/* Copyright (c) 2013-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "smem_private.h" #define MODEM_SBL_VERSION_INDEX 7 #define SMEM_VERSION_INFO_SIZE (32 * 4) #define SMEM_VERSION 0x000B enum { MSM_SMEM_DEBUG = 1U << 0, MSM_SMEM_INFO = 1U << 1, }; static int msm_smem_debug_mask = MSM_SMEM_INFO; module_param_named(debug_mask, msm_smem_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP); static void *smem_ipc_log_ctx; #define NUM_LOG_PAGES 4 #define IPC_LOG(x...) do { \ if (smem_ipc_log_ctx) \ ipc_log_string(smem_ipc_log_ctx, x); \ } while (0) #define LOG_ERR(x...) do { \ pr_err(x); \ IPC_LOG(x); \ } while (0) #define SMEM_DBG(x...) do { \ if (msm_smem_debug_mask & MSM_SMEM_DEBUG) \ IPC_LOG(x); \ } while (0) #define SMEM_INFO(x...) do { \ if (msm_smem_debug_mask & MSM_SMEM_INFO) \ IPC_LOG(x); \ } while (0) #define SMEM_SPINLOCK_SMEM_ALLOC "S:3" static void *smem_ram_base; static resource_size_t smem_ram_size; static phys_addr_t smem_ram_phys; static struct hwspinlock *hwlock; static uint32_t num_smem_areas; static struct smem_area *smem_areas; static struct ramdump_segment *smem_ramdump_segments; static void *smem_ramdump_dev; static DEFINE_MUTEX(spinlock_init_lock); static DEFINE_SPINLOCK(smem_init_check_lock); static int smem_module_inited; static RAW_NOTIFIER_HEAD(smem_module_init_notifier_list); static DEFINE_MUTEX(smem_module_init_notifier_lock); static bool probe_done; /* smem security feature components */ #define SMEM_TOC_IDENTIFIER 0x434f5424 /* "$TOC" */ #define SMEM_TOC_MAX_EXCLUSIONS 4 #define SMEM_PART_HDR_IDENTIFIER 0x54525024 /* "$PRT" */ #define SMEM_ALLOCATION_CANARY 0xa5a5 struct smem_toc_entry { uint32_t offset; uint32_t size; uint32_t flags; uint16_t host0; uint16_t host1; uint32_t size_cacheline; uint32_t reserved[3]; uint32_t exclusion_sizes[SMEM_TOC_MAX_EXCLUSIONS]; }; struct smem_toc { /* Identifier is a constant, set to SMEM_TOC_IDENTIFIER. */ uint32_t identifier; uint32_t version; uint32_t num_entries; uint32_t reserved[5]; struct smem_toc_entry entry[]; }; struct smem_partition_header { /* Identifier is a constant, set to SMEM_PART_HDR_IDENTIFIER. */ uint32_t identifier; uint16_t host0; uint16_t host1; uint32_t size; uint32_t offset_free_uncached; uint32_t offset_free_cached; uint32_t reserved[3]; }; struct smem_partition_allocation_header { /* Canary is a constant, set to SMEM_ALLOCATION_CANARY */ uint16_t canary; uint16_t smem_type; uint32_t size; /* includes padding bytes */ uint16_t padding_data; uint16_t padding_hdr; uint32_t reserved[1]; }; struct smem_partition_info { uint32_t partition_num; uint32_t offset; uint32_t size_cacheline; }; static struct smem_partition_info partitions[NUM_SMEM_SUBSYSTEMS]; /* end smem security feature components */ /* Identifier for the SMEM target info struct. */ #define SMEM_TARG_INFO_IDENTIFIER 0x49494953 /* "SIII" in little-endian. */ struct smem_targ_info_type { /* Identifier is a constant, set to SMEM_TARG_INFO_IDENTIFIER. */ uint32_t identifier; uint32_t size; phys_addr_t phys_base_addr; }; struct restart_notifier_block { unsigned processor; char *name; struct notifier_block nb; }; static int restart_notifier_cb(struct notifier_block *this, unsigned long code, void *data); static struct restart_notifier_block restart_notifiers[] = { {SMEM_MODEM, "modem", .nb.notifier_call = restart_notifier_cb}, {SMEM_Q6, "lpass", .nb.notifier_call = restart_notifier_cb}, {SMEM_WCNSS, "wcnss", .nb.notifier_call = restart_notifier_cb}, {SMEM_DSPS, "dsps", .nb.notifier_call = restart_notifier_cb}, {SMEM_MODEM, "gss", .nb.notifier_call = restart_notifier_cb}, {SMEM_Q6, "adsp", .nb.notifier_call = restart_notifier_cb}, {SMEM_DSPS, "slpi", .nb.notifier_call = restart_notifier_cb}, }; /** * is_probe_done() - Did the probe function successfully complete * * @return - true if probe successfully completed, false if otherwise * * Helper function for EPROBE_DEFER support. If this function returns false, * the calling function should immediately return -EPROBE_DEFER. */ static bool is_probe_done(void) { return probe_done; } /** * smem_phys_to_virt() - Convert a physical base and offset to virtual address * * @base: physical base address to check * @offset: offset from the base to get the final address * @returns: virtual SMEM address; NULL for failure * * Takes a physical address and an offset and checks if the resulting physical * address would fit into one of the smem regions. If so, returns the * corresponding virtual address. Otherwise returns NULL. */ static void *smem_phys_to_virt(phys_addr_t base, unsigned offset) { int i; phys_addr_t phys_addr; resource_size_t size; if (OVERFLOW_ADD_UNSIGNED(phys_addr_t, base, offset)) return NULL; if (!smem_areas) { /* * Early boot - no area configuration yet, so default * to using the main memory region. * * To remove the MSM_SHARED_RAM_BASE and the static * mapping of SMEM in the future, add dump_stack() * to identify the early callers of smem_get_entry() * (which calls this function) and replace those calls * with a new function that knows how to lookup the * SMEM base address before SMEM has been probed. */ phys_addr = smem_ram_phys; size = smem_ram_size; if (base >= phys_addr && base + offset < phys_addr + size) { if (OVERFLOW_ADD_UNSIGNED(uintptr_t, (uintptr_t)smem_ram_base, offset)) { SMEM_INFO("%s: overflow %p %x\n", __func__, smem_ram_base, offset); return NULL; } return smem_ram_base + offset; } else { return NULL; } } for (i = 0; i < num_smem_areas; ++i) { phys_addr = smem_areas[i].phys_addr; size = smem_areas[i].size; if (base < phys_addr || base + offset >= phys_addr + size) continue; if (OVERFLOW_ADD_UNSIGNED(uintptr_t, (uintptr_t)smem_areas[i].virt_addr, offset)) { SMEM_INFO("%s: overflow %p %x\n", __func__, smem_areas[i].virt_addr, offset); return NULL; } return smem_areas[i].virt_addr + offset; } return NULL; } /** * smem_virt_to_phys() - Convert SMEM address to physical address. * * @smem_address: Address of SMEM item (returned by smem_alloc(), etc) * @returns: Physical address (or NULL if there is a failure) * * This function should only be used if an SMEM item needs to be handed * off to a DMA engine. This function will not return a version of EPROBE_DEFER * if the driver is not ready since the caller should obtain @smem_address from * one of the other public APIs and get EPROBE_DEFER at that time, if * applicable. */ phys_addr_t smem_virt_to_phys(void *smem_address) { phys_addr_t phys_addr = 0; int i; void *vend; if (!smem_areas) return phys_addr; for (i = 0; i < num_smem_areas; ++i) { vend = (void *)(smem_areas[i].virt_addr + smem_areas[i].size); if (smem_address >= smem_areas[i].virt_addr && smem_address < vend) { phys_addr = smem_address - smem_areas[i].virt_addr; phys_addr += smem_areas[i].phys_addr; break; } } return phys_addr; } EXPORT_SYMBOL(smem_virt_to_phys); /** * __smem_get_entry_nonsecure - Get pointer and size of existing SMEM item * * @id: ID of SMEM item * @size: Pointer to size variable for storing the result * @skip_init_check: True means do not verify that SMEM has been initialized * @use_rspinlock: True to use the remote spinlock * @returns: Pointer to SMEM item or NULL if it doesn't exist */ static void *__smem_get_entry_nonsecure(unsigned id, unsigned *size, bool skip_init_check, bool use_rspinlock) { struct smem_shared *shared = smem_ram_base; struct smem_heap_entry *toc = shared->heap_toc; void *ret = 0; unsigned long flags = 0; int rc; if (!skip_init_check && !smem_initialized_check()) return ret; if (id >= SMEM_NUM_ITEMS) return ret; if (use_rspinlock) { do { rc = hwspin_trylock_irqsave(hwlock, &flags); } while (!rc); } /* toc is in device memory and cannot be speculatively accessed */ if (toc[id].allocated) { phys_addr_t phys_base; *size = toc[id].size; barrier(); phys_base = toc[id].reserved & BASE_ADDR_MASK; if (!phys_base) phys_base = smem_ram_phys; ret = smem_phys_to_virt(phys_base, toc[id].offset); } else { *size = 0; } if (use_rspinlock) hwspin_unlock_irqrestore(hwlock, &flags); return ret; } /** * __smem_get_entry_secure - Get pointer and size of existing SMEM item with * security support * * @id: ID of SMEM item * @size: Pointer to size variable for storing the result * @to_proc: SMEM host that shares the item with apps * @flags: Item attribute flags * @skip_init_check: True means do not verify that SMEM has been initialized * @use_rspinlock: True to use the remote spinlock * @returns: Pointer to SMEM item or NULL if it doesn't exist */ static void *__smem_get_entry_secure(unsigned id, unsigned *size, unsigned to_proc, unsigned flags, bool skip_init_check, bool use_rspinlock) { struct smem_partition_header *hdr; unsigned long lflags = 0; void *item = NULL; struct smem_partition_allocation_header *alloc_hdr; uint32_t partition_num; uint32_t a_hdr_size; int rc; SMEM_DBG("%s(%u, %u, %u, %d, %d)\n", __func__, id, to_proc, flags, skip_init_check, use_rspinlock); if (!skip_init_check && !smem_initialized_check()) return NULL; if (id >= SMEM_NUM_ITEMS) { SMEM_INFO("%s: invalid id %d\n", __func__, id); return NULL; } if (!(flags & SMEM_ANY_HOST_FLAG) && to_proc >= NUM_SMEM_SUBSYSTEMS) { SMEM_INFO("%s: id %u invalid to_proc %d\n", __func__, id, to_proc); return NULL; } if (flags & SMEM_ANY_HOST_FLAG || !partitions[to_proc].offset) return __smem_get_entry_nonsecure(id, size, skip_init_check, use_rspinlock); partition_num = partitions[to_proc].partition_num; hdr = smem_areas[0].virt_addr + partitions[to_proc].offset; if (use_rspinlock) { do { rc = hwspin_trylock_irqsave(hwlock, &lflags); } while (!rc); } if (hdr->identifier != SMEM_PART_HDR_IDENTIFIER) { LOG_ERR( "%s: SMEM corruption detected. Partition %d to %d at %p\n", __func__, partition_num, to_proc, hdr); BUG(); } if (flags & SMEM_ITEM_CACHED_FLAG) { a_hdr_size = ALIGN(sizeof(*alloc_hdr), partitions[to_proc].size_cacheline); for (alloc_hdr = (void *)(hdr) + hdr->size - a_hdr_size; (void *)(alloc_hdr) > (void *)(hdr) + hdr->offset_free_cached; alloc_hdr = (void *)(alloc_hdr) - alloc_hdr->size - a_hdr_size) { if (alloc_hdr->canary != SMEM_ALLOCATION_CANARY) { LOG_ERR( "%s: SMEM corruption detected. Partition %d to %d at %p\n", __func__, partition_num, to_proc, alloc_hdr); BUG(); } if (alloc_hdr->smem_type == id) { /* 8 byte alignment to match legacy */ *size = ALIGN(alloc_hdr->size - alloc_hdr->padding_data, 8); item = (void *)(alloc_hdr) - alloc_hdr->size; break; } } } else { for (alloc_hdr = (void *)(hdr) + sizeof(*hdr); (void *)(alloc_hdr) < (void *)(hdr) + hdr->offset_free_uncached; alloc_hdr = (void *)(alloc_hdr) + sizeof(*alloc_hdr) + alloc_hdr->padding_hdr + alloc_hdr->size) { if (alloc_hdr->canary != SMEM_ALLOCATION_CANARY) { LOG_ERR( "%s: SMEM corruption detected. Partition %d to %d at %p\n", __func__, partition_num, to_proc, alloc_hdr); BUG(); } if (alloc_hdr->smem_type == id) { /* 8 byte alignment to match legacy */ *size = ALIGN(alloc_hdr->size - alloc_hdr->padding_data, 8); item = (void *)(alloc_hdr) + sizeof(*alloc_hdr) + alloc_hdr->padding_hdr; break; } } } if (use_rspinlock) hwspin_unlock_irqrestore(hwlock, &lflags); return item; } static void *__smem_find(unsigned id, unsigned size_in, bool skip_init_check) { unsigned size; void *ptr; ptr = __smem_get_entry_nonsecure(id, &size, skip_init_check, true); if (!ptr) return 0; size_in = ALIGN(size_in, 8); if (size_in != size) { SMEM_INFO("smem_find(%u, %u): wrong size %u\n", id, size_in, size); return 0; } return ptr; } /** * smem_find - Find existing item with security support * * @id: ID of SMEM item * @size_in: Size of the SMEM item * @to_proc: SMEM host that shares the item with apps * @flags: Item attribute flags * @returns: Pointer to SMEM item, NULL if it doesn't exist, or -EPROBE_DEFER * if the driver is not ready */ void *smem_find(unsigned id, unsigned size_in, unsigned to_proc, unsigned flags) { unsigned size; void *ptr; SMEM_DBG("%s(%u, %u, %u, %u)\n", __func__, id, size_in, to_proc, flags); /* * Handle the circular dependecy between SMEM and software implemented * remote spinlocks. SMEM must initialize the remote spinlocks in * probe() before it is done. EPROBE_DEFER handling will not resolve * this code path, so we must be intellegent to know that the spinlock * item is a special case. */ if (!is_probe_done() && id != SMEM_SPINLOCK_ARRAY) return ERR_PTR(-EPROBE_DEFER); ptr = smem_get_entry(id, &size, to_proc, flags); if (!ptr) return 0; size_in = ALIGN(size_in, 8); if (size_in != size) { SMEM_INFO("smem_find(%u, %u, %u, %u): wrong size %u\n", id, size_in, to_proc, flags, size); return 0; } return ptr; } EXPORT_SYMBOL(smem_find); /** * alloc_item_nonsecure - Allocate an SMEM item in the nonsecure partition * * @id: ID of SMEM item * @size_in: Size to allocate * @returns: Pointer to SMEM item or NULL for error * * Assumes the id parameter is valid and does not already exist. Assumes * size_in is already adjusted for alignment, if necessary. Requires the * remote spinlock to already be locked. */ static void *alloc_item_nonsecure(unsigned id, unsigned size_in) { void *smem_base = smem_ram_base; struct smem_shared *shared = smem_base; struct smem_heap_entry *toc = shared->heap_toc; void *ret = NULL; if (shared->heap_info.heap_remaining >= size_in) { toc[id].offset = shared->heap_info.free_offset; toc[id].size = size_in; /* * wmb() is necessary to ensure the allocation data is * consistent before setting the allocated flag to prevent race * conditions with remote processors */ wmb(); toc[id].allocated = 1; shared->heap_info.free_offset += size_in; shared->heap_info.heap_remaining -= size_in; ret = smem_base + toc[id].offset; /* * wmb() is necessary to ensure the heap data is consistent * before continuing to prevent race conditions with remote * processors */ wmb(); } else { SMEM_INFO("%s: id %u not enough memory %u (required %u)\n", __func__, id, shared->heap_info.heap_remaining, size_in); } return ret; } /** * alloc_item_secure - Allocate an SMEM item in a secure partition * * @id: ID of SMEM item * @size_in: Size to allocate * @to_proc: SMEM host that shares the item with apps * @flags: Item attribute flags * @returns: Pointer to SMEM item or NULL for error * * Assumes the id parameter is valid and does not already exist. Assumes * size_in is the raw size requested by the client. Assumes to_proc is a valid * host, and a valid partition to that host exists. Requires the remote * spinlock to already be locked. */ static void *alloc_item_secure(unsigned id, unsigned size_in, unsigned to_proc, unsigned flags) { void *smem_base = smem_ram_base; struct smem_partition_header *hdr; struct smem_partition_allocation_header *alloc_hdr; uint32_t a_hdr_size; uint32_t a_data_size; uint32_t size_cacheline; uint32_t free_space; uint32_t partition_num; void *ret = NULL; hdr = smem_base + partitions[to_proc].offset; partition_num = partitions[to_proc].partition_num; if (hdr->identifier != SMEM_PART_HDR_IDENTIFIER) { LOG_ERR( "%s: SMEM corruption detected. Partition %d to %d at %p\n", __func__, partition_num, to_proc, hdr); BUG(); } size_cacheline = partitions[to_proc].size_cacheline; free_space = hdr->offset_free_cached - hdr->offset_free_uncached; if (flags & SMEM_ITEM_CACHED_FLAG) { a_hdr_size = ALIGN(sizeof(*alloc_hdr), size_cacheline); a_data_size = ALIGN(size_in, size_cacheline); if (free_space < a_hdr_size + a_data_size) { SMEM_INFO( "%s: id %u not enough memory %u (required %u)\n", __func__, id, free_space, a_hdr_size + a_data_size); return ret; } alloc_hdr = (void *)(hdr) + hdr->offset_free_cached - a_hdr_size; alloc_hdr->canary = SMEM_ALLOCATION_CANARY; alloc_hdr->smem_type = id; alloc_hdr->size = a_data_size; alloc_hdr->padding_data = a_data_size - size_in; alloc_hdr->padding_hdr = a_hdr_size - sizeof(*alloc_hdr); hdr->offset_free_cached = hdr->offset_free_cached - a_hdr_size - a_data_size; ret = (void *)(alloc_hdr) - a_data_size; /* * The SMEM protocol currently does not support cacheable * areas within the smem region, but if it ever does in the * future, then cache management needs to be done here. * The area of memory this item is allocated from will need to * be dynamically made cachable, and a cache flush of the * allocation header using __cpuc_flush_dcache_area and * outer_flush_area will need to be done. */ } else { a_hdr_size = sizeof(*alloc_hdr); a_data_size = ALIGN(size_in, 8); if (free_space < a_hdr_size + a_data_size) { SMEM_INFO( "%s: id %u not enough memory %u (required %u)\n", __func__, id, free_space, a_hdr_size + a_data_size); return ret; } alloc_hdr = (void *)(hdr) + hdr->offset_free_uncached; alloc_hdr->canary = SMEM_ALLOCATION_CANARY; alloc_hdr->smem_type = id; alloc_hdr->size = a_data_size; alloc_hdr->padding_data = a_data_size - size_in; alloc_hdr->padding_hdr = a_hdr_size - sizeof(*alloc_hdr); hdr->offset_free_uncached = hdr->offset_free_uncached + a_hdr_size + a_data_size; ret = alloc_hdr + 1; } /* * wmb() is necessary to ensure the heap and allocation data is * consistent before continuing to prevent race conditions with remote * processors */ wmb(); return ret; } /** * smem_alloc - Find an existing item, otherwise allocate it with security * support * * @id: ID of SMEM item * @size_in: Size of the SMEM item * @to_proc: SMEM host that shares the item with apps * @flags: Item attribute flags * @returns: Pointer to SMEM item, NULL if it couldn't be found/allocated, * or -EPROBE_DEFER if the driver is not ready */ void *smem_alloc(unsigned id, unsigned size_in, unsigned to_proc, unsigned flags) { unsigned long lflags; void *ret = NULL; int rc; unsigned size_out; unsigned a_size_in; SMEM_DBG("%s(%u, %u, %u, %u)\n", __func__, id, size_in, to_proc, flags); if (!is_probe_done()) return ERR_PTR(-EPROBE_DEFER); if (!smem_initialized_check()) return NULL; if (id >= SMEM_NUM_ITEMS) { SMEM_INFO("%s: invalid id %u\n", __func__, id); return NULL; } if (!(flags & SMEM_ANY_HOST_FLAG) && to_proc >= NUM_SMEM_SUBSYSTEMS) { SMEM_INFO("%s: invalid to_proc %u for id %u\n", __func__, to_proc, id); return NULL; } a_size_in = ALIGN(size_in, 8); do { rc = hwspin_trylock_irqsave(hwlock, &lflags); } while (!rc); ret = __smem_get_entry_secure(id, &size_out, to_proc, flags, true, false); if (ret) { SMEM_INFO("%s: %u already allocated\n", __func__, id); if (a_size_in == size_out) { hwspin_unlock_irqrestore(hwlock, &lflags); return ret; } else { hwspin_unlock_irqrestore(hwlock, &lflags); SMEM_INFO("%s: id %u wrong size %u (expected %u)\n", __func__, id, size_out, a_size_in); return NULL; } } if (id > SMEM_FIXED_ITEM_LAST) { SMEM_INFO("%s: allocating %u size %u to_proc %u flags %u\n", __func__, id, size_in, to_proc, flags); if (flags & SMEM_ANY_HOST_FLAG || !partitions[to_proc].offset) ret = alloc_item_nonsecure(id, a_size_in); else ret = alloc_item_secure(id, size_in, to_proc, flags); } else { SMEM_INFO("%s: attempted to allocate non-dynamic item %u\n", __func__, id); } hwspin_unlock_irqrestore(hwlock, &lflags); return ret; } EXPORT_SYMBOL(smem_alloc); /** * smem_get_entry - Get existing item with security support * * @id: ID of SMEM item * @size: Pointer to size variable for storing the result * @to_proc: SMEM host that shares the item with apps * @flags: Item attribute flags * @returns: Pointer to SMEM item, NULL if it doesn't exist, or -EPROBE_DEFER * if the driver isn't ready */ void *smem_get_entry(unsigned id, unsigned *size, unsigned to_proc, unsigned flags) { SMEM_DBG("%s(%u, %u, %u)\n", __func__, id, to_proc, flags); /* * Handle the circular dependecy between SMEM and software implemented * remote spinlocks. SMEM must initialize the remote spinlocks in * probe() before it is done. EPROBE_DEFER handling will not resolve * this code path, so we must be intellegent to know that the spinlock * item is a special case. */ if (!is_probe_done() && id != SMEM_SPINLOCK_ARRAY) return ERR_PTR(-EPROBE_DEFER); return __smem_get_entry_secure(id, size, to_proc, flags, false, true); } EXPORT_SYMBOL(smem_get_entry); /** * smem_get_entry_no_rlock - Get existing item without using remote spinlock * * @id: ID of SMEM item * @size_out: Pointer to size variable for storing the result * @to_proc: SMEM host that shares the item with apps * @flags: Item attribute flags * @returns: Pointer to SMEM item, NULL if it doesn't exist, or -EPROBE_DEFER * if the driver isn't ready * * This function does not lock the remote spinlock and should only be used in * failure-recover cases such as retrieving the subsystem failure reason during * subsystem restart. */ void *smem_get_entry_no_rlock(unsigned id, unsigned *size_out, unsigned to_proc, unsigned flags) { if (!is_probe_done()) return ERR_PTR(-EPROBE_DEFER); return __smem_get_entry_secure(id, size_out, to_proc, flags, false, false); } EXPORT_SYMBOL(smem_get_entry_no_rlock); /** * smem_get_remote_spinlock - Remote spinlock pointer for unit testing. * * @returns: pointer to SMEM remote spinlock */ struct hwspinlock *smem_get_remote_spinlock(void) { return hwlock; } EXPORT_SYMBOL(smem_get_remote_spinlock); /** * smem_get_free_space() - Get the available allocation free space for a * partition * * @to_proc: remote SMEM host. Determines the applicable partition * @returns: size in bytes available to allocate * * Helper function for SMD so that SMD only scans the channel allocation * table for a partition when it is reasonably certain that a channel has * actually been created, because scanning can be expensive. Creating a channel * will consume some of the free space in a partition, so SMD can compare the * last free space size against the current free space size to determine if * a channel may have been created. SMD can't do this directly, because the * necessary partition internals are restricted to just SMEM. */ unsigned smem_get_free_space(unsigned to_proc) { struct smem_partition_header *hdr; struct smem_shared *shared; if (to_proc >= NUM_SMEM_SUBSYSTEMS) { pr_err("%s: invalid to_proc:%d\n", __func__, to_proc); return UINT_MAX; } if (partitions[to_proc].offset) { if (unlikely(OVERFLOW_ADD_UNSIGNED(uintptr_t, (uintptr_t)smem_areas[0].virt_addr, partitions[to_proc].offset))) { pr_err("%s: unexpected overflow detected\n", __func__); return UINT_MAX; } hdr = smem_areas[0].virt_addr + partitions[to_proc].offset; return hdr->offset_free_cached - hdr->offset_free_uncached; } else { shared = smem_ram_base; return shared->heap_info.heap_remaining; } } EXPORT_SYMBOL(smem_get_free_space); /** * smem_get_version() - Get the smem user version number * * @idx: SMEM user idx in SMEM_VERSION_INFO table. * @returns: smem version number if success otherwise zero. */ unsigned smem_get_version(unsigned idx) { int *version_array; if (idx > 32) { pr_err("%s: invalid idx:%d\n", __func__, idx); return 0; } version_array = __smem_find(SMEM_VERSION_INFO, SMEM_VERSION_INFO_SIZE, true); if (version_array == NULL) return 0; return version_array[idx]; } EXPORT_SYMBOL(smem_get_version); /** * smem_initialized_check - Reentrant check that smem has been initialized * * @returns: true if initialized, false if not. */ bool smem_initialized_check(void) { static int checked; static int is_inited; unsigned long flags; struct smem_shared *smem; if (likely(checked)) { if (unlikely(!is_inited)) LOG_ERR("%s: smem not initialized\n", __func__); return is_inited; } spin_lock_irqsave(&smem_init_check_lock, flags); if (checked) { spin_unlock_irqrestore(&smem_init_check_lock, flags); if (unlikely(!is_inited)) LOG_ERR("%s: smem not initialized\n", __func__); return is_inited; } smem = smem_ram_base; if (smem->heap_info.initialized != 1) goto failed; if (smem->heap_info.reserved != 0) goto failed; /* * The Modem SBL is now the Master SBL version and is required to * pre-initialize SMEM and fill in any necessary configuration * structures. Without the extra configuration data, the SMEM driver * cannot be properly initialized. */ if (smem_get_version(MODEM_SBL_VERSION_INDEX) != SMEM_VERSION << 16) { pr_err("%s: SBL version not correct\n", __func__); goto failed; } is_inited = 1; checked = 1; spin_unlock_irqrestore(&smem_init_check_lock, flags); return is_inited; failed: is_inited = 0; checked = 1; spin_unlock_irqrestore(&smem_init_check_lock, flags); LOG_ERR( "%s: shared memory needs to be initialized by SBL before booting\n", __func__); return is_inited; } EXPORT_SYMBOL(smem_initialized_check); static int restart_notifier_cb(struct notifier_block *this, unsigned long code, void *data) { struct restart_notifier_block *notifier; struct notif_data *notifdata = data; int ret; switch (code) { case SUBSYS_AFTER_SHUTDOWN: notifier = container_of(this, struct restart_notifier_block, nb); SMEM_INFO("%s: ssrestart for processor %d ('%s')\n", __func__, notifier->processor, notifier->name); remote_spin_release(&remote_spinlock, notifier->processor); remote_spin_release_all(notifier->processor); break; case SUBSYS_SOC_RESET: if (!(smem_ramdump_dev && notifdata->enable_mini_ramdumps)) break; case SUBSYS_RAMDUMP_NOTIFICATION: if (!(smem_ramdump_dev && (notifdata->enable_mini_ramdumps || notifdata->enable_ramdump))) break; SMEM_DBG("%s: saving ramdump\n", __func__); /* * XPU protection does not currently allow the * auxiliary memory regions to be dumped. If this * changes, then num_smem_areas + 1 should be passed * into do_elf_ramdump() to dump all regions. */ ret = do_elf_ramdump(smem_ramdump_dev, smem_ramdump_segments, 1); if (ret < 0) LOG_ERR("%s: unable to dump smem %d\n", __func__, ret); break; default: break; } return NOTIFY_DONE; } static __init int modem_restart_late_init(void) { int i; void *handle; struct restart_notifier_block *nb; smem_ramdump_dev = create_ramdump_device("smem", NULL); if (IS_ERR_OR_NULL(smem_ramdump_dev)) { LOG_ERR("%s: Unable to create smem ramdump device.\n", __func__); smem_ramdump_dev = NULL; } for (i = 0; i < ARRAY_SIZE(restart_notifiers); i++) { nb = &restart_notifiers[i]; handle = subsys_notif_register_notifier(nb->name, &nb->nb); SMEM_DBG("%s: registering notif for '%s', handle=%p\n", __func__, nb->name, handle); } return 0; } late_initcall(modem_restart_late_init); int smem_module_init_notifier_register(struct notifier_block *nb) { int ret; if (!nb) return -EINVAL; mutex_lock(&smem_module_init_notifier_lock); ret = raw_notifier_chain_register(&smem_module_init_notifier_list, nb); if (smem_module_inited) nb->notifier_call(nb, 0, NULL); mutex_unlock(&smem_module_init_notifier_lock); return ret; } EXPORT_SYMBOL(smem_module_init_notifier_register); int smem_module_init_notifier_unregister(struct notifier_block *nb) { int ret; if (!nb) return -EINVAL; mutex_lock(&smem_module_init_notifier_lock); ret = raw_notifier_chain_unregister(&smem_module_init_notifier_list, nb); mutex_unlock(&smem_module_init_notifier_lock); return ret; } EXPORT_SYMBOL(smem_module_init_notifier_unregister); static void smem_module_init_notify(uint32_t state, void *data) { mutex_lock(&smem_module_init_notifier_lock); smem_module_inited = 1; raw_notifier_call_chain(&smem_module_init_notifier_list, state, data); mutex_unlock(&smem_module_init_notifier_lock); } /** * smem_init_security_partition - Init local structures for a secured smem * partition that has apps as one of the hosts * * @entry: Entry in the security TOC for the partition to init * @num: Partition ID * * Initialize local data structures to point to a secured smem partition * that is accessible by apps and another processor. Assumes that one of the * listed hosts is apps. Verifiess that the partition is valid, otherwise will * skip. Checks for memory corruption and will BUG() if detected. Assumes * smem_areas is already initialized and that smem_areas[0] corresponds to the * smem region with the secured partitions. */ static void smem_init_security_partition(struct smem_toc_entry *entry, uint32_t num) { uint16_t remote_host; struct smem_partition_header *hdr; if (!entry->offset) { SMEM_INFO("Skipping smem partition %d - bad offset\n", num); return; } if (!entry->size) { SMEM_INFO("Skipping smem partition %d - bad size\n", num); return; } if (!entry->size_cacheline) { SMEM_INFO("Skipping smem partition %d - bad cacheline\n", num); return; } if (entry->host0 == SMEM_APPS) remote_host = entry->host1; else remote_host = entry->host0; if (remote_host >= NUM_SMEM_SUBSYSTEMS) { SMEM_INFO("Skipping smem partition %d - bad remote:%d\n", num, remote_host); return; } if (partitions[remote_host].offset) { SMEM_INFO("Skipping smem partition %d - duplicate of %d\n", num, partitions[remote_host].partition_num); return; } hdr = smem_areas[0].virt_addr + entry->offset; if (entry->host0 != SMEM_APPS && entry->host1 != SMEM_APPS) { SMEM_INFO( "Non-APSS Partition %d offset:%x host0:%d host1:%d\n", num, entry->offset, entry->host0, entry->host1); return; } if (hdr->identifier != SMEM_PART_HDR_IDENTIFIER) { LOG_ERR("Smem partition %d hdr magic is bad\n", num); BUG(); } if (!hdr->size) { LOG_ERR("Smem partition %d size is 0\n", num); BUG(); } if (hdr->offset_free_uncached > hdr->size) { LOG_ERR("Smem partition %d uncached heap exceeds size\n", num); BUG(); } if (hdr->offset_free_cached > hdr->size) { LOG_ERR("Smem partition %d cached heap exceeds size\n", num); BUG(); } if (hdr->host0 != SMEM_APPS && hdr->host1 != SMEM_APPS) { LOG_ERR("Smem partition %d hosts don't match TOC\n", num); BUG(); } if (hdr->host0 != remote_host && hdr->host1 != remote_host) { LOG_ERR("Smem partition %d hosts don't match TOC\n", num); BUG(); } partitions[remote_host].partition_num = num; partitions[remote_host].offset = entry->offset; partitions[remote_host].size_cacheline = entry->size_cacheline; SMEM_INFO("Partition %d offset:%x remote:%d\n", num, entry->offset, remote_host); } /** * smem_init_security - Init local support for secured smem * * Looks for a valid security TOC, and if one is found, parses it looking for * partitions that apps can access. If any such partitions are found, do the * required local initialization to support them. Assumes smem_areas is inited * and smem_area[0] corresponds to the smem region with the TOC. */ static void smem_init_security(void) { struct smem_toc *toc; uint32_t i; SMEM_DBG("%s\n", __func__); toc = smem_areas[0].virt_addr + smem_areas[0].size - 4 * 1024; if (toc->identifier != SMEM_TOC_IDENTIFIER) { LOG_ERR("%s failed: invalid TOC magic\n", __func__); return; } for (i = 0; i < toc->num_entries; ++i) { SMEM_DBG("Partition %d host0:%d host1:%d\n", i, toc->entry[i].host0, toc->entry[i].host1); smem_init_security_partition(&toc->entry[i], i); } SMEM_DBG("%s done\n", __func__); } /** * smem_init_target_info - Init smem target information * * @info_addr : smem target info physical address. * @size : size of the smem target info structure. * * This function is used to initialize the smem_targ_info structure and checks * for valid identifier, if identifier is valid initialize smem variables. */ static int smem_init_target_info(phys_addr_t info_addr, resource_size_t size) { struct smem_targ_info_type *smem_targ_info; void *smem_targ_info_addr; smem_targ_info_addr = ioremap_nocache(info_addr, size); if (!smem_targ_info_addr) { LOG_ERR("%s: failed ioremap_nocache() of addr:%pa size:%pa\n", __func__, &info_addr, &size); return -ENODEV; } smem_targ_info = (struct smem_targ_info_type __iomem *)smem_targ_info_addr; if (smem_targ_info->identifier != SMEM_TARG_INFO_IDENTIFIER) { LOG_ERR("%s failed: invalid TARGET INFO magic\n", __func__); return -ENODEV; } smem_ram_phys = smem_targ_info->phys_base_addr; smem_ram_size = smem_targ_info->size; iounmap(smem_targ_info_addr); return 0; } static int msm_smem_probe(struct platform_device *pdev) { char *key; struct resource *r; phys_addr_t aux_mem_base; resource_size_t aux_mem_size; int temp_string_size = 11; /* max 3 digit count */ char temp_string[temp_string_size]; int ret; struct ramdump_segment *ramdump_segments_tmp = NULL; struct smem_area *smem_areas_tmp = NULL; int smem_idx = 0; bool security_enabled; int hwlock_id; r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smem_targ_info_imem"); if (r) { if (smem_init_target_info(r->start, resource_size(r))) goto smem_targ_info_legacy; goto smem_targ_info_done; } r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smem_targ_info_reg"); if (r) { void *reg_base_addr; uint64_t base_addr; reg_base_addr = ioremap_nocache(r->start, resource_size(r)); base_addr = (uint32_t)readl_relaxed(reg_base_addr); base_addr |= ((uint64_t)readl_relaxed(reg_base_addr + 0x4) << 32); iounmap(reg_base_addr); if ((base_addr == 0) || ((base_addr >> 32) != 0)) { SMEM_INFO("%s: Invalid SMEM address\n", __func__); goto smem_targ_info_legacy; } if (smem_init_target_info(base_addr, sizeof(struct smem_targ_info_type))) goto smem_targ_info_legacy; goto smem_targ_info_done; } smem_targ_info_legacy: SMEM_INFO("%s: reading dt-specified SMEM address\n", __func__); r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smem"); if (r) { smem_ram_size = resource_size(r); smem_ram_phys = r->start; } smem_targ_info_done: if (!smem_ram_phys || !smem_ram_size) { LOG_ERR("%s: Missing SMEM TARGET INFO\n", __func__); return -ENODEV; } smem_ram_base = ioremap_nocache(smem_ram_phys, smem_ram_size); if (!smem_ram_base) { LOG_ERR("%s: ioremap_nocache() of addr:%pa size: %pa\n", __func__, &smem_ram_phys, &smem_ram_size); return -ENODEV; } /* * The software implementation requires smem_find(), which needs * smem_ram_base to be intitialized. The remote spinlock item is * guarenteed to be allocated by the bootloader, so this is the * safest and earliest place to init the spinlock. */ hwlock_id = of_hwspin_lock_get_id(pdev->dev.of_node, 0); if (hwlock_id < 0) { LOG_ERR("%s: hwlock_id: remote spinlock init failed %d\n", __func__, ret); return hwlock_id; } hwlock = hwspin_lock_request_specific(hwlock_id); if (!hwlock) { LOG_ERR("%s: hwlock: remote spinlock init failed %d\n", __func__, ret); return -ENXIO; } if (!smem_initialized_check()) return -ENODEV; key = "irq-reg-base"; r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key); if (!r) { LOG_ERR("%s: missing '%s'\n", __func__, key); return -ENODEV; } num_smem_areas = 1; while (1) { scnprintf(temp_string, temp_string_size, "aux-mem%d", num_smem_areas); r = platform_get_resource_byname(pdev, IORESOURCE_MEM, temp_string); if (!r) break; ++num_smem_areas; if (num_smem_areas > 999) { LOG_ERR("%s: max num aux mem regions reached\n", __func__); break; } } /* Initialize main SMEM region and SSR ramdump region */ smem_areas_tmp = kmalloc_array(num_smem_areas, sizeof(struct smem_area), GFP_KERNEL); if (!smem_areas_tmp) { LOG_ERR("%s: smem areas kmalloc failed\n", __func__); ret = -ENOMEM; goto free_smem_areas; } ramdump_segments_tmp = kcalloc(num_smem_areas, sizeof(struct ramdump_segment), GFP_KERNEL); if (!ramdump_segments_tmp) { LOG_ERR("%s: ramdump segment kmalloc failed\n", __func__); ret = -ENOMEM; goto free_smem_areas; } smem_areas_tmp[smem_idx].phys_addr = smem_ram_phys; smem_areas_tmp[smem_idx].size = smem_ram_size; smem_areas_tmp[smem_idx].virt_addr = smem_ram_base; ramdump_segments_tmp[smem_idx].address = smem_ram_phys; ramdump_segments_tmp[smem_idx].size = smem_ram_size; ++smem_idx; /* Configure auxiliary SMEM regions */ while (1) { scnprintf(temp_string, temp_string_size, "aux-mem%d", smem_idx); r = platform_get_resource_byname(pdev, IORESOURCE_MEM, temp_string); if (!r) break; aux_mem_base = r->start; aux_mem_size = resource_size(r); ramdump_segments_tmp[smem_idx].address = aux_mem_base; ramdump_segments_tmp[smem_idx].size = aux_mem_size; smem_areas_tmp[smem_idx].phys_addr = aux_mem_base; smem_areas_tmp[smem_idx].size = aux_mem_size; smem_areas_tmp[smem_idx].virt_addr = ioremap_nocache( (unsigned long)(smem_areas_tmp[smem_idx].phys_addr), smem_areas_tmp[smem_idx].size); SMEM_DBG("%s: %s = %pa %pa -> %p", __func__, temp_string, &aux_mem_base, &aux_mem_size, smem_areas_tmp[smem_idx].virt_addr); if (!smem_areas_tmp[smem_idx].virt_addr) { LOG_ERR("%s: ioremap_nocache() of addr:%pa size: %pa\n", __func__, &smem_areas_tmp[smem_idx].phys_addr, &smem_areas_tmp[smem_idx].size); ret = -ENOMEM; goto free_smem_areas; } if (OVERFLOW_ADD_UNSIGNED(uintptr_t, (uintptr_t)smem_areas_tmp[smem_idx].virt_addr, smem_areas_tmp[smem_idx].size)) { LOG_ERR( "%s: invalid virtual address block %i: %p:%pa\n", __func__, smem_idx, smem_areas_tmp[smem_idx].virt_addr, &smem_areas_tmp[smem_idx].size); ++smem_idx; ret = -EINVAL; goto free_smem_areas; } ++smem_idx; if (smem_idx > 999) { LOG_ERR("%s: max num aux mem regions reached\n", __func__); break; } } smem_areas = smem_areas_tmp; smem_ramdump_segments = ramdump_segments_tmp; key = "qcom,mpu-enabled"; security_enabled = of_property_read_bool(pdev->dev.of_node, key); if (security_enabled) { SMEM_INFO("smem security enabled\n"); smem_init_security(); } probe_done = true; ret = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); if (ret) LOG_ERR("%s: of_platform_populate failed %d\n", __func__, ret); return 0; free_smem_areas: for (smem_idx = smem_idx - 1; smem_idx >= 1; --smem_idx) iounmap(smem_areas_tmp[smem_idx].virt_addr); num_smem_areas = 0; kfree(ramdump_segments_tmp); kfree(smem_areas_tmp); return ret; } static struct of_device_id msm_smem_match_table[] = { { .compatible = "qcom,smem" }, {}, }; static struct platform_driver msm_smem_driver = { .probe = msm_smem_probe, .driver = { .name = "msm_smem", .owner = THIS_MODULE, .of_match_table = msm_smem_match_table, }, }; int __init msm_smem_init(void) { static bool registered; int rc; if (registered) return 0; registered = true; smem_ipc_log_ctx = ipc_log_context_create(NUM_LOG_PAGES, "smem", 0); if (!smem_ipc_log_ctx) { pr_err("%s: unable to create logging context\n", __func__); msm_smem_debug_mask = 0; } rc = platform_driver_register(&msm_smem_driver); if (rc) { LOG_ERR("%s: msm_smem_driver register failed %d\n", __func__, rc); return rc; } smem_module_init_notify(0, NULL); return 0; } arch_initcall(msm_smem_init);