/* * IPv6 Address [auto]configuration * Linux INET6 implementation * * Authors: * Pedro Roque * Alexey Kuznetsov * * $Id: addrconf.c,v 1.1.1.1 2003/06/23 22:18:45 jharrell Exp $ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ /* * Changes: * * Janos Farkas : delete timer on ifdown * * Andi Kleen : kill doube kfree on module * unload. * Maciej W. Rozycki : FDDI support * sekiya@USAGI : Don't send too many RS * packets. * yoshfuji@USAGI : Fixed interval between DAD * packets. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYSCTL #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Set to 3 to get tracing... */ #define ACONF_DEBUG 2 #if ACONF_DEBUG >= 3 #define ADBG(x) printk x #else #define ADBG(x) #endif #ifdef CONFIG_SYSCTL static void addrconf_sysctl_register(struct inet6_dev *idev, struct ipv6_devconf *p); static void addrconf_sysctl_unregister(struct ipv6_devconf *p); #endif int inet6_dev_count; int inet6_ifa_count; /* * Configured unicast address hash table */ static struct inet6_ifaddr *inet6_addr_lst[IN6_ADDR_HSIZE]; static rwlock_t addrconf_hash_lock = RW_LOCK_UNLOCKED; /* Protects inet6 devices */ rwlock_t addrconf_lock = RW_LOCK_UNLOCKED; void addrconf_verify(unsigned long); static struct timer_list addr_chk_timer = { function: addrconf_verify }; static int addrconf_ifdown(struct net_device *dev, int how); static void addrconf_dad_start(struct inet6_ifaddr *ifp); static void addrconf_dad_timer(unsigned long data); static void addrconf_dad_completed(struct inet6_ifaddr *ifp); static void addrconf_rs_timer(unsigned long data); static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa); static struct notifier_block *inet6addr_chain; struct ipv6_devconf ipv6_devconf = { 0, /* forwarding */ IPV6_DEFAULT_HOPLIMIT, /* hop limit */ IPV6_MIN_MTU, /* mtu */ 1, /* accept RAs */ 1, /* accept redirects */ 1, /* autoconfiguration */ 1, /* dad transmits */ MAX_RTR_SOLICITATIONS, /* router solicits */ RTR_SOLICITATION_INTERVAL, /* rtr solicit interval */ MAX_RTR_SOLICITATION_DELAY, /* rtr solicit delay */ }; static struct ipv6_devconf ipv6_devconf_dflt = { 0, /* forwarding */ IPV6_DEFAULT_HOPLIMIT, /* hop limit */ IPV6_MIN_MTU, /* mtu */ 1, /* accept RAs */ 1, /* accept redirects */ 1, /* autoconfiguration */ 1, /* dad transmits */ MAX_RTR_SOLICITATIONS, /* router solicits */ RTR_SOLICITATION_INTERVAL, /* rtr solicit interval */ MAX_RTR_SOLICITATION_DELAY, /* rtr solicit delay */ }; int ipv6_addr_type(struct in6_addr *addr) { u32 st; st = addr->s6_addr32[0]; /* Consider all addresses with the first three bits different of 000 and 111 as unicasts. */ if ((st & __constant_htonl(0xE0000000)) != __constant_htonl(0x00000000) && (st & __constant_htonl(0xE0000000)) != __constant_htonl(0xE0000000)) return IPV6_ADDR_UNICAST; if ((st & __constant_htonl(0xFF000000)) == __constant_htonl(0xFF000000)) { int type = IPV6_ADDR_MULTICAST; switch((st & __constant_htonl(0x00FF0000))) { case __constant_htonl(0x00010000): type |= IPV6_ADDR_LOOPBACK; break; case __constant_htonl(0x00020000): type |= IPV6_ADDR_LINKLOCAL; break; case __constant_htonl(0x00050000): type |= IPV6_ADDR_SITELOCAL; break; }; return type; } if ((st & __constant_htonl(0xFFC00000)) == __constant_htonl(0xFE800000)) return (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST); if ((st & __constant_htonl(0xFFC00000)) == __constant_htonl(0xFEC00000)) return (IPV6_ADDR_SITELOCAL | IPV6_ADDR_UNICAST); if ((addr->s6_addr32[0] | addr->s6_addr32[1]) == 0) { if (addr->s6_addr32[2] == 0) { if (addr->in6_u.u6_addr32[3] == 0) return IPV6_ADDR_ANY; if (addr->s6_addr32[3] == __constant_htonl(0x00000001)) return (IPV6_ADDR_LOOPBACK | IPV6_ADDR_UNICAST); return (IPV6_ADDR_COMPATv4 | IPV6_ADDR_UNICAST); } if (addr->s6_addr32[2] == __constant_htonl(0x0000ffff)) return IPV6_ADDR_MAPPED; } return IPV6_ADDR_RESERVED; } static void addrconf_del_timer(struct inet6_ifaddr *ifp) { if (del_timer(&ifp->timer)) __in6_ifa_put(ifp); } enum addrconf_timer_t { AC_NONE, AC_DAD, AC_RS, }; static void addrconf_mod_timer(struct inet6_ifaddr *ifp, enum addrconf_timer_t what, unsigned long when) { if (!del_timer(&ifp->timer)) in6_ifa_hold(ifp); switch (what) { case AC_DAD: ifp->timer.function = addrconf_dad_timer; break; case AC_RS: ifp->timer.function = addrconf_rs_timer; break; default:; } ifp->timer.expires = jiffies + when; add_timer(&ifp->timer); } /* Nobody refers to this device, we may destroy it. */ void in6_dev_finish_destroy(struct inet6_dev *idev) { struct net_device *dev = idev->dev; BUG_TRAP(idev->addr_list==NULL); BUG_TRAP(idev->mc_list==NULL); #ifdef NET_REFCNT_DEBUG printk(KERN_DEBUG "in6_dev_finish_destroy: %s\n", dev ? dev->name : "NIL"); #endif dev_put(dev); if (!idev->dead) { printk("Freeing alive inet6 device %p\n", idev); return; } inet6_dev_count--; kfree(idev); } static struct inet6_dev * ipv6_add_dev(struct net_device *dev) { struct inet6_dev *ndev; ASSERT_RTNL(); if (dev->mtu < IPV6_MIN_MTU) return NULL; ndev = kmalloc(sizeof(struct inet6_dev), GFP_KERNEL); if (ndev) { memset(ndev, 0, sizeof(struct inet6_dev)); ndev->lock = RW_LOCK_UNLOCKED; ndev->dev = dev; memcpy(&ndev->cnf, &ipv6_devconf_dflt, sizeof(ndev->cnf)); ndev->cnf.mtu6 = dev->mtu; ndev->cnf.sysctl = NULL; ndev->nd_parms = neigh_parms_alloc(dev, &nd_tbl); if (ndev->nd_parms == NULL) { kfree(ndev); return NULL; } inet6_dev_count++; /* We refer to the device */ dev_hold(dev); write_lock_bh(&addrconf_lock); dev->ip6_ptr = ndev; /* One reference from device */ in6_dev_hold(ndev); write_unlock_bh(&addrconf_lock); ipv6_mc_init_dev(ndev); #ifdef CONFIG_SYSCTL neigh_sysctl_register(dev, ndev->nd_parms, NET_IPV6, NET_IPV6_NEIGH, "ipv6"); addrconf_sysctl_register(ndev, &ndev->cnf); #endif } return ndev; } static struct inet6_dev * ipv6_find_idev(struct net_device *dev) { struct inet6_dev *idev; ASSERT_RTNL(); if ((idev = __in6_dev_get(dev)) == NULL) { if ((idev = ipv6_add_dev(dev)) == NULL) return NULL; } if (dev->flags&IFF_UP) ipv6_mc_up(idev); return idev; } static void addrconf_forward_change(struct inet6_dev *idev) { struct net_device *dev; if (idev) return; read_lock(&dev_base_lock); for (dev=dev_base; dev; dev=dev->next) { read_lock(&addrconf_lock); idev = __in6_dev_get(dev); if (idev) idev->cnf.forwarding = ipv6_devconf.forwarding; read_unlock(&addrconf_lock); } read_unlock(&dev_base_lock); } /* Nobody refers to this ifaddr, destroy it */ void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp) { BUG_TRAP(ifp->if_next==NULL); BUG_TRAP(ifp->lst_next==NULL); #ifdef NET_REFCNT_DEBUG printk(KERN_DEBUG "inet6_ifa_finish_destroy\n"); #endif in6_dev_put(ifp->idev); if (del_timer(&ifp->timer)) printk("Timer is still running, when freeing ifa=%p\n", ifp); if (!ifp->dead) { printk("Freeing alive inet6 address %p\n", ifp); return; } inet6_ifa_count--; kfree(ifp); } /* On success it returns ifp with increased reference count */ static struct inet6_ifaddr * ipv6_add_addr(struct inet6_dev *idev, struct in6_addr *addr, int pfxlen, int scope, unsigned flags) { struct inet6_ifaddr *ifa; int hash; ifa = kmalloc(sizeof(struct inet6_ifaddr), GFP_ATOMIC); if (ifa == NULL) { ADBG(("ipv6_add_addr: malloc failed\n")); return NULL; } memset(ifa, 0, sizeof(struct inet6_ifaddr)); ipv6_addr_copy(&ifa->addr, addr); spin_lock_init(&ifa->lock); init_timer(&ifa->timer); ifa->timer.data = (unsigned long) ifa; ifa->scope = scope; ifa->prefix_len = pfxlen; ifa->flags = flags | IFA_F_TENTATIVE; read_lock(&addrconf_lock); if (idev->dead) { read_unlock(&addrconf_lock); kfree(ifa); return NULL; } inet6_ifa_count++; ifa->idev = idev; in6_dev_hold(idev); /* For caller */ in6_ifa_hold(ifa); /* Add to big hash table */ hash = ipv6_addr_hash(addr); write_lock_bh(&addrconf_hash_lock); ifa->lst_next = inet6_addr_lst[hash]; inet6_addr_lst[hash] = ifa; in6_ifa_hold(ifa); write_unlock_bh(&addrconf_hash_lock); write_lock_bh(&idev->lock); /* Add to inet6_dev unicast addr list. */ ifa->if_next = idev->addr_list; idev->addr_list = ifa; in6_ifa_hold(ifa); write_unlock_bh(&idev->lock); read_unlock(&addrconf_lock); notifier_call_chain(&inet6addr_chain,NETDEV_UP,ifa); return ifa; } /* This function wants to get referenced ifp and releases it before return */ static void ipv6_del_addr(struct inet6_ifaddr *ifp) { struct inet6_ifaddr *ifa, **ifap; struct inet6_dev *idev = ifp->idev; int hash; hash = ipv6_addr_hash(&ifp->addr); ifp->dead = 1; write_lock_bh(&addrconf_hash_lock); for (ifap = &inet6_addr_lst[hash]; (ifa=*ifap) != NULL; ifap = &ifa->lst_next) { if (ifa == ifp) { *ifap = ifa->lst_next; __in6_ifa_put(ifp); ifa->lst_next = NULL; break; } } write_unlock_bh(&addrconf_hash_lock); write_lock_bh(&idev->lock); for (ifap = &idev->addr_list; (ifa=*ifap) != NULL; ifap = &ifa->if_next) { if (ifa == ifp) { *ifap = ifa->if_next; __in6_ifa_put(ifp); ifa->if_next = NULL; break; } } write_unlock_bh(&idev->lock); ipv6_ifa_notify(RTM_DELADDR, ifp); notifier_call_chain(&inet6addr_chain,NETDEV_DOWN,ifp); addrconf_del_timer(ifp); in6_ifa_put(ifp); } /* * Choose an apropriate source address * should do: * i) get an address with an apropriate scope * ii) see if there is a specific route for the destination and use * an address of the attached interface * iii) don't use deprecated addresses */ int ipv6_get_saddr(struct dst_entry *dst, struct in6_addr *daddr, struct in6_addr *saddr) { int scope; struct inet6_ifaddr *ifp = NULL; struct inet6_ifaddr *match = NULL; struct net_device *dev = NULL; struct inet6_dev *idev; struct rt6_info *rt; int err; rt = (struct rt6_info *) dst; if (rt) dev = rt->rt6i_dev; scope = ipv6_addr_scope(daddr); if (rt && (rt->rt6i_flags & RTF_ALLONLINK)) { /* * route for the "all destinations on link" rule * when no routers are present */ scope = IFA_LINK; } /* * known dev * search dev and walk through dev addresses */ if (dev) { if (dev->flags & IFF_LOOPBACK) scope = IFA_HOST; read_lock(&addrconf_lock); idev = __in6_dev_get(dev); if (idev) { read_lock_bh(&idev->lock); for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) { if (ifp->scope == scope) { if (!(ifp->flags & (IFA_F_DEPRECATED|IFA_F_TENTATIVE))) { in6_ifa_hold(ifp); read_unlock_bh(&idev->lock); read_unlock(&addrconf_lock); goto out; } if (!match && !(ifp->flags & IFA_F_TENTATIVE)) { match = ifp; in6_ifa_hold(ifp); } } } read_unlock_bh(&idev->lock); } read_unlock(&addrconf_lock); } if (scope == IFA_LINK) goto out; /* * dev == NULL or search failed for specified dev */ read_lock(&dev_base_lock); read_lock(&addrconf_lock); for (dev = dev_base; dev; dev=dev->next) { idev = __in6_dev_get(dev); if (idev) { read_lock_bh(&idev->lock); for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) { if (ifp->scope == scope) { if (!(ifp->flags&(IFA_F_DEPRECATED|IFA_F_TENTATIVE))) { in6_ifa_hold(ifp); read_unlock_bh(&idev->lock); goto out_unlock_base; } if (!match && !(ifp->flags&IFA_F_TENTATIVE)) { match = ifp; in6_ifa_hold(ifp); } } } read_unlock_bh(&idev->lock); } } out_unlock_base: read_unlock(&addrconf_lock); read_unlock(&dev_base_lock); out: if (ifp == NULL) { ifp = match; match = NULL; } err = -EADDRNOTAVAIL; if (ifp) { ipv6_addr_copy(saddr, &ifp->addr); err = 0; in6_ifa_put(ifp); } if (match) in6_ifa_put(match); return err; } int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr) { struct inet6_dev *idev; int err = -EADDRNOTAVAIL; read_lock(&addrconf_lock); if ((idev = __in6_dev_get(dev)) != NULL) { struct inet6_ifaddr *ifp; read_lock_bh(&idev->lock); for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) { if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) { ipv6_addr_copy(addr, &ifp->addr); err = 0; break; } } read_unlock_bh(&idev->lock); } read_unlock(&addrconf_lock); return err; } int ipv6_chk_addr(struct in6_addr *addr, struct net_device *dev) { struct inet6_ifaddr * ifp; u8 hash = ipv6_addr_hash(addr); read_lock_bh(&addrconf_hash_lock); for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) { if (ipv6_addr_cmp(&ifp->addr, addr) == 0 && !(ifp->flags&IFA_F_TENTATIVE)) { if (dev == NULL || ifp->idev->dev == dev || !(ifp->scope&(IFA_LINK|IFA_HOST))) break; } } read_unlock_bh(&addrconf_hash_lock); return ifp != NULL; } struct inet6_ifaddr * ipv6_get_ifaddr(struct in6_addr *addr, struct net_device *dev) { struct inet6_ifaddr * ifp; u8 hash = ipv6_addr_hash(addr); read_lock_bh(&addrconf_hash_lock); for(ifp = inet6_addr_lst[hash]; ifp; ifp=ifp->lst_next) { if (ipv6_addr_cmp(&ifp->addr, addr) == 0) { if (dev == NULL || ifp->idev->dev == dev || !(ifp->scope&(IFA_LINK|IFA_HOST))) { in6_ifa_hold(ifp); break; } } } read_unlock_bh(&addrconf_hash_lock); return ifp; } /* Gets referenced address, destroys ifaddr */ void addrconf_dad_failure(struct inet6_ifaddr *ifp) { if (net_ratelimit()) printk(KERN_INFO "%s: duplicate address detected!\n", ifp->idev->dev->name); if (ifp->flags&IFA_F_PERMANENT) { spin_lock_bh(&ifp->lock); addrconf_del_timer(ifp); ifp->flags |= IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); in6_ifa_put(ifp); } else ipv6_del_addr(ifp); } /* Join to solicited addr multicast group. */ static void addrconf_join_solict(struct net_device *dev, struct in6_addr *addr) { struct in6_addr maddr; if (dev->flags&(IFF_LOOPBACK|IFF_NOARP)) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_inc(dev, &maddr); } static void addrconf_leave_solict(struct net_device *dev, struct in6_addr *addr) { struct in6_addr maddr; if (dev->flags&(IFF_LOOPBACK|IFF_NOARP)) return; addrconf_addr_solict_mult(addr, &maddr); ipv6_dev_mc_dec(dev, &maddr); } static int ipv6_generate_eui64(u8 *eui, struct net_device *dev) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_FDDI: case ARPHRD_IEEE802_TR: if (dev->addr_len != ETH_ALEN) return -1; memcpy(eui, dev->dev_addr, 3); memcpy(eui + 5, dev->dev_addr+3, 3); eui[3] = 0xFF; eui[4] = 0xFE; eui[0] ^= 2; return 0; } return -1; } static int ipv6_inherit_eui64(u8 *eui, struct inet6_dev *idev) { int err = -1; struct inet6_ifaddr *ifp; read_lock_bh(&idev->lock); for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) { if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) { memcpy(eui, ifp->addr.s6_addr+8, 8); err = 0; break; } } read_unlock_bh(&idev->lock); return err; } /* * Add prefix route. */ static void addrconf_prefix_route(struct in6_addr *pfx, int plen, struct net_device *dev, unsigned long expires, unsigned flags) { struct in6_rtmsg rtmsg; memset(&rtmsg, 0, sizeof(rtmsg)); memcpy(&rtmsg.rtmsg_dst, pfx, sizeof(struct in6_addr)); rtmsg.rtmsg_dst_len = plen; rtmsg.rtmsg_metric = IP6_RT_PRIO_ADDRCONF; rtmsg.rtmsg_ifindex = dev->ifindex; rtmsg.rtmsg_info = expires; rtmsg.rtmsg_flags = RTF_UP|flags; rtmsg.rtmsg_type = RTMSG_NEWROUTE; /* Prevent useless cloning on PtP SIT. This thing is done here expecting that the whole class of non-broadcast devices need not cloning. */ if (dev->type == ARPHRD_SIT && (dev->flags&IFF_POINTOPOINT)) rtmsg.rtmsg_flags |= RTF_NONEXTHOP; ip6_route_add(&rtmsg); } /* Create "default" multicast route to the interface */ static void addrconf_add_mroute(struct net_device *dev) { struct in6_rtmsg rtmsg; memset(&rtmsg, 0, sizeof(rtmsg)); ipv6_addr_set(&rtmsg.rtmsg_dst, __constant_htonl(0xFF000000), 0, 0, 0); rtmsg.rtmsg_dst_len = 8; rtmsg.rtmsg_metric = IP6_RT_PRIO_ADDRCONF; rtmsg.rtmsg_ifindex = dev->ifindex; rtmsg.rtmsg_flags = RTF_UP|RTF_ADDRCONF; rtmsg.rtmsg_type = RTMSG_NEWROUTE; ip6_route_add(&rtmsg); } static void sit_route_add(struct net_device *dev) { struct in6_rtmsg rtmsg; memset(&rtmsg, 0, sizeof(rtmsg)); rtmsg.rtmsg_type = RTMSG_NEWROUTE; rtmsg.rtmsg_metric = IP6_RT_PRIO_ADDRCONF; /* prefix length - 96 bytes "::d.d.d.d" */ rtmsg.rtmsg_dst_len = 96; rtmsg.rtmsg_flags = RTF_UP|RTF_NONEXTHOP; rtmsg.rtmsg_ifindex = dev->ifindex; ip6_route_add(&rtmsg); } static void addrconf_add_lroute(struct net_device *dev) { struct in6_addr addr; ipv6_addr_set(&addr, __constant_htonl(0xFE800000), 0, 0, 0); addrconf_prefix_route(&addr, 10, dev, 0, RTF_ADDRCONF); } static struct inet6_dev *addrconf_add_dev(struct net_device *dev) { struct inet6_dev *idev; ASSERT_RTNL(); if ((idev = ipv6_find_idev(dev)) == NULL) return NULL; /* Add default multicast route */ addrconf_add_mroute(dev); /* Add link local route */ addrconf_add_lroute(dev); return idev; } void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len) { struct prefix_info *pinfo; struct rt6_info *rt; __u32 valid_lft; __u32 prefered_lft; int addr_type; unsigned long rt_expires; struct inet6_dev *in6_dev; pinfo = (struct prefix_info *) opt; if (len < sizeof(struct prefix_info)) { ADBG(("addrconf: prefix option too short\n")); return; } /* * Validation checks ([ADDRCONF], page 19) */ addr_type = ipv6_addr_type(&pinfo->prefix); if (addr_type & (IPV6_ADDR_MULTICAST|IPV6_ADDR_LINKLOCAL)) return; valid_lft = ntohl(pinfo->valid); prefered_lft = ntohl(pinfo->prefered); if (prefered_lft > valid_lft) { if (net_ratelimit()) printk(KERN_WARNING "addrconf: prefix option has invalid lifetime\n"); return; } in6_dev = in6_dev_get(dev); if (in6_dev == NULL) { if (net_ratelimit()) printk(KERN_DEBUG "addrconf: device %s not configured\n", dev->name); return; } /* * Two things going on here: * 1) Add routes for on-link prefixes * 2) Configure prefixes with the auto flag set */ /* Avoid arithemtic overflow. Really, we could save rt_expires in seconds, likely valid_lft, but it would require division in fib gc, that it not good. */ if (valid_lft >= 0x7FFFFFFF/HZ) rt_expires = 0; else rt_expires = jiffies + valid_lft * HZ; rt = rt6_lookup(&pinfo->prefix, NULL, dev->ifindex, 1); if (rt && ((rt->rt6i_flags & (RTF_GATEWAY | RTF_DEFAULT)) == 0)) { if (rt->rt6i_flags&RTF_EXPIRES) { if (pinfo->onlink == 0 || valid_lft == 0) { ip6_del_rt(rt); rt = NULL; } else { rt->rt6i_expires = rt_expires; } } } else if (pinfo->onlink && valid_lft) { addrconf_prefix_route(&pinfo->prefix, pinfo->prefix_len, dev, rt_expires, RTF_ADDRCONF|RTF_EXPIRES); } if (rt) dst_release(&rt->u.dst); /* Try to figure out our local address for this prefix */ if (pinfo->autoconf && in6_dev->cnf.autoconf) { struct inet6_ifaddr * ifp; struct in6_addr addr; int plen; plen = pinfo->prefix_len >> 3; if (pinfo->prefix_len == 64) { memcpy(&addr, &pinfo->prefix, 8); if (ipv6_generate_eui64(addr.s6_addr + 8, dev) && ipv6_inherit_eui64(addr.s6_addr + 8, in6_dev)) { in6_dev_put(in6_dev); return; } goto ok; } if (net_ratelimit()) printk(KERN_DEBUG "IPv6 addrconf: prefix with wrong length %d\n", pinfo->prefix_len); in6_dev_put(in6_dev); return; ok: ifp = ipv6_get_ifaddr(&addr, dev); if (ifp == NULL && valid_lft) { ifp = ipv6_add_addr(in6_dev, &addr, pinfo->prefix_len, addr_type&IPV6_ADDR_SCOPE_MASK, 0); if (ifp == NULL) { in6_dev_put(in6_dev); return; } addrconf_dad_start(ifp); } if (ifp && valid_lft == 0) { ipv6_del_addr(ifp); ifp = NULL; } if (ifp) { int flags; spin_lock(&ifp->lock); ifp->valid_lft = valid_lft; ifp->prefered_lft = prefered_lft; ifp->tstamp = jiffies; flags = ifp->flags; ifp->flags &= ~IFA_F_DEPRECATED; spin_unlock(&ifp->lock); if (!(flags&IFA_F_TENTATIVE)) ipv6_ifa_notify((flags&IFA_F_DEPRECATED) ? 0 : RTM_NEWADDR, ifp); in6_ifa_put(ifp); } } in6_dev_put(in6_dev); } /* * Set destination address. * Special case for SIT interfaces where we create a new "virtual" * device. */ int addrconf_set_dstaddr(void *arg) { struct in6_ifreq ireq; struct net_device *dev; int err = -EINVAL; rtnl_lock(); err = -EFAULT; if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq))) goto err_exit; dev = __dev_get_by_index(ireq.ifr6_ifindex); err = -ENODEV; if (dev == NULL) goto err_exit; if (dev->type == ARPHRD_SIT) { struct ifreq ifr; mm_segment_t oldfs; struct ip_tunnel_parm p; err = -EADDRNOTAVAIL; if (!(ipv6_addr_type(&ireq.ifr6_addr) & IPV6_ADDR_COMPATv4)) goto err_exit; memset(&p, 0, sizeof(p)); p.iph.daddr = ireq.ifr6_addr.s6_addr32[3]; p.iph.saddr = 0; p.iph.version = 4; p.iph.ihl = 5; p.iph.protocol = IPPROTO_IPV6; p.iph.ttl = 64; ifr.ifr_ifru.ifru_data = (void*)&p; oldfs = get_fs(); set_fs(KERNEL_DS); err = dev->do_ioctl(dev, &ifr, SIOCADDTUNNEL); set_fs(oldfs); if (err == 0) { err = -ENOBUFS; if ((dev = __dev_get_by_name(p.name)) == NULL) goto err_exit; err = dev_open(dev); } } err_exit: rtnl_unlock(); return err; } /* * Manual configuration of address on an interface */ static int inet6_addr_add(int ifindex, struct in6_addr *pfx, int plen) { struct inet6_ifaddr *ifp; struct inet6_dev *idev; struct net_device *dev; int scope; ASSERT_RTNL(); if ((dev = __dev_get_by_index(ifindex)) == NULL) return -ENODEV; if (!(dev->flags&IFF_UP)) return -ENETDOWN; if ((idev = addrconf_add_dev(dev)) == NULL) return -ENOBUFS; scope = ipv6_addr_scope(pfx); if ((ifp = ipv6_add_addr(idev, pfx, plen, scope, IFA_F_PERMANENT)) != NULL) { addrconf_dad_start(ifp); in6_ifa_put(ifp); return 0; } return -ENOBUFS; } static int inet6_addr_del(int ifindex, struct in6_addr *pfx, int plen) { struct inet6_ifaddr *ifp; struct inet6_dev *idev; struct net_device *dev; if ((dev = __dev_get_by_index(ifindex)) == NULL) return -ENODEV; if ((idev = __in6_dev_get(dev)) == NULL) return -ENXIO; read_lock_bh(&idev->lock); for (ifp = idev->addr_list; ifp; ifp=ifp->if_next) { if (ifp->prefix_len == plen && (!memcmp(pfx, &ifp->addr, sizeof(struct in6_addr)))) { in6_ifa_hold(ifp); read_unlock_bh(&idev->lock); ipv6_del_addr(ifp); /* If the last address is deleted administratively, disable IPv6 on this interface. */ if (idev->addr_list == NULL) addrconf_ifdown(idev->dev, 1); return 0; } } read_unlock_bh(&idev->lock); return -EADDRNOTAVAIL; } int addrconf_add_ifaddr(void *arg) { struct in6_ifreq ireq; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq))) return -EFAULT; rtnl_lock(); err = inet6_addr_add(ireq.ifr6_ifindex, &ireq.ifr6_addr, ireq.ifr6_prefixlen); rtnl_unlock(); return err; } int addrconf_del_ifaddr(void *arg) { struct in6_ifreq ireq; int err; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq))) return -EFAULT; rtnl_lock(); err = inet6_addr_del(ireq.ifr6_ifindex, &ireq.ifr6_addr, ireq.ifr6_prefixlen); rtnl_unlock(); return err; } static void sit_add_v4_addrs(struct inet6_dev *idev) { struct inet6_ifaddr * ifp; struct in6_addr addr; struct net_device *dev; int scope; ASSERT_RTNL(); memset(&addr, 0, sizeof(struct in6_addr)); memcpy(&addr.s6_addr32[3], idev->dev->dev_addr, 4); if (idev->dev->flags&IFF_POINTOPOINT) { addr.s6_addr32[0] = __constant_htonl(0xfe800000); scope = IFA_LINK; } else { scope = IPV6_ADDR_COMPATv4; } if (addr.s6_addr32[3]) { ifp = ipv6_add_addr(idev, &addr, 128, scope, IFA_F_PERMANENT); if (ifp) { spin_lock_bh(&ifp->lock); ifp->flags &= ~IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); ipv6_ifa_notify(RTM_NEWADDR, ifp); in6_ifa_put(ifp); } return; } for (dev = dev_base; dev != NULL; dev = dev->next) { struct in_device * in_dev = __in_dev_get(dev); if (in_dev && (dev->flags & IFF_UP)) { struct in_ifaddr * ifa; int flag = scope; for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) { int plen; addr.s6_addr32[3] = ifa->ifa_local; if (ifa->ifa_scope == RT_SCOPE_LINK) continue; if (ifa->ifa_scope >= RT_SCOPE_HOST) { if (idev->dev->flags&IFF_POINTOPOINT) continue; flag |= IFA_HOST; } if (idev->dev->flags&IFF_POINTOPOINT) plen = 10; else plen = 96; ifp = ipv6_add_addr(idev, &addr, plen, flag, IFA_F_PERMANENT); if (ifp) { spin_lock_bh(&ifp->lock); ifp->flags &= ~IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); ipv6_ifa_notify(RTM_NEWADDR, ifp); in6_ifa_put(ifp); } } } } } static void init_loopback(struct net_device *dev) { struct in6_addr addr; struct inet6_dev *idev; struct inet6_ifaddr * ifp; /* ::1 */ ASSERT_RTNL(); memset(&addr, 0, sizeof(struct in6_addr)); addr.s6_addr[15] = 1; if ((idev = ipv6_find_idev(dev)) == NULL) { printk(KERN_DEBUG "init loopback: add_dev failed\n"); return; } ifp = ipv6_add_addr(idev, &addr, 128, IFA_HOST, IFA_F_PERMANENT); if (ifp) { spin_lock_bh(&ifp->lock); ifp->flags &= ~IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); ipv6_ifa_notify(RTM_NEWADDR, ifp); in6_ifa_put(ifp); } } static void addrconf_add_linklocal(struct inet6_dev *idev, struct in6_addr *addr) { struct inet6_ifaddr * ifp; ifp = ipv6_add_addr(idev, addr, 10, IFA_LINK, IFA_F_PERMANENT); if (ifp) { addrconf_dad_start(ifp); in6_ifa_put(ifp); } } static void addrconf_dev_config(struct net_device *dev) { struct in6_addr addr; struct inet6_dev * idev; ASSERT_RTNL(); if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_FDDI) && (dev->type != ARPHRD_IEEE802_TR)) { /* Alas, we support only Ethernet autoconfiguration. */ return; } idev = addrconf_add_dev(dev); if (idev == NULL) return; memset(&addr, 0, sizeof(struct in6_addr)); addr.s6_addr[0] = 0xFE; addr.s6_addr[1] = 0x80; if (ipv6_generate_eui64(addr.s6_addr + 8, dev) == 0) addrconf_add_linklocal(idev, &addr); } static void addrconf_sit_config(struct net_device *dev) { struct inet6_dev *idev; ASSERT_RTNL(); /* * Configure the tunnel with one of our IPv4 * addresses... we should configure all of * our v4 addrs in the tunnel */ if ((idev = ipv6_find_idev(dev)) == NULL) { printk(KERN_DEBUG "init sit: add_dev failed\n"); return; } sit_add_v4_addrs(idev); if (dev->flags&IFF_POINTOPOINT) { addrconf_add_mroute(dev); addrconf_add_lroute(dev); } else sit_route_add(dev); } int addrconf_notify(struct notifier_block *this, unsigned long event, void * data) { struct net_device *dev; dev = (struct net_device *) data; switch(event) { case NETDEV_UP: switch(dev->type) { case ARPHRD_SIT: addrconf_sit_config(dev); break; case ARPHRD_LOOPBACK: init_loopback(dev); break; default: addrconf_dev_config(dev); break; }; break; case NETDEV_CHANGEMTU: if (dev->mtu >= IPV6_MIN_MTU) { struct inet6_dev *idev; if ((idev = __in6_dev_get(dev)) == NULL) break; idev->cnf.mtu6 = dev->mtu; rt6_mtu_change(dev, dev->mtu); break; } /* MTU falled under IPV6_MIN_MTU. Stop IPv6 on this interface. */ case NETDEV_DOWN: case NETDEV_UNREGISTER: /* * Remove all addresses from this interface. */ addrconf_ifdown(dev, event != NETDEV_DOWN); break; case NETDEV_CHANGE: break; }; return NOTIFY_OK; } static int addrconf_ifdown(struct net_device *dev, int how) { struct inet6_dev *idev; struct inet6_ifaddr *ifa, **bifa; int i; ASSERT_RTNL(); rt6_ifdown(dev); neigh_ifdown(&nd_tbl, dev); idev = __in6_dev_get(dev); if (idev == NULL) return -ENODEV; /* Step 1: remove reference to ipv6 device from parent device. Do not dev_put! */ if (how == 1) { write_lock_bh(&addrconf_lock); dev->ip6_ptr = NULL; idev->dead = 1; write_unlock_bh(&addrconf_lock); } /* Step 2: clear hash table */ for (i=0; iidev == idev) { *bifa = ifa->lst_next; ifa->lst_next = NULL; addrconf_del_timer(ifa); in6_ifa_put(ifa); continue; } bifa = &ifa->lst_next; } write_unlock_bh(&addrconf_hash_lock); } /* Step 3: clear address list */ write_lock_bh(&idev->lock); while ((ifa = idev->addr_list) != NULL) { idev->addr_list = ifa->if_next; ifa->if_next = NULL; ifa->dead = 1; addrconf_del_timer(ifa); write_unlock_bh(&idev->lock); ipv6_ifa_notify(RTM_DELADDR, ifa); in6_ifa_put(ifa); write_lock_bh(&idev->lock); } write_unlock_bh(&idev->lock); /* Step 4: Discard multicast list */ if (how == 1) ipv6_mc_destroy_dev(idev); else ipv6_mc_down(idev); /* Shot the device (if unregistered) */ if (how == 1) { neigh_parms_release(&nd_tbl, idev->nd_parms); #ifdef CONFIG_SYSCTL addrconf_sysctl_unregister(&idev->cnf); #endif in6_dev_put(idev); } return 0; } static void addrconf_rs_timer(unsigned long data) { struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data; if (ifp->idev->cnf.forwarding) goto out; if (ifp->idev->if_flags & IF_RA_RCVD) { /* * Announcement received after solicitation * was sent */ goto out; } spin_lock(&ifp->lock); if (ifp->probes++ < ifp->idev->cnf.rtr_solicits) { struct in6_addr all_routers; /* The wait after the last probe can be shorter */ addrconf_mod_timer(ifp, AC_RS, (ifp->probes == ifp->idev->cnf.rtr_solicits) ? ifp->idev->cnf.rtr_solicit_delay : ifp->idev->cnf.rtr_solicit_interval); spin_unlock(&ifp->lock); ipv6_addr_all_routers(&all_routers); ndisc_send_rs(ifp->idev->dev, &ifp->addr, &all_routers); } else { struct in6_rtmsg rtmsg; spin_unlock(&ifp->lock); printk(KERN_DEBUG "%s: no IPv6 routers present\n", ifp->idev->dev->name); memset(&rtmsg, 0, sizeof(struct in6_rtmsg)); rtmsg.rtmsg_type = RTMSG_NEWROUTE; rtmsg.rtmsg_metric = IP6_RT_PRIO_ADDRCONF; rtmsg.rtmsg_flags = (RTF_ALLONLINK | RTF_ADDRCONF | RTF_DEFAULT | RTF_UP); rtmsg.rtmsg_ifindex = ifp->idev->dev->ifindex; ip6_route_add(&rtmsg); } out: in6_ifa_put(ifp); } /* * Duplicate Address Detection */ static void addrconf_dad_start(struct inet6_ifaddr *ifp) { struct net_device *dev; unsigned long rand_num; dev = ifp->idev->dev; addrconf_join_solict(dev, &ifp->addr); if (ifp->prefix_len != 128 && (ifp->flags&IFA_F_PERMANENT)) addrconf_prefix_route(&ifp->addr, ifp->prefix_len, dev, 0, RTF_ADDRCONF); net_srandom(ifp->addr.s6_addr32[3]); rand_num = net_random() % (ifp->idev->cnf.rtr_solicit_delay ? : 1); spin_lock_bh(&ifp->lock); if (dev->flags&(IFF_NOARP|IFF_LOOPBACK) || !(ifp->flags&IFA_F_TENTATIVE)) { ifp->flags &= ~IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); addrconf_dad_completed(ifp); return; } ifp->probes = ifp->idev->cnf.dad_transmits; addrconf_mod_timer(ifp, AC_DAD, rand_num); spin_unlock_bh(&ifp->lock); } static void addrconf_dad_timer(unsigned long data) { struct inet6_ifaddr *ifp = (struct inet6_ifaddr *) data; struct in6_addr unspec; struct in6_addr mcaddr; spin_lock_bh(&ifp->lock); if (ifp->probes == 0) { /* * DAD was successful */ ifp->flags &= ~IFA_F_TENTATIVE; spin_unlock_bh(&ifp->lock); addrconf_dad_completed(ifp); in6_ifa_put(ifp); return; } ifp->probes--; addrconf_mod_timer(ifp, AC_DAD, ifp->idev->nd_parms->retrans_time); spin_unlock_bh(&ifp->lock); /* send a neighbour solicitation for our addr */ memset(&unspec, 0, sizeof(unspec)); addrconf_addr_solict_mult(&ifp->addr, &mcaddr); ndisc_send_ns(ifp->idev->dev, NULL, &ifp->addr, &mcaddr, &unspec); in6_ifa_put(ifp); } static void addrconf_dad_completed(struct inet6_ifaddr *ifp) { struct net_device * dev = ifp->idev->dev; /* * Configure the address for reception. Now it is valid. */ ipv6_ifa_notify(RTM_NEWADDR, ifp); /* If added prefix is link local and forwarding is off, start sending router solicitations. */ if (ifp->idev->cnf.forwarding == 0 && (dev->flags&IFF_LOOPBACK) == 0 && (ipv6_addr_type(&ifp->addr) & IPV6_ADDR_LINKLOCAL)) { struct in6_addr all_routers; ipv6_addr_all_routers(&all_routers); /* * If a host as already performed a random delay * [...] as part of DAD [...] there is no need * to delay again before sending the first RS */ ndisc_send_rs(ifp->idev->dev, &ifp->addr, &all_routers); spin_lock_bh(&ifp->lock); ifp->probes = 1; ifp->idev->if_flags |= IF_RS_SENT; addrconf_mod_timer(ifp, AC_RS, ifp->idev->cnf.rtr_solicit_interval); spin_unlock_bh(&ifp->lock); } } #ifdef CONFIG_PROC_FS static int iface_proc_info(char *buffer, char **start, off_t offset, int length) { struct inet6_ifaddr *ifp; int i; int len = 0; off_t pos=0; off_t begin=0; for (i=0; i < IN6_ADDR_HSIZE; i++) { read_lock_bh(&addrconf_hash_lock); for (ifp=inet6_addr_lst[i]; ifp; ifp=ifp->lst_next) { int j; for (j=0; j<16; j++) { sprintf(buffer + len, "%02x", ifp->addr.s6_addr[j]); len += 2; } len += sprintf(buffer + len, " %02x %02x %02x %02x %8s\n", ifp->idev->dev->ifindex, ifp->prefix_len, ifp->scope, ifp->flags, ifp->idev->dev->name); pos=begin+len; if(posoffset+length) { read_unlock_bh(&addrconf_hash_lock); goto done; } } read_unlock_bh(&addrconf_hash_lock); } done: *start=buffer+(offset-begin); len-=(offset-begin); if(len>length) len=length; if(len<0) len=0; return len; } #endif /* CONFIG_PROC_FS */ /* * Periodic address status verification */ void addrconf_verify(unsigned long foo) { struct inet6_ifaddr *ifp; unsigned long now = jiffies; int i; for (i=0; i < IN6_ADDR_HSIZE; i++) { restart: write_lock(&addrconf_hash_lock); for (ifp=inet6_addr_lst[i]; ifp; ifp=ifp->lst_next) { unsigned long age; if (ifp->flags & IFA_F_PERMANENT) continue; age = (now - ifp->tstamp) / HZ; if (age > ifp->valid_lft) { in6_ifa_hold(ifp); write_unlock(&addrconf_hash_lock); ipv6_del_addr(ifp); goto restart; } else if (age > ifp->prefered_lft) { int deprecate = 0; spin_lock(&ifp->lock); if (!(ifp->flags&IFA_F_DEPRECATED)) { deprecate = 1; ifp->flags |= IFA_F_DEPRECATED; } spin_unlock(&ifp->lock); if (deprecate) { in6_ifa_hold(ifp); write_unlock(&addrconf_hash_lock); ipv6_ifa_notify(0, ifp); in6_ifa_put(ifp); goto restart; } } } write_unlock(&addrconf_hash_lock); } mod_timer(&addr_chk_timer, jiffies + ADDR_CHECK_FREQUENCY); } static int inet6_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct rtattr **rta = arg; struct ifaddrmsg *ifm = NLMSG_DATA(nlh); struct in6_addr *pfx; pfx = NULL; if (rta[IFA_ADDRESS-1]) { if (RTA_PAYLOAD(rta[IFA_ADDRESS-1]) < sizeof(*pfx)) return -EINVAL; pfx = RTA_DATA(rta[IFA_ADDRESS-1]); } if (rta[IFA_LOCAL-1]) { if (pfx && memcmp(pfx, RTA_DATA(rta[IFA_LOCAL-1]), sizeof(*pfx))) return -EINVAL; pfx = RTA_DATA(rta[IFA_LOCAL-1]); } if (pfx == NULL) return -EINVAL; return inet6_addr_del(ifm->ifa_index, pfx, ifm->ifa_prefixlen); } static int inet6_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) { struct rtattr **rta = arg; struct ifaddrmsg *ifm = NLMSG_DATA(nlh); struct in6_addr *pfx; pfx = NULL; if (rta[IFA_ADDRESS-1]) { if (RTA_PAYLOAD(rta[IFA_ADDRESS-1]) < sizeof(*pfx)) return -EINVAL; pfx = RTA_DATA(rta[IFA_ADDRESS-1]); } if (rta[IFA_LOCAL-1]) { if (pfx && memcmp(pfx, RTA_DATA(rta[IFA_LOCAL-1]), sizeof(*pfx))) return -EINVAL; pfx = RTA_DATA(rta[IFA_LOCAL-1]); } if (pfx == NULL) return -EINVAL; return inet6_addr_add(ifm->ifa_index, pfx, ifm->ifa_prefixlen); } static int inet6_fill_ifaddr(struct sk_buff *skb, struct inet6_ifaddr *ifa, u32 pid, u32 seq, int event) { struct ifaddrmsg *ifm; struct nlmsghdr *nlh; struct ifa_cacheinfo ci; unsigned char *b = skb->tail; nlh = NLMSG_PUT(skb, pid, seq, event, sizeof(*ifm)); ifm = NLMSG_DATA(nlh); ifm->ifa_family = AF_INET6; ifm->ifa_prefixlen = ifa->prefix_len; ifm->ifa_flags = ifa->flags; ifm->ifa_scope = RT_SCOPE_UNIVERSE; if (ifa->scope&IFA_HOST) ifm->ifa_scope = RT_SCOPE_HOST; else if (ifa->scope&IFA_LINK) ifm->ifa_scope = RT_SCOPE_LINK; else if (ifa->scope&IFA_SITE) ifm->ifa_scope = RT_SCOPE_SITE; ifm->ifa_index = ifa->idev->dev->ifindex; RTA_PUT(skb, IFA_ADDRESS, 16, &ifa->addr); if (!(ifa->flags&IFA_F_PERMANENT)) { ci.ifa_prefered = ifa->prefered_lft; ci.ifa_valid = ifa->valid_lft; if (ci.ifa_prefered != 0xFFFFFFFF) { long tval = (jiffies - ifa->tstamp)/HZ; ci.ifa_prefered -= tval; if (ci.ifa_valid != 0xFFFFFFFF) ci.ifa_valid -= tval; } RTA_PUT(skb, IFA_CACHEINFO, sizeof(ci), &ci); } nlh->nlmsg_len = skb->tail - b; return skb->len; nlmsg_failure: rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static int inet6_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb) { int idx, ip_idx; int s_idx, s_ip_idx; struct inet6_ifaddr *ifa; s_idx = cb->args[0]; s_ip_idx = ip_idx = cb->args[1]; for (idx=0; idx < IN6_ADDR_HSIZE; idx++) { if (idx < s_idx) continue; if (idx > s_idx) s_ip_idx = 0; read_lock_bh(&addrconf_hash_lock); for (ifa=inet6_addr_lst[idx], ip_idx = 0; ifa; ifa = ifa->lst_next, ip_idx++) { if (ip_idx < s_ip_idx) continue; if (inet6_fill_ifaddr(skb, ifa, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq, RTM_NEWADDR) <= 0) { read_unlock_bh(&addrconf_hash_lock); goto done; } } read_unlock_bh(&addrconf_hash_lock); } done: cb->args[0] = idx; cb->args[1] = ip_idx; return skb->len; } static void inet6_ifa_notify(int event, struct inet6_ifaddr *ifa) { struct sk_buff *skb; int size = NLMSG_SPACE(sizeof(struct ifaddrmsg)+128); skb = alloc_skb(size, GFP_ATOMIC); if (!skb) { netlink_set_err(rtnl, 0, RTMGRP_IPV6_IFADDR, ENOBUFS); return; } if (inet6_fill_ifaddr(skb, ifa, 0, 0, event) < 0) { kfree_skb(skb); netlink_set_err(rtnl, 0, RTMGRP_IPV6_IFADDR, EINVAL); return; } NETLINK_CB(skb).dst_groups = RTMGRP_IPV6_IFADDR; netlink_broadcast(rtnl, skb, 0, RTMGRP_IPV6_IFADDR, GFP_ATOMIC); } static struct rtnetlink_link inet6_rtnetlink_table[RTM_MAX-RTM_BASE+1] = { { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { NULL, NULL, }, { inet6_rtm_newaddr, NULL, }, { inet6_rtm_deladdr, NULL, }, { NULL, inet6_dump_ifaddr, }, { NULL, NULL, }, { inet6_rtm_newroute, NULL, }, { inet6_rtm_delroute, NULL, }, { inet6_rtm_getroute, inet6_dump_fib, }, { NULL, NULL, }, }; static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp) { inet6_ifa_notify(event ? : RTM_NEWADDR, ifp); switch (event) { case RTM_NEWADDR: ip6_rt_addr_add(&ifp->addr, ifp->idev->dev); break; case RTM_DELADDR: addrconf_leave_solict(ifp->idev->dev, &ifp->addr); if (!ipv6_chk_addr(&ifp->addr, ifp->idev->dev)) ip6_rt_addr_del(&ifp->addr, ifp->idev->dev); break; } } #ifdef CONFIG_SYSCTL static int addrconf_sysctl_forward(ctl_table *ctl, int write, struct file * filp, void *buffer, size_t *lenp) { int *valp = ctl->data; int val = *valp; int ret; ret = proc_dointvec(ctl, write, filp, buffer, lenp); if (write && *valp != val && valp != &ipv6_devconf_dflt.forwarding) { struct inet6_dev *idev = NULL; if (valp != &ipv6_devconf.forwarding) { struct net_device *dev = dev_get_by_index(ctl->ctl_name); if (dev) { idev = in6_dev_get(dev); dev_put(dev); } if (idev == NULL) return ret; } else ipv6_devconf_dflt.forwarding = ipv6_devconf.forwarding; addrconf_forward_change(idev); if (*valp) rt6_purge_dflt_routers(0); if (idev) in6_dev_put(idev); } return ret; } static struct addrconf_sysctl_table { struct ctl_table_header *sysctl_header; ctl_table addrconf_vars[11]; ctl_table addrconf_dev[2]; ctl_table addrconf_conf_dir[2]; ctl_table addrconf_proto_dir[2]; ctl_table addrconf_root_dir[2]; } addrconf_sysctl = { NULL, {{NET_IPV6_FORWARDING, "forwarding", &ipv6_devconf.forwarding, sizeof(int), 0644, NULL, &addrconf_sysctl_forward}, {NET_IPV6_HOP_LIMIT, "hop_limit", &ipv6_devconf.hop_limit, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV6_MTU, "mtu", &ipv6_devconf.mtu6, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV6_ACCEPT_RA, "accept_ra", &ipv6_devconf.accept_ra, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV6_ACCEPT_REDIRECTS, "accept_redirects", &ipv6_devconf.accept_redirects, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV6_AUTOCONF, "autoconf", &ipv6_devconf.autoconf, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV6_DAD_TRANSMITS, "dad_transmits", &ipv6_devconf.dad_transmits, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV6_RTR_SOLICITS, "router_solicitations", &ipv6_devconf.rtr_solicits, sizeof(int), 0644, NULL, &proc_dointvec}, {NET_IPV6_RTR_SOLICIT_INTERVAL, "router_solicitation_interval", &ipv6_devconf.rtr_solicit_interval, sizeof(int), 0644, NULL, &proc_dointvec_jiffies}, {NET_IPV6_RTR_SOLICIT_DELAY, "router_solicitation_delay", &ipv6_devconf.rtr_solicit_delay, sizeof(int), 0644, NULL, &proc_dointvec_jiffies}, {0}}, {{NET_PROTO_CONF_ALL, "all", NULL, 0, 0555, addrconf_sysctl.addrconf_vars},{0}}, {{NET_IPV6_CONF, "conf", NULL, 0, 0555, addrconf_sysctl.addrconf_dev},{0}}, {{NET_IPV6, "ipv6", NULL, 0, 0555, addrconf_sysctl.addrconf_conf_dir},{0}}, {{CTL_NET, "net", NULL, 0, 0555, addrconf_sysctl.addrconf_proto_dir},{0}} }; static void addrconf_sysctl_register(struct inet6_dev *idev, struct ipv6_devconf *p) { int i; struct net_device *dev = idev ? idev->dev : NULL; struct addrconf_sysctl_table *t; t = kmalloc(sizeof(*t), GFP_KERNEL); if (t == NULL) return; memcpy(t, &addrconf_sysctl, sizeof(*t)); for (i=0; iaddrconf_vars)/sizeof(t->addrconf_vars[0])-1; i++) { t->addrconf_vars[i].data += (char*)p - (char*)&ipv6_devconf; t->addrconf_vars[i].de = NULL; } if (dev) { t->addrconf_dev[0].procname = dev->name; t->addrconf_dev[0].ctl_name = dev->ifindex; } else { t->addrconf_dev[0].procname = "default"; t->addrconf_dev[0].ctl_name = NET_PROTO_CONF_DEFAULT; } t->addrconf_dev[0].child = t->addrconf_vars; t->addrconf_dev[0].de = NULL; t->addrconf_conf_dir[0].child = t->addrconf_dev; t->addrconf_conf_dir[0].de = NULL; t->addrconf_proto_dir[0].child = t->addrconf_conf_dir; t->addrconf_proto_dir[0].de = NULL; t->addrconf_root_dir[0].child = t->addrconf_proto_dir; t->addrconf_root_dir[0].de = NULL; t->sysctl_header = register_sysctl_table(t->addrconf_root_dir, 0); if (t->sysctl_header == NULL) kfree(t); else p->sysctl = t; } static void addrconf_sysctl_unregister(struct ipv6_devconf *p) { if (p->sysctl) { struct addrconf_sysctl_table *t = p->sysctl; p->sysctl = NULL; unregister_sysctl_table(t->sysctl_header); kfree(t); } } #endif /* * Device notifier */ int register_inet6addr_notifier(struct notifier_block *nb) { return notifier_chain_register(&inet6addr_chain, nb); } int unregister_inet6addr_notifier(struct notifier_block *nb) { return notifier_chain_unregister(&inet6addr_chain,nb); } /* * Init / cleanup code */ void __init addrconf_init(void) { #ifdef MODULE struct net_device *dev; /* This takes sense only during module load. */ rtnl_lock(); for (dev = dev_base; dev; dev = dev->next) { if (!(dev->flags&IFF_UP)) continue; switch (dev->type) { case ARPHRD_LOOPBACK: init_loopback(dev); break; case ARPHRD_ETHER: case ARPHRD_FDDI: case ARPHRD_IEEE802_TR: addrconf_dev_config(dev); break; default:; /* Ignore all other */ } } rtnl_unlock(); #endif #ifdef CONFIG_PROC_FS proc_net_create("if_inet6", 0, iface_proc_info); #endif addr_chk_timer.expires = jiffies + ADDR_CHECK_FREQUENCY; add_timer(&addr_chk_timer); rtnetlink_links[PF_INET6] = inet6_rtnetlink_table; #ifdef CONFIG_SYSCTL addrconf_sysctl.sysctl_header = register_sysctl_table(addrconf_sysctl.addrconf_root_dir, 0); addrconf_sysctl_register(NULL, &ipv6_devconf_dflt); #endif } #ifdef MODULE void addrconf_cleanup(void) { struct net_device *dev; struct inet6_dev *idev; struct inet6_ifaddr *ifa; int i; rtnetlink_links[PF_INET6] = NULL; #ifdef CONFIG_SYSCTL addrconf_sysctl_unregister(&ipv6_devconf_dflt); addrconf_sysctl_unregister(&ipv6_devconf); #endif rtnl_lock(); /* * clean dev list. */ for (dev=dev_base; dev; dev=dev->next) { if ((idev = __in6_dev_get(dev)) == NULL) continue; addrconf_ifdown(dev, 1); } /* * Check hash table. */ write_lock_bh(&addrconf_hash_lock); for (i=0; i < IN6_ADDR_HSIZE; i++) { for (ifa=inet6_addr_lst[i]; ifa; ) { struct inet6_ifaddr *bifa; bifa = ifa; ifa = ifa->lst_next; printk(KERN_DEBUG "bug: IPv6 address leakage detected: ifa=%p\n", bifa); /* Do not free it; something is wrong. Now we can investigate it with debugger. */ } } write_unlock_bh(&addrconf_hash_lock); del_timer(&addr_chk_timer); rtnl_unlock(); #ifdef CONFIG_PROC_FS proc_net_remove("if_inet6"); #endif } #endif /* MODULE */