--- zzzz-none-000/linux-3.10.107/drivers/lguest/lguest_user.c 2017-06-27 09:49:32.000000000 +0000 +++ scorpion-7490-727/linux-3.10.107/drivers/lguest/lguest_user.c 2021-02-04 17:41:59.000000000 +0000 @@ -2,175 +2,62 @@ * launcher controls and communicates with the Guest. For example, * the first write will tell us the Guest's memory layout and entry * point. A read will run the Guest until something happens, such as - * a signal or the Guest doing a NOTIFY out to the Launcher. There is - * also a way for the Launcher to attach eventfds to particular NOTIFY - * values instead of returning from the read() call. + * a signal or the Guest accessing a device. :*/ #include #include #include #include -#include #include #include #include #include "lg.h" -/*L:056 - * Before we move on, let's jump ahead and look at what the kernel does when - * it needs to look up the eventfds. That will complete our picture of how we - * use RCU. - * - * The notification value is in cpu->pending_notify: we return true if it went - * to an eventfd. - */ -bool send_notify_to_eventfd(struct lg_cpu *cpu) -{ - unsigned int i; - struct lg_eventfd_map *map; - - /* - * This "rcu_read_lock()" helps track when someone is still looking at - * the (RCU-using) eventfds array. It's not actually a lock at all; - * indeed it's a noop in many configurations. (You didn't expect me to - * explain all the RCU secrets here, did you?) - */ - rcu_read_lock(); - /* - * rcu_dereference is the counter-side of rcu_assign_pointer(); it - * makes sure we don't access the memory pointed to by - * cpu->lg->eventfds before cpu->lg->eventfds is set. Sounds crazy, - * but Alpha allows this! Paul McKenney points out that a really - * aggressive compiler could have the same effect: - * http://lists.ozlabs.org/pipermail/lguest/2009-July/001560.html - * - * So play safe, use rcu_dereference to get the rcu-protected pointer: - */ - map = rcu_dereference(cpu->lg->eventfds); - /* - * Simple array search: even if they add an eventfd while we do this, - * we'll continue to use the old array and just won't see the new one. - */ - for (i = 0; i < map->num; i++) { - if (map->map[i].addr == cpu->pending_notify) { - eventfd_signal(map->map[i].event, 1); - cpu->pending_notify = 0; - break; - } - } - /* We're done with the rcu-protected variable cpu->lg->eventfds. */ - rcu_read_unlock(); - - /* If we cleared the notification, it's because we found a match. */ - return cpu->pending_notify == 0; -} - -/*L:055 - * One of the more tricksy tricks in the Linux Kernel is a technique called - * Read Copy Update. Since one point of lguest is to teach lguest journeyers - * about kernel coding, I use it here. (In case you're curious, other purposes - * include learning about virtualization and instilling a deep appreciation for - * simplicity and puppies). - * - * We keep a simple array which maps LHCALL_NOTIFY values to eventfds, but we - * add new eventfds without ever blocking readers from accessing the array. - * The current Launcher only does this during boot, so that never happens. But - * Read Copy Update is cool, and adding a lock risks damaging even more puppies - * than this code does. - * - * We allocate a brand new one-larger array, copy the old one and add our new - * element. Then we make the lg eventfd pointer point to the new array. - * That's the easy part: now we need to free the old one, but we need to make - * sure no slow CPU somewhere is still looking at it. That's what - * synchronize_rcu does for us: waits until every CPU has indicated that it has - * moved on to know it's no longer using the old one. - * - * If that's unclear, see http://en.wikipedia.org/wiki/Read-copy-update. - */ -static int add_eventfd(struct lguest *lg, unsigned long addr, int fd) +/*L:052 + The Launcher can get the registers, and also set some of them. +*/ +static int getreg_setup(struct lg_cpu *cpu, const unsigned long __user *input) { - struct lg_eventfd_map *new, *old = lg->eventfds; - - /* - * We don't allow notifications on value 0 anyway (pending_notify of - * 0 means "nothing pending"). - */ - if (!addr) - return -EINVAL; - - /* - * Replace the old array with the new one, carefully: others can - * be accessing it at the same time. - */ - new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1), - GFP_KERNEL); - if (!new) - return -ENOMEM; + unsigned long which; - /* First make identical copy. */ - memcpy(new->map, old->map, sizeof(old->map[0]) * old->num); - new->num = old->num; - - /* Now append new entry. */ - new->map[new->num].addr = addr; - new->map[new->num].event = eventfd_ctx_fdget(fd); - if (IS_ERR(new->map[new->num].event)) { - int err = PTR_ERR(new->map[new->num].event); - kfree(new); - return err; - } - new->num++; + /* We re-use the ptrace structure to specify which register to read. */ + if (get_user(which, input) != 0) + return -EFAULT; /* - * Now put new one in place: rcu_assign_pointer() is a fancy way of - * doing "lg->eventfds = new", but it uses memory barriers to make - * absolutely sure that the contents of "new" written above is nailed - * down before we actually do the assignment. + * We set up the cpu register pointer, and their next read will + * actually get the value (instead of running the guest). * - * We have to think about these kinds of things when we're operating on - * live data without locks. + * The last argument 'true' says we can access any register. */ - rcu_assign_pointer(lg->eventfds, new); + cpu->reg_read = lguest_arch_regptr(cpu, which, true); + if (!cpu->reg_read) + return -ENOENT; - /* - * We're not in a big hurry. Wait until no one's looking at old - * version, then free it. - */ - synchronize_rcu(); - kfree(old); - - return 0; + /* And because this is a write() call, we return the length used. */ + return sizeof(unsigned long) * 2; } -/*L:052 - * Receiving notifications from the Guest is usually done by attaching a - * particular LHCALL_NOTIFY value to an event filedescriptor. The eventfd will - * become readable when the Guest does an LHCALL_NOTIFY with that value. - * - * This is really convenient for processing each virtqueue in a separate - * thread. - */ -static int attach_eventfd(struct lguest *lg, const unsigned long __user *input) +static int setreg(struct lg_cpu *cpu, const unsigned long __user *input) { - unsigned long addr, fd; - int err; + unsigned long which, value, *reg; - if (get_user(addr, input) != 0) + /* We re-use the ptrace structure to specify which register to read. */ + if (get_user(which, input) != 0) return -EFAULT; input++; - if (get_user(fd, input) != 0) + if (get_user(value, input) != 0) return -EFAULT; - /* - * Just make sure two callers don't add eventfds at once. We really - * only need to lock against callers adding to the same Guest, so using - * the Big Lguest Lock is overkill. But this is setup, not a fast path. - */ - mutex_lock(&lguest_lock); - err = add_eventfd(lg, addr, fd); - mutex_unlock(&lguest_lock); + /* The last argument 'false' means we can't access all registers. */ + reg = lguest_arch_regptr(cpu, which, false); + if (!reg) + return -ENOENT; - return err; + *reg = value; + + /* And because this is a write() call, we return the length used. */ + return sizeof(unsigned long) * 3; } /*L:050 @@ -194,6 +81,23 @@ return 0; } +/*L:053 + * Deliver a trap: this is used by the Launcher if it can't emulate + * an instruction. + */ +static int trap(struct lg_cpu *cpu, const unsigned long __user *input) +{ + unsigned long trapnum; + + if (get_user(trapnum, input) != 0) + return -EFAULT; + + if (!deliver_trap(cpu, trapnum)) + return -EINVAL; + + return 0; +} + /*L:040 * Once our Guest is initialized, the Launcher makes it run by reading * from /dev/lguest. @@ -237,8 +141,8 @@ * If we returned from read() last time because the Guest sent I/O, * clear the flag. */ - if (cpu->pending_notify) - cpu->pending_notify = 0; + if (cpu->pending.trap) + cpu->pending.trap = 0; /* Run the Guest until something interesting happens. */ return run_guest(cpu, (unsigned long __user *)user); @@ -319,7 +223,7 @@ /* "struct lguest" contains all we (the Host) know about a Guest. */ struct lguest *lg; int err; - unsigned long args[3]; + unsigned long args[4]; /* * We grab the Big Lguest lock, which protects against multiple @@ -343,21 +247,15 @@ goto unlock; } - lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL); - if (!lg->eventfds) { - err = -ENOMEM; - goto free_lg; - } - lg->eventfds->num = 0; - /* Populate the easy fields of our "struct lguest" */ lg->mem_base = (void __user *)args[0]; lg->pfn_limit = args[1]; + lg->device_limit = args[3]; /* This is the first cpu (cpu 0) and it will start booting at args[2] */ err = lg_cpu_start(&lg->cpus[0], 0, args[2]); if (err) - goto free_eventfds; + goto free_lg; /* * Initialize the Guest's shadow page tables. This allocates @@ -378,8 +276,6 @@ free_regs: /* FIXME: This should be in free_vcpu */ free_page(lg->cpus[0].regs_page); -free_eventfds: - kfree(lg->eventfds); free_lg: kfree(lg); unlock: @@ -432,13 +328,24 @@ return initialize(file, input); case LHREQ_IRQ: return user_send_irq(cpu, input); - case LHREQ_EVENTFD: - return attach_eventfd(lg, input); + case LHREQ_GETREG: + return getreg_setup(cpu, input); + case LHREQ_SETREG: + return setreg(cpu, input); + case LHREQ_TRAP: + return trap(cpu, input); default: return -EINVAL; } } +static int open(struct inode *inode, struct file *file) +{ + file->private_data = NULL; + + return 0; +} + /*L:060 * The final piece of interface code is the close() routine. It reverses * everything done in initialize(). This is usually called because the @@ -478,11 +385,6 @@ mmput(lg->cpus[i].mm); } - /* Release any eventfds they registered. */ - for (i = 0; i < lg->eventfds->num; i++) - eventfd_ctx_put(lg->eventfds->map[i].event); - kfree(lg->eventfds); - /* * If lg->dead doesn't contain an error code it will be NULL or a * kmalloc()ed string, either of which is ok to hand to kfree(). @@ -514,6 +416,7 @@ */ static const struct file_operations lguest_fops = { .owner = THIS_MODULE, + .open = open, .release = close, .write = write, .read = read,