_OLD_MIXER_INFO) { _old_mixer_info info; strncpy(info.id, "cmpci", sizeof(info.id)); strncpy(info.name, "C-Media cmpci", sizeof(info.name)); if (copy_to_user((void *)arg, &info, sizeof(info))) return -EFAULT; return 0; } if (cmd == OSS_GETVERSION) return put_user(SOUND_VERSION, (int *)arg); if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int)) return -EINVAL; if (_IOC_DIR(cmd) == _IOC_READ) { switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ return put_user(mixer_recmask(s), (int *)arg); case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */ return put_user(mixer_recmask(s), (int *)arg);//need fix case SOUND_MIXER_DEVMASK: /* Arg contains a bit for each supported device */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].type) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_RECMASK: /* Arg contains a bit for each supported recording source */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].rec) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_OUTMASK: /* Arg contains a bit for each supported recording source */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].play) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_STEREODEVS: /* Mixer channels supporting stereo */ for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++) if (mixtable[i].type && mixtable[i].type != MT_4MUTEMONO) val |= 1 << i; return put_user(val, (int *)arg); case SOUND_MIXER_CAPS: return put_user(0, (int *)arg); default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type) return -EINVAL; if (!volidx[i]) return -EINVAL; return put_user(s->mix.vol[volidx[i]-1], (int *)arg); } } if (_IOC_DIR(cmd) != (_IOC_READ|_IOC_WRITE)) return -EINVAL; s->mix.modcnt++; switch (_IOC_NR(cmd)) { case SOUND_MIXER_RECSRC: /* Arg contains a bit for each recording source */ if (get_user(val, (int *)arg)) return -EFAULT; i = generic_hweight32(val); for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (!(val & (1 << i))) continue; if (!mixtable[i].rec) { val &= ~(1 << i); continue; } j |= mixtable[i].rec; } spin_lock_irqsave(&s->lock, flags); wrmixer(s, DSP_MIX_ADCMIXIDX_L, j); wrmixer(s, DSP_MIX_ADCMIXIDX_R, (j & 1) | (j>>1)); spin_unlock_irqrestore(&s->lock, flags); return 0; case SOUND_MIXER_OUTSRC: /* Arg contains a bit for each recording source */ if (get_user(val, (int *)arg)) return -EFAULT; for (j = i = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (!(val & (1 << i))) continue; if (!mixtable[i].play) { val &= ~(1 << i); continue; } j |= mixtable[i].play; } spin_lock_irqsave(&s->lock, flags); frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, j); spin_unlock_irqrestore(&s->lock, flags); return 0; default: i = _IOC_NR(cmd); if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].type) return -EINVAL; if (get_user(val, (int *)arg)) return -EFAULT; l = val & 0xff; r = (val >> 8) & 0xff; if (l > 100) l = 100; if (r > 100) r = 100; spin_lock_irqsave(&s->lock, flags); switch (mixtable[i].type) { case MT_4: if (l >= 10) l -= 10; if (r >= 10) r -= 10; frobindir(s, mixtable[i].left, 0xf0, l / 6); frobindir(s, mixtable[i].right, 0xf0, l / 6); break; case MT_4MUTEMONO: rl = (l < 4 ? 0 : (l - 5) / 3) & 31; rr = (rl >> 2) & 7; wrmixer(s, mixtable[i].left, rl<<3); maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1); break; case MT_5MUTEMONO: r = l; rl = l < 4 ? 0 : (l - 5) / 3; rr = rl >> 2; wrmixer(s, mixtable[i].left, rl<<3); maskb(s->iobase + CODEC_CMI_MIXER2, ~0x0e, rr<<1); break; case MT_5MUTE: rl = l < 4 ? 0 : (l - 5) / 3; rr = r < 4 ? 0 : (r - 5) / 3; wrmixer(s, mixtable[i].left, rl<<3); wrmixer(s, mixtable[i].right, rr<<3); break; case MT_6MUTE: if (l < 6) rl = 0x00; else rl = l * 2 / 3; if (r < 6) rr = 0x00; else rr = r * 2 / 3; wrmixer(s, mixtable[i].left, rl); wrmixer(s, mixtable[i].right, rr); break; } spin_unlock_irqrestore(&s->lock, flags); if (!volidx[i]) return -EINVAL; s->mix.vol[volidx[i]-1] = val; return put_user(s->mix.vol[volidx[i]-1], (int *)arg); } } /* --------------------------------------------------------------------- */ static int cm_open_mixdev(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cm_state *s = devs; while (s && s->dev_mixer != minor) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; return 0; } static int cm_release_mixdev(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; VALIDATE_STATE(s); return 0; } static int cm_ioctl_mixdev(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return mixer_ioctl((struct cm_state *)file->private_data, cmd, arg); } static /*const*/ struct file_operations cm_mixer_fops = { owner: THIS_MODULE, llseek: no_llseek, ioctl: cm_ioctl_mixdev, open: cm_open_mixdev, release: cm_release_mixdev, }; /* --------------------------------------------------------------------- */ static int drain_dac(struct cm_state *s, int nonblock) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int count, tmo; if (s->dma_dac.mapped || !s->dma_dac.ready) return 0; set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&s->dma_dac.wait, &wait); for (;;) { spin_lock_irqsave(&s->lock, flags); count = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (nonblock) { remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); return -EBUSY; } tmo = 3 * HZ * (count + s->dma_dac.fragsize) / 2 / s->ratedac; tmo >>= sample_shift[(s->fmt >> CM_CFMT_DACSHIFT) & CM_CFMT_MASK]; if (!schedule_timeout(tmo + 1)) printk(KERN_DEBUG "cmpci: dma timed out??\n"); } remove_wait_queue(&s->dma_dac.wait, &wait); set_current_state(TASK_RUNNING); if (signal_pending(current)) return -ERESTARTSYS; return 0; } /* --------------------------------------------------------------------- */ static ssize_t cm_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; while (count > 0) { spin_lock_irqsave(&s->lock, flags); swptr = s->dma_adc.swptr; cnt = s->dma_adc.dmasize-swptr; if (s->dma_adc.count < cnt) cnt = s->dma_adc.count; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { start_adc(s); if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; if (!interruptible_sleep_on_timeout(&s->dma_adc.wait, HZ)) { printk(KERN_DEBUG "cmpci: read: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n", s->dma_adc.dmasize, s->dma_adc.fragsize, s->dma_adc.count, s->dma_adc.hwptr, s->dma_adc.swptr); spin_lock_irqsave(&s->lock, flags); stop_adc_unlocked(s); set_dmaadc(s, s->dma_adc.rawphys, s->dma_adc.dmasamples); /* program sample counts */ set_countadc(s, s->dma_adc.fragsamples); s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0; spin_unlock_irqrestore(&s->lock, flags); } if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } if (copy_to_user(buffer, s->dma_adc.rawbuf + swptr, cnt)) return ret ? ret : -EFAULT; swptr = (swptr + cnt) % s->dma_adc.dmasize; spin_lock_irqsave(&s->lock, flags); s->dma_adc.swptr = swptr; s->dma_adc.count -= cnt; count -= cnt; buffer += cnt; ret += cnt; start_adc_unlocked(s); spin_unlock_irqrestore(&s->lock, flags); } return ret; } static ssize_t cm_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; ssize_t ret; unsigned long flags; unsigned swptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (s->dma_dac.mapped) return -ENXIO; if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; if (s->status & DO_DUAL_DAC) { if (s->dma_adc.mapped) return -ENXIO; if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; } ret = 0; while (count > 0) { spin_lock_irqsave(&s->lock, flags); if (s->dma_dac.count < 0) { s->dma_dac.count = 0; s->dma_dac.swptr = s->dma_dac.hwptr; } if (s->status & DO_DUAL_DAC) { s->dma_adc.swptr = s->dma_dac.swptr; s->dma_adc.count = s->dma_dac.count; s->dma_adc.endcleared = s->dma_dac.endcleared; } swptr = s->dma_dac.swptr; cnt = s->dma_dac.dmasize-swptr; if (s->status & DO_AC3_SW) { if (s->dma_dac.count + 2 * cnt > s->dma_dac.dmasize) cnt = (s->dma_dac.dmasize - s->dma_dac.count) / 2; } else { if (s->dma_dac.count + cnt > s->dma_dac.dmasize) cnt = s->dma_dac.dmasize - s->dma_dac.count; } spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if ((s->status & DO_DUAL_DAC) && (cnt > count / 2)) cnt = count / 2; if (cnt <= 0) { start_dac(s); if (file->f_flags & O_NONBLOCK) return ret ? ret : -EAGAIN; if (!interruptible_sleep_on_timeout(&s->dma_dac.wait, HZ)) { printk(KERN_DEBUG "cmpci: write: chip lockup? dmasz %u fragsz %u count %i hwptr %u swptr %u\n", s->dma_dac.dmasize, s->dma_dac.fragsize, s->dma_dac.count, s->dma_dac.hwptr, s->dma_dac.swptr); spin_lock_irqsave(&s->lock, flags); stop_dac_unlocked(s); set_dmadac(s, s->dma_dac.rawphys, s->dma_dac.dmasamples); /* program sample counts */ set_countdac(s, s->dma_dac.fragsamples); s->dma_dac.count = s->dma_dac.hwptr = s->dma_dac.swptr = 0; if (s->status & DO_DUAL_DAC) { set_dmadac1(s, s->dma_adc.rawphys, s->dma_adc.dmasamples); s->dma_adc.count = s->dma_adc.hwptr = s->dma_adc.swptr = 0; } spin_unlock_irqrestore(&s->lock, flags); } if (signal_pending(current)) return ret ? ret : -ERESTARTSYS; continue; } if (s->status & DO_AC3_SW) { // clip exceeded data, caught by 033 and 037 if (swptr + 2 * cnt > s->dma_dac.dmasize) cnt = (s->dma_dac.dmasize - swptr) / 2; trans_ac3(s, s->dma_dac.rawbuf + swptr, buffer, cnt); swptr = (swptr + 2 * cnt) % s->dma_dac.dmasize; } else if (s->status & DO_DUAL_DAC) { int i; unsigned long *src, *dst0, *dst1; src = (unsigned long *) buffer; dst0 = (unsigned long *) (s->dma_dac.rawbuf + swptr); dst1 = (unsigned long *) (s->dma_adc.rawbuf + swptr); // copy left/right sample at one time for (i = 0; i <= cnt / 4; i++) { *dst0++ = *src++; *dst1++ = *src++; } swptr = (swptr + cnt) % s->dma_dac.dmasize; } else { if (copy_from_user(s->dma_dac.rawbuf + swptr, buffer, cnt)) return ret ? ret : -EFAULT; swptr = (swptr + cnt) % s->dma_dac.dmasize; } spin_lock_irqsave(&s->lock, flags); s->dma_dac.swptr = swptr; s->dma_dac.count += cnt; if (s->status & DO_AC3_SW) s->dma_dac.count += cnt; s->dma_dac.endcleared = 0; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; if (s->status & DO_DUAL_DAC) { count -= cnt; buffer += cnt; ret += cnt; } start_dac(s); } return ret; } static unsigned int cm_poll(struct file *file, struct poll_table_struct *wait) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) poll_wait(file, &s->dma_dac.wait, wait); if (file->f_mode & FMODE_READ) poll_wait(file, &s->dma_adc.wait, wait); spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); if (file->f_mode & FMODE_READ) { if (s->dma_adc.count >= (signed)s->dma_adc.fragsize) mask |= POLLIN | POLLRDNORM; } if (file->f_mode & FMODE_WRITE) { if (s->dma_dac.mapped) { if (s->dma_dac.count >= (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } else { if ((signed)s->dma_dac.dmasize >= s->dma_dac.count + (signed)s->dma_dac.fragsize) mask |= POLLOUT | POLLWRNORM; } } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int cm_mmap(struct file *file, struct vm_area_struct *vma) { struct cm_state *s = (struct cm_state *)file->private_data; struct dmabuf *db; int ret = -EINVAL; unsigned long size; VALIDATE_STATE(s); lock_kernel(); if (vma->vm_flags & VM_WRITE) { if ((ret = prog_dmabuf(s, 0)) != 0) goto out; db = &s->dma_dac; } else if (vma->vm_flags & VM_READ) { if ((ret = prog_dmabuf(s, 1)) != 0) goto out; db = &s->dma_adc; } else goto out; ret = -EINVAL; if (vma->vm_pgoff != 0) goto out; size = vma->vm_end - vma->vm_start; if (size > (PAGE_SIZE << db->buforder)) goto out; ret = -EINVAL; if (remap_page_range(vma->vm_start, virt_to_phys(db->rawbuf), size, vma->vm_page_prot)) goto out; vma->vm_flags &= ~VM_IO; db->mapped = 1; ret = 0; out: unlock_kernel(); return ret; } static int cm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; audio_buf_info abinfo; count_info cinfo; int val, mapped, ret; unsigned char fmtm, fmtd; VALIDATE_STATE(s); mapped = ((file->f_mode & FMODE_WRITE) && s->dma_dac.mapped) || ((file->f_mode & FMODE_READ) && s->dma_adc.mapped); switch (cmd) { case OSS_GETVERSION: return put_user(SOUND_VERSION, (int *)arg); case SNDCTL_DSP_SYNC: if (file->f_mode & FMODE_WRITE) return drain_dac(s, 0/*file->f_flags & O_NONBLOCK*/); return 0; case SNDCTL_DSP_SETDUPLEX: return 0; case SNDCTL_DSP_GETCAPS: return put_user(DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER | DSP_CAP_MMAP | DSP_CAP_BIND, (int *)arg); case SNDCTL_DSP_RESET: if (file->f_mode & FMODE_WRITE) { stop_dac(s); synchronize_irq(); s->dma_dac.swptr = s->dma_dac.hwptr = s->dma_dac.count = s->dma_dac.total_bytes = 0; if (s->status & DO_DUAL_DAC) s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0; } if (file->f_mode & FMODE_READ) { stop_adc(s); synchronize_irq(); s->dma_adc.swptr = s->dma_adc.hwptr = s->dma_adc.count = s->dma_adc.total_bytes = 0; } return 0; case SNDCTL_DSP_SPEED: if (get_user(val, (int *)arg)) return -EFAULT; if (val >= 0) { if (file->f_mode & FMODE_READ) { spin_lock_irqsave(&s->lock, flags); stop_adc_unlocked(s); s->dma_adc.ready = 0; set_adc_rate_unlocked(s, val); spin_unlock_irqrestore(&s->lock, flags); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (s->status & DO_DUAL_DAC) s->dma_adc.ready = 0; set_dac_rate(s, val); } } return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SNDCTL_DSP_STEREO: if (get_user(val, (int *)arg)) return -EFAULT; fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val) fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT); if (s->status & DO_DUAL_DAC) { s->dma_adc.ready = 0; if (val) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } } set_fmt(s, fmtm, fmtd); return 0; case SNDCTL_DSP_CHANNELS: if (get_user(val, (int *)arg)) return -EFAULT; if (val != 0) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val >= 2) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val >= 2) fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_DACSHIFT); if (s->status & DO_DUAL_DAC) { s->dma_adc.ready = 0; if (val >= 2) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } } set_fmt(s, fmtm, fmtd); if ((s->capability & CAN_MULTI_CH) && (file->f_mode & FMODE_WRITE)) { val = set_dac_channels(s, val); return put_user(val, (int *)arg); } } return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg); case SNDCTL_DSP_GETFMTS: /* Returns a mask */ return put_user(AFMT_S16_LE|AFMT_U8|AFMT_AC3, (int *)arg); case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/ if (get_user(val, (int *)arg)) return -EFAULT; if (val != AFMT_QUERY) { fmtd = 0; fmtm = ~0; if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; if (val == AFMT_S16_LE) fmtd |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_ADCSHIFT); } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val == AFMT_S16_LE || val == AFMT_AC3) fmtd |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; else fmtm &= ~(CM_CFMT_16BIT << CM_CFMT_DACSHIFT); if (val == AFMT_AC3) { fmtd |= CM_CFMT_STEREO << CM_CFMT_DACSHIFT; set_ac3(s, s->ratedac); } else set_ac3(s, 0); if (s->status & DO_DUAL_DAC) { s->dma_adc.ready = 0; if (val == AFMT_S16_LE) fmtd |= CM_CFMT_STEREO << CM_CFMT_ADCSHIFT; else fmtm &= ~(CM_CFMT_STEREO << CM_CFMT_ADCSHIFT); } } set_fmt(s, fmtm, fmtd); } if (s->status & DO_AC3) return put_user(AFMT_AC3, (int *)arg); return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? AFMT_S16_LE : AFMT_U8, (int *)arg); case SNDCTL_DSP_POST: return 0; case SNDCTL_DSP_GETTRIGGER: val = 0; if (s->status & DO_DUAL_DAC) { if (file->f_mode & FMODE_WRITE && (s->enable & CM_ENABLE_CH1) && (s->enable & CM_ENABLE_CH0)) val |= PCM_ENABLE_OUTPUT; return put_user(val, (int *)arg); } if (file->f_mode & FMODE_READ && s->enable & CM_ENABLE_CH0) val |= PCM_ENABLE_INPUT; if (file->f_mode & FMODE_WRITE && s->enable & CM_ENABLE_CH1) val |= PCM_ENABLE_OUTPUT; return put_user(val, (int *)arg); case SNDCTL_DSP_SETTRIGGER: if (get_user(val, (int *)arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { if (val & PCM_ENABLE_INPUT) { if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; start_adc(s); } else stop_adc(s); } if (file->f_mode & FMODE_WRITE) { if (val & PCM_ENABLE_OUTPUT) { if (!s->dma_dac.ready && (ret = prog_dmabuf(s, 0))) return ret; if (s->status & DO_DUAL_DAC) { if (!s->dma_adc.ready && (ret = prog_dmabuf(s, 1))) return ret; } start_dac(s); } else stop_dac(s); } return 0; case SNDCTL_DSP_GETOSPACE: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; if (!(s->enable & CM_ENABLE_CH1) && (val = prog_dmabuf(s, 0)) != 0) return val; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); abinfo.fragsize = s->dma_dac.fragsize; abinfo.bytes = s->dma_dac.dmasize - s->dma_dac.count; abinfo.fragstotal = s->dma_dac.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_dac.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_GETISPACE: if (!(file->f_mode & FMODE_READ)) return -EINVAL; if (!(s->enable & CM_ENABLE_CH0) && (val = prog_dmabuf(s, 1)) != 0) return val; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); abinfo.fragsize = s->dma_adc.fragsize; abinfo.bytes = s->dma_adc.count; abinfo.fragstotal = s->dma_adc.numfrag; abinfo.fragments = abinfo.bytes >> s->dma_adc.fragshift; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &abinfo, sizeof(abinfo)) ? -EFAULT : 0; case SNDCTL_DSP_NONBLOCK: file->f_flags |= O_NONBLOCK; return 0; case SNDCTL_DSP_GETODELAY: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); val = s->dma_dac.count; spin_unlock_irqrestore(&s->lock, flags); return put_user(val, (int *)arg); case SNDCTL_DSP_GETIPTR: if (!(file->f_mode & FMODE_READ)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); cinfo.bytes = s->dma_adc.total_bytes; cinfo.blocks = s->dma_adc.count >> s->dma_adc.fragshift; cinfo.ptr = s->dma_adc.hwptr; if (s->dma_adc.mapped) s->dma_adc.count &= s->dma_adc.fragsize-1; spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETOPTR: if (!(file->f_mode & FMODE_WRITE)) return -EINVAL; spin_lock_irqsave(&s->lock, flags); cm_update_ptr(s); cinfo.bytes = s->dma_dac.total_bytes; cinfo.blocks = s->dma_dac.count >> s->dma_dac.fragshift; cinfo.ptr = s->dma_dac.hwptr; if (s->dma_dac.mapped) s->dma_dac.count &= s->dma_dac.fragsize-1; if (s->status & DO_DUAL_DAC) { if (s->dma_adc.mapped) s->dma_adc.count &= s->dma_adc.fragsize-1; } spin_unlock_irqrestore(&s->lock, flags); return copy_to_user((void *)arg, &cinfo, sizeof(cinfo)); case SNDCTL_DSP_GETBLKSIZE: if (file->f_mode & FMODE_WRITE) { if ((val = prog_dmabuf(s, 0))) return val; if (s->status & DO_DUAL_DAC) { if ((val = prog_dmabuf(s, 1))) return val; return put_user(2 * s->dma_dac.fragsize, (int *)arg); } return put_user(s->dma_dac.fragsize, (int *)arg); } if ((val = prog_dmabuf(s, 1))) return val; return put_user(s->dma_adc.fragsize, (int *)arg); case SNDCTL_DSP_SETFRAGMENT: if (get_user(val, (int *)arg)) return -EFAULT; if (file->f_mode & FMODE_READ) { s->dma_adc.ossfragshift = val & 0xffff; s->dma_adc.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_adc.ossfragshift < 4) s->dma_adc.ossfragshift = 4; if (s->dma_adc.ossfragshift > 15) s->dma_adc.ossfragshift = 15; if (s->dma_adc.ossmaxfrags < 4) s->dma_adc.ossmaxfrags = 4; } if (file->f_mode & FMODE_WRITE) { s->dma_dac.ossfragshift = val & 0xffff; s->dma_dac.ossmaxfrags = (val >> 16) & 0xffff; if (s->dma_dac.ossfragshift < 4) s->dma_dac.ossfragshift = 4; if (s->dma_dac.ossfragshift > 15) s->dma_dac.ossfragshift = 15; if (s->dma_dac.ossmaxfrags < 4) s->dma_dac.ossmaxfrags = 4; if (s->status & DO_DUAL_DAC) { s->dma_adc.ossfragshift = s->dma_dac.ossfragshift; s->dma_adc.ossmaxfrags = s->dma_dac.ossmaxfrags; } } return 0; case SNDCTL_DSP_SUBDIVIDE: if ((file->f_mode & FMODE_READ && s->dma_adc.subdivision) || (file->f_mode & FMODE_WRITE && s->dma_dac.subdivision)) return -EINVAL; if (get_user(val, (int *)arg)) return -EFAULT; if (val != 1 && val != 2 && val != 4) return -EINVAL; if (file->f_mode & FMODE_READ) s->dma_adc.subdivision = val; if (file->f_mode & FMODE_WRITE) { s->dma_dac.subdivision = val; if (s->status & DO_DUAL_DAC) s->dma_adc.subdivision = val; } return 0; case SOUND_PCM_READ_RATE: return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SOUND_PCM_READ_CHANNELS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_STEREO << CM_CFMT_ADCSHIFT) : (CM_CFMT_STEREO << CM_CFMT_DACSHIFT))) ? 2 : 1, (int *)arg); case SOUND_PCM_READ_BITS: return put_user((s->fmt & ((file->f_mode & FMODE_READ) ? (CM_CFMT_16BIT << CM_CFMT_ADCSHIFT) : (CM_CFMT_16BIT << CM_CFMT_DACSHIFT))) ? 16 : 8, (int *)arg); case SOUND_PCM_READ_FILTER: return put_user((file->f_mode & FMODE_READ) ? s->rateadc : s->ratedac, (int *)arg); case SNDCTL_DSP_GETCHANNELMASK: return put_user(DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE|DSP_BIND_SPDIF, (int *)arg); case SNDCTL_DSP_BIND_CHANNEL: if (get_user(val, (int *)arg)) return -EFAULT; if (val == DSP_BIND_QUERY) { val = DSP_BIND_FRONT; if (s->status & DO_SPDIF_OUT) val |= DSP_BIND_SPDIF; else { if (s->curr_channels == 4) val |= DSP_BIND_SURR; if (s->curr_channels > 4) val |= DSP_BIND_CENTER_LFE; } } else { if (file->f_mode & FMODE_READ) { stop_adc(s); s->dma_adc.ready = 0; } if (file->f_mode & FMODE_WRITE) { stop_dac(s); s->dma_dac.ready = 0; if (val & DSP_BIND_SPDIF) { set_spdifout(s, s->ratedac); set_dac_channels(s, s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1); if (!(s->status & DO_SPDIF_OUT)) val &= ~DSP_BIND_SPDIF; } else { int channels; int mask; mask = val & (DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE); switch (mask) { case DSP_BIND_FRONT: channels = 2; break; case DSP_BIND_FRONT|DSP_BIND_SURR: channels = 4; break; case DSP_BIND_FRONT|DSP_BIND_SURR|DSP_BIND_CENTER_LFE: channels = 6; break; default: channels = s->fmt & (CM_CFMT_STEREO << CM_CFMT_DACSHIFT) ? 2 : 1; break; } set_dac_channels(s, channels); } } } return put_user(val, (int *)arg); case SOUND_PCM_WRITE_FILTER: case SNDCTL_DSP_MAPINBUF: case SNDCTL_DSP_MAPOUTBUF: case SNDCTL_DSP_SETSYNCRO: return -EINVAL; } return mixer_ioctl(s, cmd, arg); } static int cm_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cm_state *s = devs; unsigned char fmtm = ~0, fmts = 0; while (s && ((s->dev_audio ^ minor) & ~0xf)) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & file->f_mode) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } up(&s->open_sem); interruptible_sleep_on(&s->open_wait); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } if (file->f_mode & FMODE_READ) { fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_ADCSHIFT); if ((minor & 0xf) == SND_DEV_DSP16) fmts |= CM_CFMT_16BIT << CM_CFMT_ADCSHIFT; s->dma_adc.ossfragshift = s->dma_adc.ossmaxfrags = s->dma_adc.subdivision = 0; set_adc_rate(s, 8000); } if (file->f_mode & FMODE_WRITE) { fmtm &= ~((CM_CFMT_STEREO | CM_CFMT_16BIT) << CM_CFMT_DACSHIFT); if ((minor & 0xf) == SND_DEV_DSP16) fmts |= CM_CFMT_16BIT << CM_CFMT_DACSHIFT; s->dma_dac.ossfragshift = s->dma_dac.ossmaxfrags = s->dma_dac.subdivision = 0; set_dac_rate(s, 8000); // clear previous multichannel, spdif, ac3 state set_spdifout(s, 0); if (s->deviceid == PCI_DEVICE_ID_CMEDIA_CM8738) { set_ac3(s, 0); set_dac_channels(s, 1); } } set_fmt(s, fmtm, fmts); s->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); up(&s->open_sem); return 0; } static int cm_release(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; VALIDATE_STATE(s); lock_kernel(); if (file->f_mode & FMODE_WRITE) drain_dac(s, file->f_flags & O_NONBLOCK); down(&s->open_sem); if (file->f_mode & FMODE_WRITE) { stop_dac(s); dealloc_dmabuf(&s->dma_dac); if (s->status & DO_DUAL_DAC) dealloc_dmabuf(&s->dma_adc); if (s->status & DO_MULTI_CH) set_dac_channels(s, 0); if (s->status & DO_AC3) set_ac3(s, 0); if (s->status & DO_SPDIF_OUT) set_spdifout(s, 0); } if (file->f_mode & FMODE_READ) { stop_adc(s); dealloc_dmabuf(&s->dma_adc); } s->open_mode &= (~file->f_mode) & (FMODE_READ|FMODE_WRITE); up(&s->open_sem); wake_up(&s->open_wait); unlock_kernel(); return 0; } static /*const*/ struct file_operations cm_audio_fops = { owner: THIS_MODULE, llseek: no_llseek, read: cm_read, write: cm_write, poll: cm_poll, ioctl: cm_ioctl, mmap: cm_mmap, open: cm_open, release: cm_release, }; #ifdef CONFIG_SOUND_CMPCI_MIDI /* --------------------------------------------------------------------- */ static ssize_t cm_midi_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_WRITE, buffer, count)) return -EFAULT; ret = 0; add_wait_queue(&s->midi.iwait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.ird; cnt = MIDIINBUF - ptr; if (s->midi.icnt < cnt) cnt = s->midi.icnt; spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } __set_current_state(TASK_INTERRUPTIBLE); schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_to_user(buffer, s->midi.ibuf + ptr, cnt)) { if (!ret) ret = -EFAULT; break; } ptr = (ptr + cnt) % MIDIINBUF; spin_lock_irqsave(&s->lock, flags); s->midi.ird = ptr; s->midi.icnt -= cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; break; } __set_current_state(TASK_RUNNING); remove_wait_queue(&s->midi.iwait, &wait); return ret; } static ssize_t cm_midi_write(struct file *file, const char *buffer, size_t count, loff_t *ppos) { struct cm_state *s = (struct cm_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); ssize_t ret; unsigned long flags; unsigned ptr; int cnt; VALIDATE_STATE(s); if (ppos != &file->f_pos) return -ESPIPE; if (!access_ok(VERIFY_READ, buffer, count)) return -EFAULT; if (count == 0) return 0; ret = 0; add_wait_queue(&s->midi.owait, &wait); while (count > 0) { spin_lock_irqsave(&s->lock, flags); ptr = s->midi.owr; cnt = MIDIOUTBUF - ptr; if (s->midi.ocnt + cnt > MIDIOUTBUF) cnt = MIDIOUTBUF - s->midi.ocnt; if (cnt <= 0) cm_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); if (cnt > count) cnt = count; if (cnt <= 0) { if (file->f_flags & O_NONBLOCK) { if (!ret) ret = -EAGAIN; break; } __set_current_state(TASK_INTERRUPTIBLE); schedule(); if (signal_pending(current)) { if (!ret) ret = -ERESTARTSYS; break; } continue; } if (copy_from_user(s->midi.obuf + ptr, buffer, cnt)) { if (!ret) ret = -EFAULT; break; } ptr = (ptr + cnt) % MIDIOUTBUF; spin_lock_irqsave(&s->lock, flags); s->midi.owr = ptr; s->midi.ocnt += cnt; spin_unlock_irqrestore(&s->lock, flags); count -= cnt; buffer += cnt; ret += cnt; spin_lock_irqsave(&s->lock, flags); cm_handle_midi(s); spin_unlock_irqrestore(&s->lock, flags); } __set_current_state(TASK_RUNNING); remove_wait_queue(&s->midi.owait, &wait); return ret; } static unsigned int cm_midi_poll(struct file *file, struct poll_table_struct *wait) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned long flags; unsigned int mask = 0; VALIDATE_STATE(s); if (file->f_mode & FMODE_WRITE) poll_wait(file, &s->midi.owait, wait); if (file->f_mode & FMODE_READ) poll_wait(file, &s->midi.iwait, wait); spin_lock_irqsave(&s->lock, flags); if (file->f_mode & FMODE_READ) { if (s->midi.icnt > 0) mask |= POLLIN | POLLRDNORM; } if (file->f_mode & FMODE_WRITE) { if (s->midi.ocnt < MIDIOUTBUF) mask |= POLLOUT | POLLWRNORM; } spin_unlock_irqrestore(&s->lock, flags); return mask; } static int cm_midi_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cm_state *s = devs; unsigned long flags; while (s && s->dev_midi != minor) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & (file->f_mode << FMODE_MIDI_SHIFT)) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } up(&s->open_sem); interruptible_sleep_on(&s->open_wait); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; s->midi.ord = s->midi.owr = s->midi.ocnt = 0; /* enable MPU-401 */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 4); outb(0xff, s->iomidi+1); /* reset command */ if (!(inb(s->iomidi+1) & 0x80)) inb(s->iomidi); outb(0x3f, s->iomidi+1); /* uart command */ if (!(inb(s->iomidi+1) & 0x80)) inb(s->iomidi); s->midi.ird = s->midi.iwr = s->midi.icnt = 0; init_timer(&s->midi.timer); s->midi.timer.expires = jiffies+1; s->midi.timer.data = (unsigned long)s; s->midi.timer.function = cm_midi_timer; add_timer(&s->midi.timer); } if (file->f_mode & FMODE_READ) { s->midi.ird = s->midi.iwr = s->midi.icnt = 0; } if (file->f_mode & FMODE_WRITE) { s->midi.ord = s->midi.owr = s->midi.ocnt = 0; } spin_unlock_irqrestore(&s->lock, flags); s->open_mode |= (file->f_mode << FMODE_MIDI_SHIFT) & (FMODE_MIDI_READ | FMODE_MIDI_WRITE); up(&s->open_sem); MOD_INC_USE_COUNT; return 0; } static int cm_midi_release(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; DECLARE_WAITQUEUE(wait, current); unsigned long flags; unsigned count, tmo; VALIDATE_STATE(s); lock_kernel(); if (file->f_mode & FMODE_WRITE) { __set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&s->midi.owait, &wait); for (;;) { spin_lock_irqsave(&s->lock, flags); count = s->midi.ocnt; spin_unlock_irqrestore(&s->lock, flags); if (count <= 0) break; if (signal_pending(current)) break; if (file->f_flags & O_NONBLOCK) { remove_wait_queue(&s->midi.owait, &wait); set_current_state(TASK_RUNNING); unlock_kernel(); return -EBUSY; } tmo = (count * HZ) / 3100; if (!schedule_timeout(tmo ? : 1) && tmo) printk(KERN_DEBUG "cmpci: midi timed out??\n"); } remove_wait_queue(&s->midi.owait, &wait); set_current_state(TASK_RUNNING); } down(&s->open_sem); s->open_mode &= (~(file->f_mode << FMODE_MIDI_SHIFT)) & (FMODE_MIDI_READ|FMODE_MIDI_WRITE); spin_lock_irqsave(&s->lock, flags); if (!(s->open_mode & (FMODE_MIDI_READ | FMODE_MIDI_WRITE))) { del_timer(&s->midi.timer); outb(0xff, s->iomidi+1); /* reset command */ if (!(inb(s->iomidi+1) & 0x80)) inb(s->iomidi); /* disable MPU-401 */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~4, 0); } spin_unlock_irqrestore(&s->lock, flags); up(&s->open_sem); wake_up(&s->open_wait); unlock_kernel(); return 0; } static /*const*/ struct file_operations cm_midi_fops = { owner: THIS_MODULE, llseek: no_llseek, read: cm_midi_read, write: cm_midi_write, poll: cm_midi_poll, open: cm_midi_open, release: cm_midi_release, }; #endif /* --------------------------------------------------------------------- */ #ifdef CONFIG_SOUND_CMPCI_FM static int cm_dmfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { static const unsigned char op_offset[18] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15 }; struct cm_state *s = (struct cm_state *)file->private_data; struct dm_fm_voice v; struct dm_fm_note n; struct dm_fm_params p; unsigned int io; unsigned int regb; switch (cmd) { case FM_IOCTL_RESET: for (regb = 0xb0; regb < 0xb9; regb++) { outb(regb, s->iosynth); outb(0, s->iosynth+1); outb(regb, s->iosynth+2); outb(0, s->iosynth+3); } return 0; case FM_IOCTL_PLAY_NOTE: if (copy_from_user(&n, (void *)arg, sizeof(n))) return -EFAULT; if (n.voice >= 18) return -EINVAL; if (n.voice >= 9) { regb = n.voice - 9; io = s->iosynth+2; } else { regb = n.voice; io = s->iosynth; } outb(0xa0 + regb, io); outb(n.fnum & 0xff, io+1); outb(0xb0 + regb, io); outb(((n.fnum >> 8) & 3) | ((n.octave & 7) << 2) | ((n.key_on & 1) << 5), io+1); return 0; case FM_IOCTL_SET_VOICE: if (copy_from_user(&v, (void *)arg, sizeof(v))) return -EFAULT; if (v.voice >= 18) return -EINVAL; regb = op_offset[v.voice]; io = s->iosynth + ((v.op & 1) << 1); outb(0x20 + regb, io); outb(((v.am & 1) << 7) | ((v.vibrato & 1) << 6) | ((v.do_sustain & 1) << 5) | ((v.kbd_scale & 1) << 4) | (v.harmonic & 0xf), io+1); outb(0x40 + regb, io); outb(((v.scale_level & 0x3) << 6) | (v.volume & 0x3f), io+1); outb(0x60 + regb, io); outb(((v.attack & 0xf) << 4) | (v.decay & 0xf), io+1); outb(0x80 + regb, io); outb(((v.sustain & 0xf) << 4) | (v.release & 0xf), io+1); outb(0xe0 + regb, io); outb(v.waveform & 0x7, io+1); if (n.voice >= 9) { regb = n.voice - 9; io = s->iosynth+2; } else { regb = n.voice; io = s->iosynth; } outb(0xc0 + regb, io); outb(((v.right & 1) << 5) | ((v.left & 1) << 4) | ((v.feedback & 7) << 1) | (v.connection & 1), io+1); return 0; case FM_IOCTL_SET_PARAMS: if (copy_from_user(&p, (void *)arg, sizeof(p))) return -EFAULT; outb(0x08, s->iosynth); outb((p.kbd_split & 1) << 6, s->iosynth+1); outb(0xbd, s->iosynth); outb(((p.am_depth & 1) << 7) | ((p.vib_depth & 1) << 6) | ((p.rhythm & 1) << 5) | ((p.bass & 1) << 4) | ((p.snare & 1) << 3) | ((p.tomtom & 1) << 2) | ((p.cymbal & 1) << 1) | (p.hihat & 1), s->iosynth+1); return 0; case FM_IOCTL_SET_OPL: outb(4, s->iosynth+2); outb(arg, s->iosynth+3); return 0; case FM_IOCTL_SET_MODE: outb(5, s->iosynth+2); outb(arg & 1, s->iosynth+3); return 0; } return -EINVAL; } static int cm_dmfm_open(struct inode *inode, struct file *file) { int minor = MINOR(inode->i_rdev); struct cm_state *s = devs; while (s && s->dev_dmfm != minor) s = s->next; if (!s) return -ENODEV; VALIDATE_STATE(s); file->private_data = s; /* wait for device to become free */ down(&s->open_sem); while (s->open_mode & FMODE_DMFM) { if (file->f_flags & O_NONBLOCK) { up(&s->open_sem); return -EBUSY; } up(&s->open_sem); interruptible_sleep_on(&s->open_wait); if (signal_pending(current)) return -ERESTARTSYS; down(&s->open_sem); } /* init the stuff */ outb(1, s->iosynth); outb(0x20, s->iosynth+1); /* enable waveforms */ outb(4, s->iosynth+2); outb(0, s->iosynth+3); /* no 4op enabled */ outb(5, s->iosynth+2); outb(1, s->iosynth+3); /* enable OPL3 */ s->open_mode |= FMODE_DMFM; up(&s->open_sem); MOD_INC_USE_COUNT; return 0; } static int cm_dmfm_release(struct inode *inode, struct file *file) { struct cm_state *s = (struct cm_state *)file->private_data; unsigned int regb; VALIDATE_STATE(s); lock_kernel(); down(&s->open_sem); s->open_mode &= ~FMODE_DMFM; for (regb = 0xb0; regb < 0xb9; regb++) { outb(regb, s->iosynth); outb(0, s->iosynth+1); outb(regb, s->iosynth+2); outb(0, s->iosynth+3); } up(&s->open_sem); wake_up(&s->open_wait); unlock_kernel(); return 0; } static /*const*/ struct file_operations cm_dmfm_fops = { owner: THIS_MODULE, llseek: no_llseek, ioctl: cm_dmfm_ioctl, open: cm_dmfm_open, release: cm_dmfm_release, }; #endif /* CONFIG_SOUND_CMPCI_FM */ static struct initvol { int mixch; int vol; } initvol[] __initdata = { { SOUND_MIXER_WRITE_CD, 0x4f4f }, { SOUND_MIXER_WRITE_LINE, 0x4f4f }, { SOUND_MIXER_WRITE_MIC, 0x4f4f }, { SOUND_MIXER_WRITE_SYNTH, 0x4f4f }, { SOUND_MIXER_WRITE_VOLUME, 0x4f4f }, { SOUND_MIXER_WRITE_PCM, 0x4f4f } }; /* check chip version and capability */ static int query_chip(struct cm_state *s) { int ChipVersion = -1; unsigned char RegValue; // check reg 0Ch, bit 24-31 RegValue = inb(s->iobase + CODEC_CMI_INT_HLDCLR + 3); if (RegValue == 0) { // check reg 08h, bit 24-28 RegValue = inb(s->iobase + CODEC_CMI_CHFORMAT + 3); RegValue &= 0x1f; if (RegValue == 0) { ChipVersion = 33; s->max_channels = 4; s->capability |= CAN_AC3_SW; s->capability |= CAN_DUAL_DAC; } else { ChipVersion = 37; s->max_channels = 4; s->capability |= CAN_AC3_HW; s->capability |= CAN_DUAL_DAC; } } else { // check reg 0Ch, bit 26 if (RegValue & (1 << (26-24))) { ChipVersion = 39; if (RegValue & (1 << (24-24))) s->max_channels = 6; else s->max_channels = 4; s->capability |= CAN_AC3_HW; s->capability |= CAN_DUAL_DAC; s->capability |= CAN_MULTI_CH_HW; } else { ChipVersion = 55; // 4 or 6 channels s->max_channels = 6; s->capability |= CAN_AC3_HW; s->capability |= CAN_DUAL_DAC; s->capability |= CAN_MULTI_CH_HW; } } // still limited to number of speakers if (s->max_channels > s->speakers) s->max_channels = s->speakers; return ChipVersion; } #ifdef CONFIG_SOUND_CMPCI_MIDI static int mpuio = CONFIG_SOUND_CMPCI_MPUIO; #else static int mpuio; #endif #ifdef CONFIG_SOUND_CMPCI_FM static int fmio = CONFIG_SOUND_CMPCI_FMIO; #else static int fmio; #endif #ifdef CONFIG_SOUND_CMPCI_SPDIFINVERSE static int spdif_inverse = 1; #else static int spdif_inverse; #endif #ifdef CONFIG_SOUND_CMPCI_SPDIFLOOP static int spdif_loop = 1; #else static int spdif_loop; #endif #ifdef CONFIG_SOUND_CMPCI_SPEAKERS static int speakers = CONFIG_SOUND_CMPCI_SPEAKERS; #else static int speakers = 2; #endif #ifdef CONFIG_SOUND_CMPCI_LINE_REAR static int use_line_as_rear = 1; #else static int use_line_as_rear; #endif #ifdef CONFIG_SOUND_CMPCI_LINE_BASS static int use_line_as_bass = 1; #else static int use_line_as_bass; #endif #ifdef CONFIG_SOUND_CMPCI_JOYSTICK static int joystick = 1; #else static int joystick; #endif MODULE_PARM(mpuio, "i"); MODULE_PARM(fmio, "i"); MODULE_PARM(spdif_inverse, "i"); MODULE_PARM(spdif_loop, "i"); MODULE_PARM(speakers, "i"); MODULE_PARM(use_line_as_rear, "i"); MODULE_PARM(use_line_as_bass, "i"); MODULE_PARM(joystick, "i"); MODULE_PARM_DESC(mpuio, "(0x330, 0x320, 0x310, 0x300) Base of MPU-401, 0 to disable"); MODULE_PARM_DESC(fmio, "(0x388, 0x3C8, 0x3E0) Base of OPL3, 0 to disable"); MODULE_PARM_DESC(spdif_inverse, "(1/0) Invert S/PDIF-in signal"); MODULE_PARM_DESC(spdif_loop, "(1/0) Route S/PDIF-in to S/PDIF-out directly"); MODULE_PARM_DESC(speakers, "(2-6) Number of speakers you connect"); MODULE_PARM_DESC(use_line_as_rear, "(1/0) Use line-in jack as rear-out"); MODULE_PARM_DESC(use_line_as_bass, "(1/0) Use line-in jack as bass/center"); MODULE_PARM_DESC(joystick, "(1/0) Enable joystick interface, still need joystick driver"); static struct pci_device_id cmpci_pci_tbl[] = { { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { 0 } }; MODULE_DEVICE_TABLE(pci, cmpci_pci_tbl); void initialize_chip(struct pci_dev *pcidev) { struct cm_state *s; mm_segment_t fs; int i, val; unsigned char reg_mask = 0; struct { unsigned short deviceid; char *devicename; } devicetable[] = { { PCI_DEVICE_ID_CMEDIA_CM8338A, "CM8338A" }, { PCI_DEVICE_ID_CMEDIA_CM8338B, "CM8338B" }, { PCI_DEVICE_ID_CMEDIA_CM8738, "CM8738" }, { PCI_DEVICE_ID_CMEDIA_CM8738B, "CM8738B" }, }; char *devicename = "unknown"; { if (pci_enable_device(pcidev)) return; if (pcidev->irq == 0) return; s = kmalloc(sizeof(*s), GFP_KERNEL); if (!s) { printk(KERN_WARNING "cmpci: out of memory\n"); return; } /* search device name */ for (i = 0; i < sizeof(devicetable) / sizeof(devicetable[0]); i++) { if (devicetable[i].deviceid == pcidev->device) { devicename = devicetable[i].devicename; break; } } memset(s, 0, sizeof(struct cm_state)); init_waitqueue_head(&s->dma_adc.wait); init_waitqueue_head(&s->dma_dac.wait); init_waitqueue_head(&s->open_wait); init_waitqueue_head(&s->midi.iwait); init_waitqueue_head(&s->midi.owait); init_MUTEX(&s->open_sem); spin_lock_init(&s->lock); s->magic = CM_MAGIC; s->iobase = pci_resource_start(pcidev, 0); s->iosynth = fmio; s->iomidi = mpuio; s->status = 0; /* range check */ if (speakers < 2) speakers = 2; else if (speakers > 6) speakers = 6; s->speakers = speakers; if (s->iobase == 0) return; s->irq = pcidev->irq; if (!request_region(s->iobase, CM_EXTENT_CODEC, "cmpci")) { printk(KERN_ERR "cmpci: io ports %#x-%#x in use\n", s->iobase, s->iobase+CM_EXTENT_CODEC-1); goto err_region5; } #ifdef CONFIG_SOUND_CMPCI_MIDI /* disable MPU-401 */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x04, 0); if (s->iomidi) { if (!request_region(s->iomidi, CM_EXTENT_MIDI, "cmpci Midi")) { printk(KERN_ERR "cmpci: io ports %#x-%#x in use\n", s->iomidi, s->iomidi+CM_EXTENT_MIDI-1); s->iomidi = 0; } else { /* set IO based at 0x330 */ switch (s->iomidi) { case 0x330: reg_mask = 0; break; case 0x320: reg_mask = 0x20; break; case 0x310: reg_mask = 0x40; break; case 0x300: reg_mask = 0x60; break; default: s->iomidi = 0; break; } outb((inb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3) & ~0x60) | reg_mask, s->iobase + CODEC_CMI_LEGACY_CTRL + 3); /* enable MPU-401 */ if (s->iomidi) { maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x04); } } } #endif #ifdef CONFIG_SOUND_CMPCI_FM /* disable FM */ maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~8, 0); if (s->iosynth) { if (!request_region(s->iosynth, CM_EXTENT_SYNTH, "cmpci FM")) { printk(KERN_ERR "cmpci: io ports %#x-%#x in use\n", s->iosynth, s->iosynth+CM_EXTENT_SYNTH-1); s->iosynth = 0; } else { /* set IO based at 0x388 */ switch (s->iosynth) { case 0x388: reg_mask = 0; break; case 0x3C8: reg_mask = 0x01; break; case 0x3E0: reg_mask = 0x02; break; case 0x3E8: reg_mask = 0x03; break; default: s->iosynth = 0; break; } maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 3, ~0x03, reg_mask); /* enable FM */ if (s->iosynth) { maskb(s->iobase + CODEC_CMI_MISC_CTRL + 2, ~0, 8); } } } #endif /* enable joystick */ if (joystick) maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x02); else maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x02, 0); /* initialize codec registers */ outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */ outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */ /* reset mixer */ wrmixer(s, DSP_MIX_DATARESETIDX, 0); /* request irq */ if (request_irq(s->irq, cm_interrupt, SA_SHIRQ, "cmpci", s)) { printk(KERN_ERR "cmpci: irq %u in use\n", s->irq); goto err_irq; } printk(KERN_INFO "cmpci: found %s adapter at io %#06x irq %u\n", devicename, s->iobase, s->irq); /* register devices */ if ((s->dev_audio = register_sound_dsp(&cm_audio_fops, -1)) < 0) goto err_dev1; if ((s->dev_mixer = register_sound_mixer(&cm_mixer_fops, -1)) < 0) goto err_dev2; #ifdef CONFIG_SOUND_CMPCI_MIDI if ((s->dev_midi = register_sound_midi(&cm_midi_fops, -1)) < 0) goto err_dev3; #endif #ifdef CONFIG_SOUND_CMPCI_FM if ((s->dev_dmfm = register_sound_special(&cm_dmfm_fops, 15 /* ?? */)) < 0) goto err_dev4; #endif pci_set_master(pcidev); /* enable bus mastering */ /* initialize the chips */ fs = get_fs(); set_fs(KERNEL_DS); /* set mixer output */ frobindir(s, DSP_MIX_OUTMIXIDX, 0x1f, 0x1f); /* set mixer input */ val = SOUND_MASK_LINE|SOUND_MASK_SYNTH|SOUND_MASK_CD|SOUND_MASK_MIC; mixer_ioctl(s, SOUND_MIXER_WRITE_RECSRC, (unsigned long)&val); for (i = 0; i < sizeof(initvol)/sizeof(initvol[0]); i++) { val = initvol[i].vol; mixer_ioctl(s, initvol[i].mixch, (unsigned long)&val); } /* use channel 0 for record, channel 1 for play */ maskb(s->iobase + CODEC_CMI_FUNCTRL0, ~2, 1); s->deviceid = pcidev->device; if (pcidev->device == PCI_DEVICE_ID_CMEDIA_CM8738) { /* chip version and hw capability check */ s->chip_version = query_chip(s); printk(KERN_INFO "cmpci: chip version = 0%d\n", s->chip_version); /* seet SPDIF-in inverse before enable SPDIF loop */ if (spdif_inverse) { /* turn on spdif-in inverse */ maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~0, 1); printk(KERN_INFO "cmpci: Inverse SPDIF-in\n"); } else { /* turn off spdif-ininverse */ maskb(s->iobase + CODEC_CMI_CHFORMAT + 2, ~1, 0); } /* enable SPDIF loop */ if (spdif_loop) { s->status |= DO_SPDIF_LOOP; /* turn on spdif-in to spdif-out */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0, 0x80); printk(KERN_INFO "cmpci: Enable SPDIF loop\n"); } else { s->status &= ~DO_SPDIF_LOOP; /* turn off spdif-in to spdif-out */ maskb(s->iobase + CODEC_CMI_FUNCTRL1, ~0x80, 0); } if (use_line_as_rear) { s->capability |= CAN_LINE_AS_REAR; s->status |= DO_LINE_AS_REAR; maskb(s->iobase + CODEC_CMI_MIXER1, ~0, 0x20); } else maskb(s->iobase + CODEC_CMI_MIXER1, ~0x20, 0); if (s->chip_version >= 39) { if (use_line_as_bass) { s->capability |= CAN_LINE_AS_BASS; s->status |= DO_LINE_AS_BASS; maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~0, 0x60); } else maskb(s->iobase + CODEC_CMI_LEGACY_CTRL + 1, ~0x60, 0); } } else { /* 8338 will fall here */ s->max_channels = 2; } /* queue it for later freeing */ s->next = devs; devs = s; return; #ifdef CONFIG_SOUND_CMPCI_FM unregister_sound_special(s->dev_dmfm); err_dev4: #endif #ifdef CONFIG_SOUND_CMPCI_MIDI unregister_sound_midi(s->dev_midi); err_dev3: #endif unregister_sound_mixer(s->dev_mixer); err_dev2: unregister_sound_dsp(s->dev_audio); err_dev1: printk(KERN_ERR "cmpci: cannot register misc device\n"); free_irq(s->irq, s); err_irq: #ifdef CONFIG_SOUND_CMPCI_FM if (s->iosynth) release_region(s->iosynth, CM_EXTENT_SYNTH); #endif #ifdef CONFIG_SOUND_CMPCI_MIDI if (s->iomidi) release_region(s->iomidi, CM_EXTENT_MIDI); #endif release_region(s->iobase, CM_EXTENT_CODEC); err_region5: kfree(s); } if (!devs) { if (wavetable_mem) free_pages(wavetable_mem, 20-PAGE_SHIFT); return; } return; } static int __init init_cmpci(void) { struct pci_dev *pcidev = NULL; int index = 0; #ifdef CONFIG_PCI if (!pci_present()) /* No PCI bus in this machine! */ #endif return -ENODEV; printk(KERN_INFO "cmpci: version $Revision: 1.1.1.1 $ time " __TIME__ " " __DATE__ "\n"); while (index < NR_DEVICE && ( (pcidev = pci_find_device(PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, pcidev)))) { initialize_chip(pcidev); index++; } while (index < NR_DEVICE && ( (pcidev = pci_find_device(PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, pcidev)))) { initialize_chip(pcidev); index++; } while (index < NR_DEVICE && ( (pcidev = pci_find_device(PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, pcidev)))) { initialize_chip(pcidev); index++; } return 0; } /* --------------------------------------------------------------------- */ MODULE_AUTHOR("ChenLi Tien, cltien@cmedia.com.tw"); MODULE_DESCRIPTION("CM8x38 Audio Driver"); MODULE_LICENSE("GPL"); static void __exit cleanup_cmpci(void) { struct cm_state *s; while ((s = devs)) { devs = devs->next; outb(0, s->iobase + CODEC_CMI_INT_HLDCLR + 2); /* disable ints */ synchronize_irq(); outb(0, s->iobase + CODEC_CMI_FUNCTRL0 + 2); /* disable channels */ free_irq(s->irq, s); /* reset mixer */ wrmixer(s, DSP_MIX_DATARESETIDX, 0); release_region(s->iobase, CM_EXTENT_CODEC); #ifdef CONFIG_SOUND_CMPCI_MIDI if (s->iomidi) release_region(s->iomidi, CM_EXTENT_MIDI); #endif #ifdef CONFIG_SOUND_CMPCI_FM if (s->iosynth) release_region(s->iosynth, CM_EXTENT_SYNTH); #endif unregister_sound_dsp(s->dev_audio); unregister_sound_mixer(s->dev_mixer); #ifdef CONFIG_SOUND_CMPCI_MIDI unregister_sound_midi(s->dev_midi); #endif #ifdef CONFIG_SOUND_CMPCI_FM unregister_sound_special(s->dev_dmfm); #endif kfree(s); } if (wavetable_mem) free_pages(wavetable_mem, 20-PAGE_SHIFT); printk(KERN_INFO "cmpci: unloading\n"); } module_init(init_cmpci); module_exit(cleanup_cmpci);