/* * Utility functions for parsing Tegra CVB voltage tables * * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * */ #include #include #include #include "cvb.h" /* cvb_mv = ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) */ static inline int get_cvb_voltage(int speedo, int s_scale, const struct cvb_coefficients *cvb) { int mv; /* apply only speedo scale: output mv = cvb_mv * v_scale */ mv = DIV_ROUND_CLOSEST(cvb->c2 * speedo, s_scale); mv = DIV_ROUND_CLOSEST((mv + cvb->c1) * speedo, s_scale) + cvb->c0; return mv; } static int round_cvb_voltage(int mv, int v_scale, const struct rail_alignment *align) { /* combined: apply voltage scale and round to cvb alignment step */ int uv; int step = (align->step_uv ? : 1000) * v_scale; int offset = align->offset_uv * v_scale; uv = max(mv * 1000, offset) - offset; uv = DIV_ROUND_UP(uv, step) * align->step_uv + align->offset_uv; return uv / 1000; } enum { DOWN, UP }; static int round_voltage(int mv, const struct rail_alignment *align, int up) { if (align->step_uv) { int uv; uv = max(mv * 1000, align->offset_uv) - align->offset_uv; uv = (uv + (up ? align->step_uv - 1 : 0)) / align->step_uv; return (uv * align->step_uv + align->offset_uv) / 1000; } return mv; } static int build_opp_table(const struct cvb_table *d, int speedo_value, unsigned long max_freq, struct device *opp_dev) { int i, ret, dfll_mv, min_mv, max_mv; const struct cvb_table_freq_entry *table = NULL; const struct rail_alignment *align = &d->alignment; min_mv = round_voltage(d->min_millivolts, align, UP); max_mv = round_voltage(d->max_millivolts, align, DOWN); for (i = 0; i < MAX_DVFS_FREQS; i++) { table = &d->cvb_table[i]; if (!table->freq || (table->freq > max_freq)) break; dfll_mv = get_cvb_voltage( speedo_value, d->speedo_scale, &table->coefficients); dfll_mv = round_cvb_voltage(dfll_mv, d->voltage_scale, align); dfll_mv = clamp(dfll_mv, min_mv, max_mv); ret = dev_pm_opp_add(opp_dev, table->freq, dfll_mv * 1000); if (ret) return ret; } return 0; } /** * tegra_cvb_build_opp_table - build OPP table from Tegra CVB tables * @cvb_tables: array of CVB tables * @sz: size of the previously mentioned array * @process_id: process id of the HW module * @speedo_id: speedo id of the HW module * @speedo_value: speedo value of the HW module * @max_rate: highest safe clock rate * @opp_dev: the struct device * for which the OPP table is built * * On Tegra, a CVB table encodes the relationship between operating voltage * and safe maximal frequency for a given module (e.g. GPU or CPU). This * function calculates the optimal voltage-frequency operating points * for the given arguments and exports them via the OPP library for the * given @opp_dev. Returns a pointer to the struct cvb_table that matched * or an ERR_PTR on failure. */ const struct cvb_table *tegra_cvb_build_opp_table( const struct cvb_table *cvb_tables, size_t sz, int process_id, int speedo_id, int speedo_value, unsigned long max_rate, struct device *opp_dev) { int i, ret; for (i = 0; i < sz; i++) { const struct cvb_table *d = &cvb_tables[i]; if (d->speedo_id != -1 && d->speedo_id != speedo_id) continue; if (d->process_id != -1 && d->process_id != process_id) continue; ret = build_opp_table(d, speedo_value, max_rate, opp_dev); return ret ? ERR_PTR(ret) : d; } return ERR_PTR(-EINVAL); }