/* * BK Id: SCCS/s.pgtable.h 1.34 11/12/01 11:24:50 paulus */ #ifdef __KERNEL__ #ifndef _PPC_PGTABLE_H #define _PPC_PGTABLE_H #include #ifndef __ASSEMBLY__ #include #include #include /* For TASK_SIZE */ #include #include extern void _tlbie(unsigned long address); extern void _tlbia(void); #if defined(CONFIG_4xx) #ifdef CONFIG_PIN_TLB /* When pinning entries on the 4xx, we have to use a software function * to ensure we don't remove them since there isn't any hardware support * for this. */ #define __tlbia() _tlbia() #else #define __tlbia() asm volatile ("tlbia; sync" : : : "memory") #endif static inline void local_flush_tlb_all(void) { __tlbia(); } static inline void local_flush_tlb_mm(struct mm_struct *mm) { __tlbia(); } static inline void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { _tlbie(vmaddr); } static inline void local_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { __tlbia(); } #define update_mmu_cache(vma, addr, pte) do { } while (0) #elif defined(CONFIG_8xx) #define __tlbia() asm volatile ("tlbia; sync" : : : "memory") static inline void local_flush_tlb_all(void) { __tlbia(); } static inline void local_flush_tlb_mm(struct mm_struct *mm) { __tlbia(); } static inline void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { _tlbie(vmaddr); } static inline void local_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { __tlbia(); } #define update_mmu_cache(vma, addr, pte) do { } while (0) #else /* 6xx, 7xx, 7xxx cpus */ struct mm_struct; struct vm_area_struct; extern void local_flush_tlb_all(void); extern void local_flush_tlb_mm(struct mm_struct *mm); extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr); extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end); /* * This gets called at the end of handling a page fault, when * the kernel has put a new PTE into the page table for the process. * We use it to put a corresponding HPTE into the hash table * ahead of time, instead of waiting for the inevitable extra * hash-table miss exception. */ extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); #endif #define flush_tlb_all local_flush_tlb_all #define flush_tlb_mm local_flush_tlb_mm #define flush_tlb_page local_flush_tlb_page #define flush_tlb_range local_flush_tlb_range /* * This is called in munmap when we have freed up some page-table * pages. We don't need to do anything here, there's nothing special * about our page-table pages. -- paulus */ static inline void flush_tlb_pgtables(struct mm_struct *mm, unsigned long start, unsigned long end) { } /* * No cache flushing is required when address mappings are * changed, because the caches on PowerPCs are physically * addressed. -- paulus * Also, when SMP we use the coherency (M) bit of the * BATs and PTEs. -- Cort */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, a, b) do { } while (0) #define flush_cache_page(vma, p) do { } while (0) #define flush_icache_page(vma, page) do { } while (0) extern void flush_icache_range(unsigned long, unsigned long); extern void __flush_page_to_ram(unsigned long page_va); extern void flush_page_to_ram(struct page *page); #define flush_dcache_page(page) do { } while (0) extern unsigned long va_to_phys(unsigned long address); extern pte_t *va_to_pte(unsigned long address); extern unsigned long ioremap_bot, ioremap_base; #endif /* __ASSEMBLY__ */ /* * The PowerPC MMU uses a hash table containing PTEs, together with * a set of 16 segment registers (on 32-bit implementations), to define * the virtual to physical address mapping. * * We use the hash table as an extended TLB, i.e. a cache of currently * active mappings. We maintain a two-level page table tree, much * like that used by the i386, for the sake of the Linux memory * management code. Low-level assembler code in hashtable.S * (procedure hash_page) is responsible for extracting ptes from the * tree and putting them into the hash table when necessary, and * updating the accessed and modified bits in the page table tree. */ /* * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. * We also use the two level tables, but we can put the real bits in them * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit * based upon user/super access. The TLB does not have accessed nor write * protect. We assume that if the TLB get loaded with an entry it is * accessed, and overload the changed bit for write protect. We use * two bits in the software pte that are supposed to be set to zero in * the TLB entry (24 and 25) for these indicators. Although the level 1 * descriptor contains the guarded and writethrough/copyback bits, we can * set these at the page level since they get copied from the Mx_TWC * register when the TLB entry is loaded. We will use bit 27 for guard, since * that is where it exists in the MD_TWC, and bit 26 for writethrough. * These will get masked from the level 2 descriptor at TLB load time, and * copied to the MD_TWC before it gets loaded. * Large page sizes added. We currently support two sizes, 4K and 8M. * This also allows a TLB hander optimization because we can directly * load the PMD into MD_TWC. The 8M pages are only used for kernel * mapping of well known areas. The PMD (PGD) entries contain control * flags in addition to the address, so care must be taken that the * software no longer assumes these are only pointers. */ /* * At present, all PowerPC 400-class processors share a similar TLB * architecture. The instruction and data sides share a unified, * 64-entry, fully-associative TLB which is maintained totally under * software control. In addition, the instruction side has a * hardware-managed, 4-entry, fully-associative TLB which serves as a * first level to the shared TLB. These two TLBs are known as the UTLB * and ITLB, respectively (see "mmu.h" for definitions). */ /* PMD_SHIFT determines the size of the area mapped by the second-level page tables */ #define PMD_SHIFT 22 #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT 22 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: our page-table tree is two-level, so * we don't really have any PMD directory. */ #define PTRS_PER_PTE 1024 #define PTRS_PER_PMD 1 #define PTRS_PER_PGD 1024 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) #define FIRST_USER_PGD_NR 0 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) #define pte_ERROR(e) \ printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) /* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 64MB value just means that there will be a 64MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) * * We no longer map larger than phys RAM with the BATs so we don't have * to worry about the VMALLOC_OFFSET causing problems. We do have to worry * about clashes between our early calls to ioremap() that start growing down * from ioremap_base being run into the VM area allocations (growing upwards * from VMALLOC_START). For this reason we have ioremap_bot to check when * we actually run into our mappings setup in the early boot with the VM * system. This really does become a problem for machines with good amounts * of RAM. -- Cort * * For simplicity on 4xx, if we pin some TLB entries we do it * for the lower 32 M (4xx) regardless of the memory present. * Possibly, the normal 16M roundup would work, but we need to ensure we * don't have trouble on smaller than 16M systems. * -- Dan */ #ifdef CONFIG_PIN_TLB #define VMALLOC_OFFSET (0x2000000) /* 32M */ #else #define VMALLOC_OFFSET (0x1000000) /* 16M */ #endif #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) #define VMALLOC_VMADDR(x) ((unsigned long)(x)) #define VMALLOC_END ioremap_bot /* * Bits in a linux-style PTE. These match the bits in the * (hardware-defined) PowerPC PTE as closely as possible. */ #if defined(CONFIG_4xx) /* There are several potential gotchas here. The 4xx hardware TLBLO field looks like this: 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 RPN..................... 0 0 EX WR ZSEL....... W I M G Where possible we make the Linux PTE bits match up with this - bits 20 and 21 must be cleared, because we use 4k pages (4xx can support down to 1k pages), this is done in the TLBMiss exception handler. - We use only zones 0 (for kernel pages) and 1 (for user pages) of the 16 available. Bit 24-26 of the TLB are cleared in the TLB miss handler. Bit 27 is PAGE_USER, thus selecting the correct zone. - PRESENT *must* be in the bottom two bits because swap cache entries use the top 30 bits. Because 4xx doesn't support SMP anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 is cleared in the TLB miss handler before the TLB entry is loaded. - All other bits of the PTE are loaded into TLBLO without modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for software PTE bits. We actually use use bits 20, 24, 25, 26, and 30 respectively for the software bits: ACCESSED, DIRTY, RW, EXEC, PRESENT. */ /* Definitions for 4xx embedded chips. */ #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ #define _PAGE_USER 0x010 /* matches one of the zone permission bits */ #define _PAGE_RW 0x040 /* software: Writes permitted */ #define _PAGE_DIRTY 0x080 /* software: dirty page */ #define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ #define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ #define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ #define _PMD_PRESENT PAGE_MASK #elif defined(CONFIG_8xx) /* Definitions for 8xx embedded chips. */ #define _PAGE_PRESENT 0x0001 /* Page is valid */ #define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */ #define _PAGE_SHARED 0x0004 /* No ASID (context) compare */ /* These five software bits must be masked out when the entry is loaded * into the TLB. */ #define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */ #define _PAGE_GUARDED 0x0010 /* software: guarded access */ #define _PAGE_DIRTY 0x0020 /* software: page changed */ #define _PAGE_RW 0x0040 /* software: user write access allowed */ #define _PAGE_ACCESSED 0x0080 /* software: page referenced */ /* Setting any bits in the nibble with the follow two controls will * require a TLB exception handler change. It is assumed unused bits * are always zero. */ #define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */ #define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */ #define _PMD_PRESENT 0x0001 #define _PMD_PAGE_MASK 0x000c #define _PMD_PAGE_8M 0x000c #else /* CONFIG_6xx */ /* Definitions for 60x, 740/750, etc. */ #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ #define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ #define _PAGE_USER 0x004 /* usermode access allowed */ #define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ #define _PAGE_DIRTY 0x080 /* C: page changed */ #define _PAGE_ACCESSED 0x100 /* R: page referenced */ #define _PAGE_EXEC 0x200 /* software: i-cache coherency required */ #define _PAGE_RW 0x400 /* software: user write access allowed */ #define _PMD_PRESENT PAGE_MASK #endif /* The non-standard PowerPC MMUs, which includes the 4xx and 8xx (and * mabe 603e) have TLB miss handlers that unconditionally set the * _PAGE_ACCESSED flag as a performance optimization. This causes * problems for the page_none() macro, just like the HASHPTE flag does * for the standard PowerPC MMUs. Depending upon the MMU configuration, * either HASHPTE or ACCESSED will have to be masked to give us a * proper pte_none() condition. */ #ifndef _PAGE_HASHPTE #define _PAGE_HASHPTE 0 #define _PTE_NONE_MASK _PAGE_ACCESSED #else #define _PTE_NONE_MASK _PAGE_HASHPTE #endif #ifndef _PAGE_SHARED #define _PAGE_SHARED 0 #endif #ifndef _PAGE_HWWRITE #define _PAGE_HWWRITE 0 #endif #ifndef _PAGE_HWEXEC #define _PAGE_HWEXEC 0 #endif #ifndef _PAGE_EXEC #define _PAGE_EXEC 0 #endif #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) /* * Note: the _PAGE_COHERENT bit automatically gets set in the hardware * PTE if CONFIG_SMP is defined (hash_page does this); there is no need * to have it in the Linux PTE, and in fact the bit could be reused for * another purpose. -- paulus. */ #define _PAGE_BASE _PAGE_PRESENT | _PAGE_ACCESSED #ifndef CONFIG_8xx #define _PAGE_WRENABLE _PAGE_RW | _PAGE_DIRTY #else #define _PAGE_WRENABLE _PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE #endif #define _PAGE_KERNEL _PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC #define _PAGE_IO _PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED #define PAGE_NONE __pgprot(_PAGE_BASE) #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED) #define PAGE_KERNEL_CI __pgprot(_PAGE_IO) /* * The PowerPC can only do execute protection on a segment (256MB) basis, * not on a page basis. So we consider execute permission the same as read. * Also, write permissions imply read permissions. * This is the closest we can get.. */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY_X #define __P010 PAGE_COPY #define __P011 PAGE_COPY_X #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY_X #define __P110 PAGE_COPY #define __P111 PAGE_COPY_X #define __S000 PAGE_NONE #define __S001 PAGE_READONLY_X #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED_X #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY_X #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED_X #ifndef __ASSEMBLY__ /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[1024]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #endif /* __ASSEMBLY__ */ #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) #define pte_clear(ptep) do { set_pte((ptep), __pte(0)); } while (0) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0) #define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0) #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) /* * Permanent address of a page. */ #define page_address(page) ((page)->virtual) #define pte_page(x) (mem_map+(unsigned long)((pte_val(x)-PPC_MEMSTART) >> PAGE_SHIFT)) #ifndef __ASSEMBLY__ /* * The "pgd_xxx()" functions here are trivial for a folded two-level * setup: the pgd is never bad, and a pmd always exists (as it's folded * into the pgd entry) */ static inline int pgd_none(pgd_t pgd) { return 0; } static inline int pgd_bad(pgd_t pgd) { return 0; } static inline int pgd_present(pgd_t pgd) { return 1; } #define pgd_clear(xp) do { } while (0) #define pgd_page(pgd) \ ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } static inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_EXEC; return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; } static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) { pte_t pte; pte_val(pte) = physpage | pgprot_val(pgprot); return pte; } #define mk_pte(page,pgprot) \ ({ \ pte_t pte; \ pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + PPC_MEMSTART) | pgprot_val(pgprot); \ pte; \ }) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } /* * Atomic PTE updates. * * pte_update clears and sets bit atomically, and returns * the old pte value. */ static inline unsigned long pte_update(pte_t *p, unsigned long clr, unsigned long set) { unsigned long old, tmp; __asm__ __volatile__("\ 1: lwarx %0,0,%3\n\ andc %1,%0,%4\n\ or %1,%1,%5\n" PPC405_ERR77(0,%3) " stwcx. %1,0,%3\n\ bne- 1b" : "=&r" (old), "=&r" (tmp), "=m" (*p) : "r" (p), "r" (clr), "r" (set), "m" (*p) : "cc" ); return old; } /* * When a new value is written into a PTE, we may need to flush the * i-cache for the page of memory that the PTE points to. * (Note: machines with software TLB reloads could do the flush in * the instruction TLB miss handler instead.) * Writing a new value into the PTE doesn't disturb the state of the * _PAGE_HASHPTE bit, on those machines which use an MMU hash table. */ extern void set_pte(pte_t *ptep, pte_t pte); static inline int ptep_test_and_clear_young(pte_t *ptep) { return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0; } static inline int ptep_test_and_clear_dirty(pte_t *ptep) { return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; } static inline pte_t ptep_get_and_clear(pte_t *ptep) { return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); } static inline void ptep_set_wrprotect(pte_t *ptep) { pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); } static inline void ptep_mkdirty(pte_t *ptep) { pte_update(ptep, 0, _PAGE_DIRTY); } #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) #define pmd_page(pmd) (pmd_val(pmd) & PAGE_MASK) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* to find an entry in a page-table-directory */ #define pgd_index(address) ((address) >> PGDIR_SHIFT) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* Find an entry in the second-level page table.. */ static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ static inline pte_t * pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); } extern pgd_t swapper_pg_dir[1024]; extern void paging_init(void); /* * When flushing the tlb entry for a page, we also need to flush the hash * table entry. flush_hash_page is assembler (for speed) in hashtable.S. */ extern int flush_hash_page(unsigned context, unsigned long va, pte_t *ptep); /* Add an HPTE to the hash table */ extern void add_hash_page(unsigned context, unsigned long va, pte_t *ptep); /* * Encode and decode a swap entry. * Note that the bits we use in a PTE for representing a swap entry * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit * (if used). -- paulus */ #define SWP_TYPE(entry) ((entry).val & 0x3f) #define SWP_OFFSET(entry) ((entry).val >> 6) #define SWP_ENTRY(type, offset) ((swp_entry_t) { (type) | ((offset) << 6) }) #define pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 }) #define swp_entry_to_pte(x) ((pte_t) { (x).val << 2 }) /* CONFIG_APUS */ /* For virtual address to physical address conversion */ extern void cache_clear(__u32 addr, int length); extern void cache_push(__u32 addr, int length); extern int mm_end_of_chunk (unsigned long addr, int len); extern unsigned long iopa(unsigned long addr); extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const)); /* Values for nocacheflag and cmode */ /* These are not used by the APUS kernel_map, but prevents compilation errors. */ #define KERNELMAP_FULL_CACHING 0 #define KERNELMAP_NOCACHE_SER 1 #define KERNELMAP_NOCACHE_NONSER 2 #define KERNELMAP_NO_COPYBACK 3 /* * Map some physical address range into the kernel address space. */ extern unsigned long kernel_map(unsigned long paddr, unsigned long size, int nocacheflag, unsigned long *memavailp ); /* * Set cache mode of (kernel space) address range. */ extern void kernel_set_cachemode (unsigned long address, unsigned long size, unsigned int cmode); /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define kern_addr_valid(addr) (1) #define io_remap_page_range remap_page_range /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) #endif /* __ASSEMBLY__ */ #endif /* _PPC_PGTABLE_H */ #endif /* __KERNEL__ */