/* * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2000 Silicon Graphics, Inc. * Copyright (C) 2000 by Jack Steiner (steiner@sgi.com) */ #ifndef _ASM_IA64_SN_SN_CPUID_H #define _ASM_IA64_SN_SN_CPUID_H #include #include #include /* * Functions for converting between cpuids, nodeids and NASIDs. * * These are for SGI platforms only. * */ /* * Definitions of terms (these definitions are for IA64 ONLY. Other architectures * use cpuid/cpunum quite defferently): * * CPUID - a number in range of 0..NR_CPUS-1 that uniquely identifies * the cpu. The value cpuid has no significance on IA64 other than * the boot cpu is 0. * smp_processor_id() returns the cpuid of the current cpu. * * CPUNUM - On IA64, a cpunum and cpuid are the same. This is NOT true * on other architectures like IA32. * * CPU_PHYSICAL_ID (also known as HARD_PROCESSOR_ID) * This is the same as 31:24 of the processor LID register * hard_smp_processor_id()- cpu_physical_id of current processor * cpu_physical_id(cpuid) - convert a to a * cpu_logical_id(phy_id) - convert a to a * * not real efficient - dont use in perf critical code * * LID - processor defined register (see PRM V2). * 31:24 - id Contains the NASID * 23:16 - eid Contains 0-3 to identify the cpu on the node * bit 17 - synergy number * bit 16 - FSB slot number * * * * The following assumes the following mappings for LID register values: * * The macros convert between cpu physical ids & slice/fsb/synergy/nasid/cnodeid. * These terms are described below: * * * ----- ----- ----- ----- CPU * | 0 | | 1 | | 2 | | 3 | SLICE * ----- ----- ----- ----- * | | | | * | | | | * 0 | | 1 0 | | 1 FSB SLOT * ------- ------- * | | * | | * ------- ------- * | | | | * | 0 | | 1 | SYNERGY * | | | | * ------- ------- * | | * | | * ------------------------------- * | | * | BEDROCK | NASID (0..127) * | | CNODEID (0..numnodes-1) * | | * | | * ------------------------------- * | * */ #ifndef CONFIG_SMP #define cpu_logical_id(cpu) 0 #define cpu_physical_id(cpuid) ((ia64_get_lid() >> 16) & 0xffff) #endif #define cpu_physical_id_to_nasid(cpi) ((cpi) >> 8) #define cpu_physical_id_to_synergy(cpi) (((cpi) >> 1) & 1) #define cpu_physical_id_to_fsb_slot(cpi) ((cpi) & 1) #define cpu_physical_id_to_slice(cpi) ((cpi) & 3) /* * NOTE: id & eid refer to Intels definitions of the LID register * (id = NASID, eid = slice) * NOTE: on non-MP systems, only cpuid 0 exists */ #define id_eid_to_cpu_physical_id(id,eid) (((id)<<8) | (eid)) #define id_eid_to_cpuid(id,eid) (cpu_logical_id(id_eid_to_cpu_physical_id((id),(eid)))) /* * The following table/struct is used for managing PTC coherency domains. */ typedef struct { u8 domain; u8 reserved; u16 sapicid; } sn_sapicid_info_t; extern sn_sapicid_info_t sn_sapicid_info[]; /* indexed by cpuid */ /* * cpuid_to_fsb_slot - convert a cpuid to the fsb slot number that it is in. * (there are 2 cpus per FSB. This function returns 0 or 1) */ static __inline__ int cpuid_to_fsb_slot(int cpuid) { return cpu_physical_id_to_fsb_slot(cpu_physical_id(cpuid)); } /* * cpuid_to_synergy - convert a cpuid to the synergy that it resides on * (there are 2 synergies per node. Function returns 0 or 1 to * specify which synergy the cpu is on) */ static __inline__ int cpuid_to_synergy(int cpuid) { return cpu_physical_id_to_synergy(cpu_physical_id(cpuid)); } /* * cpuid_to_slice - convert a cpuid to the slice that it resides on * There are 4 cpus per node. This function returns 0 .. 3) */ static __inline__ int cpuid_to_slice(int cpuid) { return cpu_physical_id_to_slice(cpu_physical_id(cpuid)); } /* * cpuid_to_nasid - convert a cpuid to the NASID that it resides on */ static __inline__ int cpuid_to_nasid(int cpuid) { return cpu_physical_id_to_nasid(cpu_physical_id(cpuid)); } /* * cpuid_to_cnodeid - convert a cpuid to the cnode that it resides on */ static __inline__ int cpuid_to_cnodeid(int cpuid) { return nasid_map[cpuid_to_nasid(cpuid)]; } /* * cnodeid_to_nasid - convert a cnodeid to a NASID */ static __inline__ int cnodeid_to_nasid(int cnodeid) { if (nasid_map[cnodeid_map[cnodeid]] != cnodeid) panic("cnodeid_to_nasid, cnode = %d", cnodeid); return cnodeid_map[cnodeid]; } /* * nasid_to_cnodeid - convert a NASID to a cnodeid */ static __inline__ int nasid_to_cnodeid(int nasid) { if (cnodeid_map[nasid_map[nasid]] != nasid) panic("nasid_to_cnodeid"); return nasid_map[nasid]; } /* * cnode_slice_to_cpuid - convert a codeid & slice to a cpuid */ static __inline__ int cnode_slice_to_cpuid(int cnodeid, int slice) { return(id_eid_to_cpuid(cnodeid_to_nasid(cnodeid),slice)); } /* * cpuid_to_subnode - convert a cpuid to the subnode it resides on. * slice 0 & 1 are on subnode 0 * slice 2 & 3 are on subnode 1. */ static __inline__ int cpuid_to_subnode(int cpuid) { int ret = cpuid_to_slice(cpuid); if (ret < 2) return 0; else return 1; } /* * cpuid_to_localslice - convert a cpuid to a local slice * slice 0 & 2 are local slice 0 * slice 1 & 3 are local slice 1 */ static __inline__ int cpuid_to_localslice(int cpuid) { return(cpuid_to_slice(cpuid) & 1); } static __inline__ int cnodeid_to_cpuid(int cnode) { int cpu; for (cpu = 0; cpu < smp_num_cpus; cpu++) { if (cpuid_to_cnodeid(cpu) == cnode) { break; } } if (cpu == smp_num_cpus) cpu = -1; return cpu; } #endif /* _ASM_IA64_SN_SN_CPUID_H */