/* * NET3 IP device support routines. * * Version: $Id: devinet.c,v 1.1.1.1 2003/06/23 22:18:45 jharrell Exp $ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Derived from the IP parts of dev.c 1.0.19 * Authors: Ross Biro, * Fred N. van Kempen, * Mark Evans, * * Additional Authors: * Alan Cox, * Alexey Kuznetsov, * * Changes: * Alexey Kuznetsov: pa_* fields are replaced with ifaddr lists. * Cyrus Durgin: updated for kmod * Matthias Andree: in devinet_ioctl, compare label and * address (4.4BSD alias style support), * fall back to comparing just the label * if no match found. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYSCTL #include #endif #include #include #include #include struct ipv4_devconf ipv4_devconf = { 1, 1, 1, 1, 0, }; static struct ipv4_devconf ipv4_devconf_dflt = { 1, 1, 1, 1, 1, }; static void rtmsg_ifa(int event, struct in_ifaddr *); static struct notifier_block *inetaddr_chain; static void inet_del_ifa(struct in_device *in_dev, struct in_ifaddr **ifap, int destroy); #ifdef CONFIG_SYSCTL static void devinet_sysctl_register(struct in_device *in_dev, struct ipv4_devconf *p); static void devinet_sysctl_unregister(struct ipv4_devconf *p); #endif int inet_ifa_count; int inet_dev_count; /* Locks all the inet devices. */ rwlock_t inetdev_lock = RW_LOCK_UNLOCKED; static struct in_ifaddr * inet_alloc_ifa(void) { struct in_ifaddr *ifa; ifa = kmalloc(sizeof(*ifa), GFP_KERNEL); if (ifa) { memset(ifa, 0, sizeof(*ifa)); inet_ifa_count++; } return ifa; } static __inline__ void inet_free_ifa(struct in_ifaddr *ifa) { if (ifa->ifa_dev) __in_dev_put(ifa->ifa_dev); kfree(ifa); inet_ifa_count--; } void in_dev_finish_destroy(struct in_device *idev) { struct net_device *dev = idev->dev; BUG_TRAP(idev->ifa_list==NULL); BUG_TRAP(idev->mc_list==NULL); #ifdef NET_REFCNT_DEBUG printk(KERN_DEBUG "in_dev_finish_destroy: %p=%s\n", idev, dev ? dev->name : "NIL"); #endif dev_put(dev); if (!idev->dead) { printk("Freeing alive in_device %p\n", idev); return; } inet_dev_count--; kfree(idev); } struct in_device *inetdev_init(struct net_device *dev) { struct in_device *in_dev; ASSERT_RTNL(); in_dev = kmalloc(sizeof(*in_dev), GFP_KERNEL); if (!in_dev) return NULL; memset(in_dev, 0, sizeof(*in_dev)); in_dev->lock = RW_LOCK_UNLOCKED; memcpy(&in_dev->cnf, &ipv4_devconf_dflt, sizeof(in_dev->cnf)); in_dev->cnf.sysctl = NULL; in_dev->dev = dev; if ((in_dev->arp_parms = neigh_parms_alloc(dev, &arp_tbl)) == NULL) { kfree(in_dev); return NULL; } inet_dev_count++; /* Reference in_dev->dev */ dev_hold(dev); #ifdef CONFIG_SYSCTL neigh_sysctl_register(dev, in_dev->arp_parms, NET_IPV4, NET_IPV4_NEIGH, "ipv4"); #endif write_lock_bh(&inetdev_lock); dev->ip_ptr = in_dev; /* Account for reference dev->ip_ptr */ in_dev_hold(in_dev); write_unlock_bh(&inetdev_lock); #ifdef CONFIG_SYSCTL devinet_sysctl_register(in_dev, &in_dev->cnf); #endif if (dev->flags&IFF_UP) ip_mc_up(in_dev); return in_dev; } static void inetdev_destroy(struct in_device *in_dev) { struct in_ifaddr *ifa; ASSERT_RTNL(); in_dev->dead = 1; ip_mc_destroy_dev(in_dev); while ((ifa = in_dev->ifa_list) != NULL) { inet_del_ifa(in_dev, &in_dev->ifa_list, 0); inet_free_ifa(ifa); } #ifdef CONFIG_SYSCTL devinet_sysctl_unregister(&in_dev->cnf); #endif write_lock_bh(&inetdev_lock); in_dev->dev->ip_ptr = NULL; /* in_dev_put following below will kill the in_device */ write_unlock_bh(&inetdev_lock); neigh_parms_release(&arp_tbl, in_dev->arp_parms); in_dev_put(in_dev); } int inet_addr_onlink(struct in_device *in_dev, u32 a, u32 b) { read_lock(&in_dev->lock); for_primary_ifa(in_dev) { if (inet_ifa_match(a, ifa)) { if (!b || inet_ifa_match(b, ifa)) { read_unlock(&in_dev->lock); return 1; } } } endfor_ifa(in_dev); read_unlock(&in_dev->lock); return 0; } static void inet_del_ifa(struct in_device *in_dev, struct in_ifaddr **ifap, int destroy) { struct in_ifaddr *ifa1 = *ifap; ASSERT_RTNL(); /* 1. Deleting primary ifaddr forces deletion all secondaries */ if (!(ifa1->ifa_flags&IFA_F_SECONDARY)) { struct in_ifaddr *ifa; struct in_ifaddr **ifap1 = &ifa1->ifa_next; while ((ifa=*ifap1) != NULL) { if (!(ifa->ifa_flags&IFA_F_SECONDARY) || ifa1->ifa_mask != ifa->ifa_mask || !inet_ifa_match(ifa1->ifa_address, ifa)) { ifap1 = &ifa->ifa_next; continue; } write_lock_bh(&in_dev->lock); *ifap1 = ifa->ifa_next; write_unlock_bh(&in_dev->lock); rtmsg_ifa(RTM_DELADDR, ifa); notifier_call_chain(&inetaddr_chain, NETDEV_DOWN, ifa); inet_free_ifa(ifa); } } /* 2. Unlink it */ write_lock_bh(&in_dev->lock); *ifap = ifa1->ifa_next; write_unlock_bh(&in_dev->lock); /* 3. Announce address deletion */ /* Send message first, then call notifier. At first sight, FIB update triggered by notifier will refer to already deleted ifaddr, that could confuse netlink listeners. It is not true: look, gated sees that route deleted and if it still thinks that ifaddr is valid, it will try to restore deleted routes... Grr. So that, this order is correct. */ rtmsg_ifa(RTM_DELADDR, ifa1); notifier_call_chain(&inetaddr_chain, NETDEV_DOWN, ifa1); if (destroy) { inet_free_ifa(ifa1); if (in_dev->ifa_list == NULL) inetdev_destroy(in_dev); } } static int inet_insert_ifa(struct in_ifaddr *ifa) { struct in_device *in_dev = ifa->ifa_dev; struct in_ifaddr *ifa1, **ifap, **last_primary; ASSERT_RTNL(); if (ifa->ifa_local == 0) { inet_free_ifa(ifa); return 0; } ifa->ifa_flags &= ~IFA_F_SECONDARY; last_primary = &in_dev->ifa_list; for (ifap=&in_dev->ifa_list; (ifa1=*ifap)!=NULL; ifap=&ifa1->ifa_next) { if (!(ifa1->ifa_flags&IFA_F_SECONDARY) && ifa->ifa_scope <= ifa1->ifa_scope) last_primary = &ifa1->ifa_next; if (ifa1->ifa_mask == ifa->ifa_mask && inet_ifa_match(ifa1->ifa_address, ifa)) { if (ifa1->ifa_local == ifa->ifa_local) { inet_free_ifa(ifa); return -EEXIST; } if (ifa1->ifa_scope != ifa->ifa_scope) { inet_free_ifa(ifa); return -EINVAL; } ifa->ifa_flags |= IFA_F_SECONDARY; } } if (!(ifa->ifa_flags&IFA_F_SECONDARY)) { net_srandom(ifa->ifa_local); ifap = last_primary; } ifa->ifa_next = *ifap; write_lock_bh(&in_dev->lock); *ifap = ifa; write_unlock_bh(&in_dev->lock); /* Send message first, then call notifier. Notifier will trigger FIB update, so that listeners of netlink will know about new ifaddr */ rtmsg_ifa(RTM_NEWADDR, ifa); notifier_call_chain(&inetaddr_chain, NETDEV_UP, ifa); return 0; } static int inet_set_ifa(struct net_device *dev, struct in_ifaddr *ifa) { struct in_device *in_dev = __in_dev_get(dev); ASSERT_RTNL(); if (in_dev == NULL) { in_dev = inetdev_init(dev); if (in_dev == NULL) { inet_free_ifa(ifa); return -ENOBUFS; } } if (ifa->ifa_dev != in_dev) { BUG_TRAP(ifa->ifa_dev==NULL); in_dev_hold(in_dev); ifa->ifa_dev=in_dev; } if (LOOPBACK(ifa->ifa_local)) ifa->ifa_scope = RT_SCOPE_HOST; return inet_insert_ifa(ifa); } struct in_device *inetdev_by_index(int ifindex) { struct net_device *dev; struct in_device *in_dev = NULL; read_lock(&dev_base_lock); dev = __dev_get_by_index(ifindex); if (dev) in_dev = in_dev_get(dev); read_unlock(&dev_base_lock); return in_dev; } /* Called only from RTNL semaphored context. No locks. */ struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, u32 prefix, u32 mask) { ASSERT_RTNL(); for_primary_ifa(in_dev) { if (ifa->ifa_mask == mask && inet_ifa_match(prefix, ifa)) return ifa; } endfor_ifa(in_dev); return NULL; } int inet_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct rtattr **rta = arg; struct in_device *in_dev; struct ifaddrmsg *ifm = NLMSG_DATA(nlh); struct in_ifaddr *ifa, **ifap; ASSERT_RTNL(); if ((in_dev = inetdev_by_index(ifm->ifa_index)) == NULL) return -EADDRNOTAVAIL; __in_dev_put(in_dev); for (ifap=&in_dev->ifa_list; (ifa=*ifap)!=NULL; ifap=&ifa->ifa_next) { if ((rta[IFA_LOCAL-1] && memcmp(RTA_DATA(rta[IFA_LOCAL-1]), &ifa->ifa_local, 4)) || (rta[IFA_LABEL-1] && strcmp(RTA_DATA(rta[IFA_LABEL-1]), ifa->ifa_label)) || (rta[IFA_ADDRESS-1] && (ifm->ifa_prefixlen != ifa->ifa_prefixlen || !inet_ifa_match(*(u32*)RTA_DATA(rta[IFA_ADDRESS-1]), ifa)))) continue; inet_del_ifa(in_dev, ifap, 1); return 0; } return -EADDRNOTAVAIL; } int inet_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct rtattr **rta = arg; struct net_device *dev; struct in_device *in_dev; struct ifaddrmsg *ifm = NLMSG_DATA(nlh); struct in_ifaddr *ifa; ASSERT_RTNL(); if (ifm->ifa_prefixlen > 32 || rta[IFA_LOCAL-1] == NULL) return -EINVAL; if ((dev = __dev_get_by_index(ifm->ifa_index)) == NULL) return -ENODEV; if ((in_dev = __in_dev_get(dev)) == NULL) { in_dev = inetdev_init(dev); if (!in_dev) return -ENOBUFS; } if ((ifa = inet_alloc_ifa()) == NULL) return -ENOBUFS; if (rta[IFA_ADDRESS-1] == NULL) rta[IFA_ADDRESS-1] = rta[IFA_LOCAL-1]; memcpy(&ifa->ifa_local, RTA_DATA(rta[IFA_LOCAL-1]), 4); memcpy(&ifa->ifa_address, RTA_DATA(rta[IFA_ADDRESS-1]), 4); ifa->ifa_prefixlen = ifm->ifa_prefixlen; ifa->ifa_mask = inet_make_mask(ifm->ifa_prefixlen); if (rta[IFA_BROADCAST-1]) memcpy(&ifa->ifa_broadcast, RTA_DATA(rta[IFA_BROADCAST-1]), 4); if (rta[IFA_ANYCAST-1]) memcpy(&ifa->ifa_anycast, RTA_DATA(rta[IFA_ANYCAST-1]), 4); ifa->ifa_flags = ifm->ifa_flags; ifa->ifa_scope = ifm->ifa_scope; in_dev_hold(in_dev); ifa->ifa_dev = in_dev; if (rta[IFA_LABEL-1]) memcpy(ifa->ifa_label, RTA_DATA(rta[IFA_LABEL-1]), IFNAMSIZ); else memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); return inet_insert_ifa(ifa); } /* * Determine a default network mask, based on the IP address. */ static __inline__ int inet_abc_len(u32 addr) { if (ZERONET(addr)) return 0; addr = ntohl(addr); if (IN_CLASSA(addr)) return 8; if (IN_CLASSB(addr)) return 16; if (IN_CLASSC(addr)) return 24; /* * Something else, probably a multicast. */ return -1; } int devinet_ioctl(unsigned int cmd, void *arg) { struct ifreq ifr; struct sockaddr_in sin_orig; struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr; struct in_device *in_dev; struct in_ifaddr **ifap = NULL; struct in_ifaddr *ifa = NULL; struct net_device *dev; char *colon; int ret = 0; int tryaddrmatch = 0; /* * Fetch the caller's info block into kernel space */ if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) return -EFAULT; ifr.ifr_name[IFNAMSIZ-1] = 0; /* save original address for comparison */ memcpy(&sin_orig, sin, sizeof(*sin)); colon = strchr(ifr.ifr_name, ':'); if (colon) *colon = 0; #ifdef CONFIG_KMOD dev_load(ifr.ifr_name); #endif switch(cmd) { case SIOCGIFADDR: /* Get interface address */ case SIOCGIFBRDADDR: /* Get the broadcast address */ case SIOCGIFDSTADDR: /* Get the destination address */ case SIOCGIFNETMASK: /* Get the netmask for the interface */ /* Note that these ioctls will not sleep, so that we do not impose a lock. One day we will be forced to put shlock here (I mean SMP) */ tryaddrmatch = (sin_orig.sin_family == AF_INET); memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; break; case SIOCSIFFLAGS: if (!capable(CAP_NET_ADMIN)) return -EACCES; break; case SIOCSIFADDR: /* Set interface address (and family) */ case SIOCSIFBRDADDR: /* Set the broadcast address */ case SIOCSIFDSTADDR: /* Set the destination address */ case SIOCSIFNETMASK: /* Set the netmask for the interface */ if (!capable(CAP_NET_ADMIN)) return -EACCES; if (sin->sin_family != AF_INET) return -EINVAL; break; default: return -EINVAL; } dev_probe_lock(); rtnl_lock(); if ((dev = __dev_get_by_name(ifr.ifr_name)) == NULL) { ret = -ENODEV; goto done; } if (colon) *colon = ':'; if ((in_dev=__in_dev_get(dev)) != NULL) { if (tryaddrmatch) { /* Matthias Andree */ /* compare label and address (4.4BSD style) */ /* note: we only do this for a limited set of ioctls and only if the original address family was AF_INET. This is checked above. */ for (ifap=&in_dev->ifa_list; (ifa=*ifap) != NULL; ifap=&ifa->ifa_next) { if ((strcmp(ifr.ifr_name, ifa->ifa_label) == 0) && (sin_orig.sin_addr.s_addr == ifa->ifa_address)) { break; /* found */ } } } /* we didn't get a match, maybe the application is 4.3BSD-style and passed in junk so we fall back to comparing just the label */ if (ifa == NULL) { for (ifap=&in_dev->ifa_list; (ifa=*ifap) != NULL; ifap=&ifa->ifa_next) if (strcmp(ifr.ifr_name, ifa->ifa_label) == 0) break; } } if (ifa == NULL && cmd != SIOCSIFADDR && cmd != SIOCSIFFLAGS) { ret = -EADDRNOTAVAIL; goto done; } switch(cmd) { case SIOCGIFADDR: /* Get interface address */ sin->sin_addr.s_addr = ifa->ifa_local; goto rarok; case SIOCGIFBRDADDR: /* Get the broadcast address */ sin->sin_addr.s_addr = ifa->ifa_broadcast; goto rarok; case SIOCGIFDSTADDR: /* Get the destination address */ sin->sin_addr.s_addr = ifa->ifa_address; goto rarok; case SIOCGIFNETMASK: /* Get the netmask for the interface */ sin->sin_addr.s_addr = ifa->ifa_mask; goto rarok; case SIOCSIFFLAGS: if (colon) { if (ifa == NULL) { ret = -EADDRNOTAVAIL; break; } if (!(ifr.ifr_flags&IFF_UP)) inet_del_ifa(in_dev, ifap, 1); break; } ret = dev_change_flags(dev, ifr.ifr_flags); break; case SIOCSIFADDR: /* Set interface address (and family) */ if (inet_abc_len(sin->sin_addr.s_addr) < 0) { ret = -EINVAL; break; } if (!ifa) { if ((ifa = inet_alloc_ifa()) == NULL) { ret = -ENOBUFS; break; } if (colon) memcpy(ifa->ifa_label, ifr.ifr_name, IFNAMSIZ); else memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); } else { ret = 0; if (ifa->ifa_local == sin->sin_addr.s_addr) break; inet_del_ifa(in_dev, ifap, 0); ifa->ifa_broadcast = 0; ifa->ifa_anycast = 0; } ifa->ifa_address = ifa->ifa_local = sin->sin_addr.s_addr; if (!(dev->flags&IFF_POINTOPOINT)) { ifa->ifa_prefixlen = inet_abc_len(ifa->ifa_address); ifa->ifa_mask = inet_make_mask(ifa->ifa_prefixlen); if ((dev->flags&IFF_BROADCAST) && ifa->ifa_prefixlen < 31) ifa->ifa_broadcast = ifa->ifa_address|~ifa->ifa_mask; } else { ifa->ifa_prefixlen = 32; ifa->ifa_mask = inet_make_mask(32); } ret = inet_set_ifa(dev, ifa); break; case SIOCSIFBRDADDR: /* Set the broadcast address */ if (ifa->ifa_broadcast != sin->sin_addr.s_addr) { inet_del_ifa(in_dev, ifap, 0); ifa->ifa_broadcast = sin->sin_addr.s_addr; inet_insert_ifa(ifa); } break; case SIOCSIFDSTADDR: /* Set the destination address */ if (ifa->ifa_address != sin->sin_addr.s_addr) { if (inet_abc_len(sin->sin_addr.s_addr) < 0) { ret = -EINVAL; break; } inet_del_ifa(in_dev, ifap, 0); ifa->ifa_address = sin->sin_addr.s_addr; inet_insert_ifa(ifa); } break; case SIOCSIFNETMASK: /* Set the netmask for the interface */ /* * The mask we set must be legal. */ if (bad_mask(sin->sin_addr.s_addr, 0)) { ret = -EINVAL; break; } if (ifa->ifa_mask != sin->sin_addr.s_addr) { inet_del_ifa(in_dev, ifap, 0); ifa->ifa_mask = sin->sin_addr.s_addr; ifa->ifa_prefixlen = inet_mask_len(ifa->ifa_mask); inet_insert_ifa(ifa); } break; } done: rtnl_unlock(); dev_probe_unlock(); return ret; rarok: rtnl_unlock(); dev_probe_unlock(); if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) return -EFAULT; return 0; } static int inet_gifconf(struct net_device *dev, char *buf, int len) { struct in_device *in_dev = __in_dev_get(dev); struct in_ifaddr *ifa; struct ifreq ifr; int done=0; if (in_dev==NULL || (ifa=in_dev->ifa_list)==NULL) return 0; for ( ; ifa; ifa = ifa->ifa_next) { if (!buf) { done += sizeof(ifr); continue; } if (len < (int) sizeof(ifr)) return done; memset(&ifr, 0, sizeof(struct ifreq)); if (ifa->ifa_label) strcpy(ifr.ifr_name, ifa->ifa_label); else strcpy(ifr.ifr_name, dev->name); (*(struct sockaddr_in *) &ifr.ifr_addr).sin_family = AF_INET; (*(struct sockaddr_in *) &ifr.ifr_addr).sin_addr.s_addr = ifa->ifa_local; if (copy_to_user(buf, &ifr, sizeof(struct ifreq))) return -EFAULT; buf += sizeof(struct ifreq); len -= sizeof(struct ifreq); done += sizeof(struct ifreq); } return done; } u32 inet_select_addr(const struct net_device *dev, u32 dst, int scope) { u32 addr = 0; struct in_device *in_dev; read_lock(&inetdev_lock); in_dev = __in_dev_get(dev); if (in_dev == NULL) { read_unlock(&inetdev_lock); return 0; } read_lock(&in_dev->lock); for_primary_ifa(in_dev) { if (ifa->ifa_scope > scope) continue; if (!dst || inet_ifa_match(dst, ifa)) { addr = ifa->ifa_local; break; } if (!addr) addr = ifa->ifa_local; } endfor_ifa(in_dev); read_unlock(&in_dev->lock); read_unlock(&inetdev_lock); if (addr) return addr; /* Not loopback addresses on loopback should be preferred in this case. It is importnat that lo is the first interface in dev_base list. */ read_lock(&dev_base_lock); read_lock(&inetdev_lock); for (dev=dev_base; dev; dev=dev->next) { if ((in_dev=__in_dev_get(dev)) == NULL) continue; read_lock(&in_dev->lock); for_primary_ifa(in_dev) { if (ifa->ifa_scope != RT_SCOPE_LINK && ifa->ifa_scope <= scope) { read_unlock(&in_dev->lock); read_unlock(&inetdev_lock); read_unlock(&dev_base_lock); return ifa->ifa_local; } } endfor_ifa(in_dev); read_unlock(&in_dev->lock); } read_unlock(&inetdev_lock); read_unlock(&dev_base_lock); return 0; } /* * Device notifier */ int register_inetaddr_notifier(struct notifier_block *nb) { return notifier_chain_register(&inetaddr_chain, nb); } int unregister_inetaddr_notifier(struct notifier_block *nb) { return notifier_chain_unregister(&inetaddr_chain,nb); } /* Called only under RTNL semaphore */ static int inetdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = ptr; struct in_device *in_dev = __in_dev_get(dev); ASSERT_RTNL(); if (in_dev == NULL) return NOTIFY_DONE; switch (event) { case NETDEV_REGISTER: printk(KERN_DEBUG "inetdev_event: bug\n"); dev->ip_ptr = NULL; break; case NETDEV_UP: if (dev->mtu < 68) break; if (dev == &loopback_dev) { struct in_ifaddr *ifa; if ((ifa = inet_alloc_ifa()) != NULL) { ifa->ifa_local = ifa->ifa_address = htonl(INADDR_LOOPBACK); ifa->ifa_prefixlen = 8; ifa->ifa_mask = inet_make_mask(8); in_dev_hold(in_dev); ifa->ifa_dev = in_dev; ifa->ifa_scope = RT_SCOPE_HOST; memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); inet_insert_ifa(ifa); } } ip_mc_up(in_dev); break; case NETDEV_DOWN: ip_mc_down(in_dev); break; case NETDEV_CHANGEMTU: if (dev->mtu >= 68) break; /* MTU falled under 68, disable IP */ case NETDEV_UNREGISTER: inetdev_destroy(in_dev); break; case NETDEV_CHANGENAME: if (in_dev->ifa_list) { struct in_ifaddr *ifa; for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); /* Do not notify about label change, this event is not interesting to applications using netlink. */ } break; } return NOTIFY_DONE; } struct notifier_block ip_netdev_notifier = { notifier_call: inetdev_event, }; static int inet_fill_ifaddr(struct sk_buff *skb, struct in_ifaddr *ifa, u32 pid, u32 seq, int event) { struct ifaddrmsg *ifm; struct nlmsghdr *nlh; unsigned char *b = skb->tail; nlh = NLMSG_PUT(skb, pid, seq, event, sizeof(*ifm)); ifm = NLMSG_DATA(nlh); ifm->ifa_family = AF_INET; ifm->ifa_prefixlen = ifa->ifa_prefixlen; ifm->ifa_flags = ifa->ifa_flags|IFA_F_PERMANENT; ifm->ifa_scope = ifa->ifa_scope; ifm->ifa_index = ifa->ifa_dev->dev->ifindex; if (ifa->ifa_address) RTA_PUT(skb, IFA_ADDRESS, 4, &ifa->ifa_address); if (ifa->ifa_local) RTA_PUT(skb, IFA_LOCAL, 4, &ifa->ifa_local); if (ifa->ifa_broadcast) RTA_PUT(skb, IFA_BROADCAST, 4, &ifa->ifa_broadcast); if (ifa->ifa_anycast) RTA_PUT(skb, IFA_ANYCAST, 4, &ifa->ifa_anycast); if (ifa->ifa_label[0]) RTA_PUT(skb, IFA_LABEL, IFNAMSIZ, &ifa->ifa_label); nlh->nlmsg_len = skb->tail - b; return skb->len; nlmsg_failure: rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static int inet_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb) { int idx, ip_idx; int s_idx, s_ip_idx; struct net_device *dev; struct in_device *in_dev; struct in_ifaddr *ifa; s_idx = cb->args[0]; s_ip_idx = ip_idx = cb->args[1]; read_lock(&dev_base_lock); for (dev=dev_base, idx=0; dev; dev = dev->next, idx++) { if (idx < s_idx) continue; if (idx > s_idx) s_ip_idx = 0; read_lock(&inetdev_lock); if ((in_dev = __in_dev_get(dev)) == NULL) { read_unlock(&inetdev_lock); continue; } read_lock(&in_dev->lock); for (ifa = in_dev->ifa_list, ip_idx = 0; ifa; ifa = ifa->ifa_next, ip_idx++) { if (ip_idx < s_ip_idx) continue; if (inet_fill_ifaddr(skb, ifa, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, RTM_NEWADDR) <= 0) { read_unlock(&in_dev->lock); read_unlock(&inetdev_lock); goto done; } } read_unlock(&in_dev->lock); read_unlock(&inetdev_lock); } done: read_unlock(&dev_base_lock); cb->args[0] = idx; cb->args[1] = ip_idx; return skb->len; } static void rtmsg_ifa(int event, struct in_ifaddr * ifa) { struct sk_buff *skb; int size = NLMSG_SPACE(sizeof(struct ifaddrmsg)+128); skb = alloc_skb(size, GFP_KERNEL); if (!skb) { netlink_set_err(rtnl, 0, RTMGRP_IPV4_IFADDR, ENOBUFS); return; } if (inet_fill_ifaddr(skb, ifa, 0, 0, event) < 0) { kfree_skb(skb); netlink_set_err(rtnl, 0, RTMGRP_IPV4_IFADDR, EINVAL); return; } NETLINK_CB(skb).dst_groups = RTMGRP_IPV4_IFADDR; netlink_broadcast(rtnl, skb, 0, RTMGRP_IPV4_IFADDR, GFP_KERNEL); } static struct rtnetlink_link inet_rtnetlink_table[RTM_MAX-RTM_BASE+1] = { { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { inet_rtm_newaddr, NULL, }, { inet_rtm_deladdr, NULL, }, { NULL, inet_dump_ifaddr, }, { NULL, NULL, }, { inet_rtm_newroute, NULL, }, { inet_rtm_delroute, NULL, }, { inet_rtm_getroute, inet_dump_fib, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, #ifdef CONFIG_IP_MULTIPLE_TABLES { inet_rtm_newrule, NULL, }, { inet_rtm_delrule, NULL, }, { NULL, inet_dump_rules, }, { NULL, NULL, }, #else { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, #endif }; #ifdef CONFIG_SYSCTL void inet_forward_change() { struct net_device *dev; int on = ipv4_devconf.forwarding; ipv4_devconf.accept_redirects = !on; ipv4_devconf_dflt.forwarding = on; read_lock(&dev_base_lock); for (dev = dev_base; dev; dev = dev->next) { struct in_device *in_dev; read_lock(&inetdev_lock); in_dev = __in_dev_get(dev); if (in_dev) in_dev->cnf.forwarding = on; read_unlock(&inetdev_lock); } read_unlock(&dev_base_lock); rt_cache_flush(0); } static int devinet_sysctl_forward(ctl_table *ctl, int write, struct file * filp, void *buffer, size_t *lenp) { int *valp = ctl->data; int val = *valp; int ret; ret = proc_dointvec(ctl, write, filp, buffer, lenp); if (write && *valp != val) { if (valp == &ipv4_devconf.forwarding) inet_forward_change(); else if (valp != &ipv4_devconf_dflt.forwarding) rt_cache_flush(0); } return ret; } static struct devinet_sysctl_table { struct ctl_table_header *sysctl_header; ctl_table devinet_vars[14]; ctl_table devinet_dev[2]; ctl_table devinet_conf_dir[2]; ctl_table devinet_proto_dir[2]; ctl_table devinet_root_dir[2]; } devinet_sysctl = { NULL, {{NET_IPV4_CONF_FORWARDING, "forwarding", &ipv4_devconf.forwarding, sizeof(int), 0644, NULL, &devinet_sysctl_forward}, {NET_IPV4_CONF_MC_FORWARDING, "mc_forwarding", &ipv4_devconf.mc_forwarding, sizeof(int), 0444, NULL, &proc_dointvec}, {NET_IPV4_CONF_ACCEPT_REDIRECTS, "accept_redirects", &ipv4_devconf.accept_redirects, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_SECURE_REDIRECTS, "secure_redirects", &ipv4_devconf.secure_redirects, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_SHARED_MEDIA, "shared_media", &ipv4_devconf.shared_media, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_RP_FILTER, "rp_filter", &ipv4_devconf.rp_filter, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_SEND_REDIRECTS, "send_redirects", &ipv4_devconf.send_redirects, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_ACCEPT_SOURCE_ROUTE, "accept_source_route", &ipv4_devconf.accept_source_route, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_PROXY_ARP, "proxy_arp", &ipv4_devconf.proxy_arp, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_BOOTP_RELAY, "bootp_relay", &ipv4_devconf.bootp_relay, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_LOG_MARTIANS, "log_martians", &ipv4_devconf.log_martians, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_TAG, "tag", &ipv4_devconf.tag, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV4_CONF_ARPFILTER, "arp_filter", &ipv4_devconf.arp_filter, sizeof(int), 0644, NULL, &proc_dointvec}, {0}}, {{NET_PROTO_CONF_ALL, "all", NULL, 0, 0555, devinet_sysctl.devinet_vars},{0}}, {{NET_IPV4_CONF, "conf", NULL, 0, 0555, devinet_sysctl.devinet_dev},{0}}, {{NET_IPV4, "ipv4", NULL, 0, 0555, devinet_sysctl.devinet_conf_dir},{0}}, {{CTL_NET, "net", NULL, 0, 0555, devinet_sysctl.devinet_proto_dir},{0}} }; static void devinet_sysctl_register(struct in_device *in_dev, struct ipv4_devconf *p) { int i; struct net_device *dev = in_dev ? in_dev->dev : NULL; struct devinet_sysctl_table *t; t = kmalloc(sizeof(*t), GFP_KERNEL); if (t == NULL) return; memcpy(t, &devinet_sysctl, sizeof(*t)); for (i=0; idevinet_vars)/sizeof(t->devinet_vars[0])-1; i++) { t->devinet_vars[i].data += (char*)p - (char*)&ipv4_devconf; t->devinet_vars[i].de = NULL; } if (dev) { t->devinet_dev[0].procname = dev->name; t->devinet_dev[0].ctl_name = dev->ifindex; } else { t->devinet_dev[0].procname = "default"; t->devinet_dev[0].ctl_name = NET_PROTO_CONF_DEFAULT; } t->devinet_dev[0].child = t->devinet_vars; t->devinet_dev[0].de = NULL; t->devinet_conf_dir[0].child = t->devinet_dev; t->devinet_conf_dir[0].de = NULL; t->devinet_proto_dir[0].child = t->devinet_conf_dir; t->devinet_proto_dir[0].de = NULL; t->devinet_root_dir[0].child = t->devinet_proto_dir; t->devinet_root_dir[0].de = NULL; t->sysctl_header = register_sysctl_table(t->devinet_root_dir, 0); if (t->sysctl_header == NULL) kfree(t); else p->sysctl = t; } static void devinet_sysctl_unregister(struct ipv4_devconf *p) { if (p->sysctl) { struct devinet_sysctl_table *t = p->sysctl; p->sysctl = NULL; unregister_sysctl_table(t->sysctl_header); kfree(t); } } #endif void __init devinet_init(void) { register_gifconf(PF_INET, inet_gifconf); register_netdevice_notifier(&ip_netdev_notifier); rtnetlink_links[PF_INET] = inet_rtnetlink_table; #ifdef CONFIG_SYSCTL devinet_sysctl.sysctl_header = register_sysctl_table(devinet_sysctl.devinet_root_dir, 0); devinet_sysctl_register(NULL, &ipv4_devconf_dflt); #endif }