--- zzzz-none-000/linux-3.10.107/kernel/cgroup.c 2017-06-27 09:49:32.000000000 +0000 +++ scorpion-7490-727/linux-3.10.107/kernel/cgroup.c 2021-02-04 17:41:59.000000000 +0000 @@ -26,6 +26,8 @@ * distribution for more details. */ +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + #include #include #include @@ -33,6 +35,7 @@ #include #include #include +#include #include #include #include @@ -40,56 +43,78 @@ #include #include #include -#include -#include #include -#include #include +#include #include #include #include -#include #include #include #include -#include #include #include #include /* TODO: replace with more sophisticated array */ -#include -#include -#include /* used in cgroup_attach_task */ #include - +#include +#include #include -/* css deactivation bias, makes css->refcnt negative to deny new trygets */ -#define CSS_DEACT_BIAS INT_MIN +/* + * pidlists linger the following amount before being destroyed. The goal + * is avoiding frequent destruction in the middle of consecutive read calls + * Expiring in the middle is a performance problem not a correctness one. + * 1 sec should be enough. + */ +#define CGROUP_PIDLIST_DESTROY_DELAY HZ + +#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ + MAX_CFTYPE_NAME + 2) /* * cgroup_mutex is the master lock. Any modification to cgroup or its * hierarchy must be performed while holding it. * - * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify - * cgroupfs_root of any cgroup hierarchy - subsys list, flags, - * release_agent_path and so on. Modifying requires both cgroup_mutex and - * cgroup_root_mutex. Readers can acquire either of the two. This is to - * break the following locking order cycle. + * css_set_lock protects task->cgroups pointer, the list of css_set + * objects, and the chain of tasks off each css_set. * - * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem - * B. namespace_sem -> cgroup_mutex - * - * B happens only through cgroup_show_options() and using cgroup_root_mutex - * breaks it. + * These locks are exported if CONFIG_PROVE_RCU so that accessors in + * cgroup.h can use them for lockdep annotations. */ #ifdef CONFIG_PROVE_RCU DEFINE_MUTEX(cgroup_mutex); -EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */ +DEFINE_SPINLOCK(css_set_lock); +EXPORT_SYMBOL_GPL(cgroup_mutex); +EXPORT_SYMBOL_GPL(css_set_lock); #else static DEFINE_MUTEX(cgroup_mutex); +static DEFINE_SPINLOCK(css_set_lock); #endif -static DEFINE_MUTEX(cgroup_root_mutex); +/* + * Protects cgroup_idr and css_idr so that IDs can be released without + * grabbing cgroup_mutex. + */ +static DEFINE_SPINLOCK(cgroup_idr_lock); + +/* + * Protects cgroup_file->kn for !self csses. It synchronizes notifications + * against file removal/re-creation across css hiding. + */ +static DEFINE_SPINLOCK(cgroup_file_kn_lock); + +/* + * Protects cgroup_subsys->release_agent_path. Modifying it also requires + * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. + */ +static DEFINE_SPINLOCK(release_agent_path_lock); + +struct percpu_rw_semaphore cgroup_threadgroup_rwsem; + +#define cgroup_assert_mutex_or_rcu_locked() \ + RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ + !lockdep_is_held(&cgroup_mutex), \ + "cgroup_mutex or RCU read lock required"); /* * cgroup destruction makes heavy use of work items and there can be a lot @@ -100,141 +125,348 @@ static struct workqueue_struct *cgroup_destroy_wq; /* - * Generate an array of cgroup subsystem pointers. At boot time, this is - * populated with the built in subsystems, and modular subsystems are - * registered after that. The mutable section of this array is protected by - * cgroup_mutex. - */ -#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys, -#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option) -static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = { + * pidlist destructions need to be flushed on cgroup destruction. Use a + * separate workqueue as flush domain. + */ +static struct workqueue_struct *cgroup_pidlist_destroy_wq; + +/* generate an array of cgroup subsystem pointers */ +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, +static struct cgroup_subsys *cgroup_subsys[] = { +#include +}; +#undef SUBSYS + +/* array of cgroup subsystem names */ +#define SUBSYS(_x) [_x ## _cgrp_id] = #_x, +static const char *cgroup_subsys_name[] = { #include }; +#undef SUBSYS + +/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ +#define SUBSYS(_x) \ + DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ + DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ + EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ + EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); +#include +#undef SUBSYS + +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, +static struct static_key_true *cgroup_subsys_enabled_key[] = { +#include +}; +#undef SUBSYS + +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, +static struct static_key_true *cgroup_subsys_on_dfl_key[] = { +#include +}; +#undef SUBSYS /* - * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the - * subsystems that are otherwise unattached - it never has more than a - * single cgroup, and all tasks are part of that cgroup. + * The default hierarchy, reserved for the subsystems that are otherwise + * unattached - it never has more than a single cgroup, and all tasks are + * part of that cgroup. */ -static struct cgroupfs_root rootnode; +struct cgroup_root cgrp_dfl_root; +EXPORT_SYMBOL_GPL(cgrp_dfl_root); /* - * cgroupfs file entry, pointed to from leaf dentry->d_fsdata. + * The default hierarchy always exists but is hidden until mounted for the + * first time. This is for backward compatibility. */ -struct cfent { - struct list_head node; - struct dentry *dentry; - struct cftype *type; +static bool cgrp_dfl_root_visible; - /* file xattrs */ - struct simple_xattrs xattrs; -}; +/* some controllers are not supported in the default hierarchy */ +static unsigned long cgrp_dfl_root_inhibit_ss_mask; + +/* The list of hierarchy roots */ + +static LIST_HEAD(cgroup_roots); +static int cgroup_root_count; + +/* hierarchy ID allocation and mapping, protected by cgroup_mutex */ +static DEFINE_IDR(cgroup_hierarchy_idr); /* - * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when - * cgroup_subsys->use_id != 0. + * Assign a monotonically increasing serial number to csses. It guarantees + * cgroups with bigger numbers are newer than those with smaller numbers. + * Also, as csses are always appended to the parent's ->children list, it + * guarantees that sibling csses are always sorted in the ascending serial + * number order on the list. Protected by cgroup_mutex. */ -#define CSS_ID_MAX (65535) -struct css_id { - /* - * The css to which this ID points. This pointer is set to valid value - * after cgroup is populated. If cgroup is removed, this will be NULL. - * This pointer is expected to be RCU-safe because destroy() - * is called after synchronize_rcu(). But for safe use, css_tryget() - * should be used for avoiding race. - */ - struct cgroup_subsys_state __rcu *css; - /* - * ID of this css. - */ - unsigned short id; - /* - * Depth in hierarchy which this ID belongs to. - */ - unsigned short depth; - /* - * ID is freed by RCU. (and lookup routine is RCU safe.) - */ - struct rcu_head rcu_head; - /* - * Hierarchy of CSS ID belongs to. - */ - unsigned short stack[0]; /* Array of Length (depth+1) */ -}; +static u64 css_serial_nr_next = 1; /* - * cgroup_event represents events which userspace want to receive. + * These bitmask flags indicate whether tasks in the fork and exit paths have + * fork/exit handlers to call. This avoids us having to do extra work in the + * fork/exit path to check which subsystems have fork/exit callbacks. */ -struct cgroup_event { - /* - * Cgroup which the event belongs to. - */ - struct cgroup *cgrp; - /* - * Control file which the event associated. - */ - struct cftype *cft; - /* - * eventfd to signal userspace about the event. - */ - struct eventfd_ctx *eventfd; - /* - * Each of these stored in a list by the cgroup. - */ - struct list_head list; - /* - * All fields below needed to unregister event when - * userspace closes eventfd. - */ - poll_table pt; - wait_queue_head_t *wqh; - wait_queue_t wait; - struct work_struct remove; -}; +static unsigned long have_fork_callback __read_mostly; +static unsigned long have_exit_callback __read_mostly; +static unsigned long have_free_callback __read_mostly; -/* The list of hierarchy roots */ +/* Ditto for the can_fork callback. */ +static unsigned long have_canfork_callback __read_mostly; -static LIST_HEAD(roots); -static int root_count; +static struct cftype cgroup_dfl_base_files[]; +static struct cftype cgroup_legacy_base_files[]; -static DEFINE_IDA(hierarchy_ida); -static int next_hierarchy_id; -static DEFINE_SPINLOCK(hierarchy_id_lock); +static int rebind_subsystems(struct cgroup_root *dst_root, + unsigned long ss_mask); +static void css_task_iter_advance(struct css_task_iter *it); +static int cgroup_destroy_locked(struct cgroup *cgrp); +static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss, + bool visible); +static void css_release(struct percpu_ref *ref); +static void kill_css(struct cgroup_subsys_state *css); +static int cgroup_addrm_files(struct cgroup_subsys_state *css, + struct cgroup *cgrp, struct cftype cfts[], + bool is_add); -/* dummytop is a shorthand for the dummy hierarchy's top cgroup */ -#define dummytop (&rootnode.top_cgroup) +/** + * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID + * @ssid: subsys ID of interest + * + * cgroup_subsys_enabled() can only be used with literal subsys names which + * is fine for individual subsystems but unsuitable for cgroup core. This + * is slower static_key_enabled() based test indexed by @ssid. + */ +static bool cgroup_ssid_enabled(int ssid) +{ + if (CGROUP_SUBSYS_COUNT == 0) + return false; -static struct cgroup_name root_cgroup_name = { .name = "/" }; + return static_key_enabled(cgroup_subsys_enabled_key[ssid]); +} -/* This flag indicates whether tasks in the fork and exit paths should - * check for fork/exit handlers to call. This avoids us having to do - * extra work in the fork/exit path if none of the subsystems need to - * be called. +/** + * cgroup_on_dfl - test whether a cgroup is on the default hierarchy + * @cgrp: the cgroup of interest + * + * The default hierarchy is the v2 interface of cgroup and this function + * can be used to test whether a cgroup is on the default hierarchy for + * cases where a subsystem should behave differnetly depending on the + * interface version. + * + * The set of behaviors which change on the default hierarchy are still + * being determined and the mount option is prefixed with __DEVEL__. + * + * List of changed behaviors: + * + * - Mount options "noprefix", "xattr", "clone_children", "release_agent" + * and "name" are disallowed. + * + * - When mounting an existing superblock, mount options should match. + * + * - Remount is disallowed. + * + * - rename(2) is disallowed. + * + * - "tasks" is removed. Everything should be at process granularity. Use + * "cgroup.procs" instead. + * + * - "cgroup.procs" is not sorted. pids will be unique unless they got + * recycled inbetween reads. + * + * - "release_agent" and "notify_on_release" are removed. Replacement + * notification mechanism will be implemented. + * + * - "cgroup.clone_children" is removed. + * + * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup + * and its descendants contain no task; otherwise, 1. The file also + * generates kernfs notification which can be monitored through poll and + * [di]notify when the value of the file changes. + * + * - cpuset: tasks will be kept in empty cpusets when hotplug happens and + * take masks of ancestors with non-empty cpus/mems, instead of being + * moved to an ancestor. + * + * - cpuset: a task can be moved into an empty cpuset, and again it takes + * masks of ancestors. + * + * - memcg: use_hierarchy is on by default and the cgroup file for the flag + * is not created. + * + * - blkcg: blk-throttle becomes properly hierarchical. + * + * - debug: disallowed on the default hierarchy. */ -static int need_forkexit_callback __read_mostly; +static bool cgroup_on_dfl(const struct cgroup *cgrp) +{ + return cgrp->root == &cgrp_dfl_root; +} -static int cgroup_destroy_locked(struct cgroup *cgrp); -static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys, - struct cftype cfts[], bool is_add); +/* IDR wrappers which synchronize using cgroup_idr_lock */ +static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, + gfp_t gfp_mask) +{ + int ret; -static int css_unbias_refcnt(int refcnt) + idr_preload(gfp_mask); + spin_lock_bh(&cgroup_idr_lock); + ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); + spin_unlock_bh(&cgroup_idr_lock); + idr_preload_end(); + return ret; +} + +static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) { - return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS; + void *ret; + + spin_lock_bh(&cgroup_idr_lock); + ret = idr_replace(idr, ptr, id); + spin_unlock_bh(&cgroup_idr_lock); + return ret; +} + +static void cgroup_idr_remove(struct idr *idr, int id) +{ + spin_lock_bh(&cgroup_idr_lock); + idr_remove(idr, id); + spin_unlock_bh(&cgroup_idr_lock); } -/* the current nr of refs, always >= 0 whether @css is deactivated or not */ -static int css_refcnt(struct cgroup_subsys_state *css) +static struct cgroup *cgroup_parent(struct cgroup *cgrp) { - int v = atomic_read(&css->refcnt); + struct cgroup_subsys_state *parent_css = cgrp->self.parent; - return css_unbias_refcnt(v); + if (parent_css) + return container_of(parent_css, struct cgroup, self); + return NULL; +} + +/** + * cgroup_css - obtain a cgroup's css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This + * function must be called either under cgroup_mutex or rcu_read_lock() and + * the caller is responsible for pinning the returned css if it wants to + * keep accessing it outside the said locks. This function may return + * %NULL if @cgrp doesn't have @subsys_id enabled. + */ +static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + if (ss) + return rcu_dereference_check(cgrp->subsys[ss->id], + lockdep_is_held(&cgroup_mutex)); + else + return &cgrp->self; +} + +/** + * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Similar to cgroup_css() but returns the effective css, which is defined + * as the matching css of the nearest ancestor including self which has @ss + * enabled. If @ss is associated with the hierarchy @cgrp is on, this + * function is guaranteed to return non-NULL css. + */ +static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + lockdep_assert_held(&cgroup_mutex); + + if (!ss) + return &cgrp->self; + + if (!(cgrp->root->subsys_mask & (1 << ss->id))) + return NULL; + + /* + * This function is used while updating css associations and thus + * can't test the csses directly. Use ->child_subsys_mask. + */ + while (cgroup_parent(cgrp) && + !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id))) + cgrp = cgroup_parent(cgrp); + + return cgroup_css(cgrp, ss); +} + +/** + * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest + * + * Find and get the effective css of @cgrp for @ss. The effective css is + * defined as the matching css of the nearest ancestor including self which + * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, + * the root css is returned, so this function always returns a valid css. + * The returned css must be put using css_put(). + */ +struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + struct cgroup_subsys_state *css; + + rcu_read_lock(); + + do { + css = cgroup_css(cgrp, ss); + + if (css && css_tryget_online(css)) + goto out_unlock; + cgrp = cgroup_parent(cgrp); + } while (cgrp); + + css = init_css_set.subsys[ss->id]; + css_get(css); +out_unlock: + rcu_read_unlock(); + return css; } /* convenient tests for these bits */ -inline int cgroup_is_removed(const struct cgroup *cgrp) +static inline bool cgroup_is_dead(const struct cgroup *cgrp) +{ + return !(cgrp->self.flags & CSS_ONLINE); +} + +static void cgroup_get(struct cgroup *cgrp) +{ + WARN_ON_ONCE(cgroup_is_dead(cgrp)); + css_get(&cgrp->self); +} + +static bool cgroup_tryget(struct cgroup *cgrp) +{ + return css_tryget(&cgrp->self); +} + +static void cgroup_put(struct cgroup *cgrp) { - return test_bit(CGRP_REMOVED, &cgrp->flags); + css_put(&cgrp->self); +} + +struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) +{ + struct cgroup *cgrp = of->kn->parent->priv; + struct cftype *cft = of_cft(of); + + /* + * This is open and unprotected implementation of cgroup_css(). + * seq_css() is only called from a kernfs file operation which has + * an active reference on the file. Because all the subsystem + * files are drained before a css is disassociated with a cgroup, + * the matching css from the cgroup's subsys table is guaranteed to + * be and stay valid until the enclosing operation is complete. + */ + if (cft->ss) + return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); + else + return &cgrp->self; } +EXPORT_SYMBOL_GPL(of_css); /** * cgroup_is_descendant - test ancestry @@ -250,110 +482,254 @@ while (cgrp) { if (cgrp == ancestor) return true; - cgrp = cgrp->parent; + cgrp = cgroup_parent(cgrp); } return false; } -EXPORT_SYMBOL_GPL(cgroup_is_descendant); - -static int cgroup_is_releasable(const struct cgroup *cgrp) -{ - const int bits = - (1 << CGRP_RELEASABLE) | - (1 << CGRP_NOTIFY_ON_RELEASE); - return (cgrp->flags & bits) == bits; -} static int notify_on_release(const struct cgroup *cgrp) { return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); } +/** + * for_each_css - iterate all css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex. + */ +#define for_each_css(css, ssid, cgrp) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ + if (!((css) = rcu_dereference_check( \ + (cgrp)->subsys[(ssid)], \ + lockdep_is_held(&cgroup_mutex)))) { } \ + else + +/** + * for_each_e_css - iterate all effective css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex. + */ +#define for_each_e_css(css, ssid, cgrp) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ + if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ + ; \ + else + +/** + * for_each_subsys - iterate all enabled cgroup subsystems + * @ss: the iteration cursor + * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end + */ +#define for_each_subsys(ss, ssid) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ + (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) + +/** + * for_each_subsys_which - filter for_each_subsys with a bitmask + * @ss: the iteration cursor + * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end + * @ss_maskp: a pointer to the bitmask + * + * The block will only run for cases where the ssid-th bit (1 << ssid) of + * mask is set to 1. + */ +#define for_each_subsys_which(ss, ssid, ss_maskp) \ + if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \ + (ssid) = 0; \ + else \ + for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \ + if (((ss) = cgroup_subsys[ssid]) && false) \ + break; \ + else + +/* iterate across the hierarchies */ +#define for_each_root(root) \ + list_for_each_entry((root), &cgroup_roots, root_list) + +/* iterate over child cgrps, lock should be held throughout iteration */ +#define cgroup_for_each_live_child(child, cgrp) \ + list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ + if (({ lockdep_assert_held(&cgroup_mutex); \ + cgroup_is_dead(child); })) \ + ; \ + else + +static void cgroup_release_agent(struct work_struct *work); +static void check_for_release(struct cgroup *cgrp); + /* - * for_each_subsys() allows you to iterate on each subsystem attached to - * an active hierarchy + * A cgroup can be associated with multiple css_sets as different tasks may + * belong to different cgroups on different hierarchies. In the other + * direction, a css_set is naturally associated with multiple cgroups. + * This M:N relationship is represented by the following link structure + * which exists for each association and allows traversing the associations + * from both sides. */ -#define for_each_subsys(_root, _ss) \ -list_for_each_entry(_ss, &_root->subsys_list, sibling) +struct cgrp_cset_link { + /* the cgroup and css_set this link associates */ + struct cgroup *cgrp; + struct css_set *cset; -/* for_each_active_root() allows you to iterate across the active hierarchies */ -#define for_each_active_root(_root) \ -list_for_each_entry(_root, &roots, root_list) + /* list of cgrp_cset_links anchored at cgrp->cset_links */ + struct list_head cset_link; -static inline struct cgroup *__d_cgrp(struct dentry *dentry) -{ - return dentry->d_fsdata; -} + /* list of cgrp_cset_links anchored at css_set->cgrp_links */ + struct list_head cgrp_link; +}; -static inline struct cfent *__d_cfe(struct dentry *dentry) +/* + * The default css_set - used by init and its children prior to any + * hierarchies being mounted. It contains a pointer to the root state + * for each subsystem. Also used to anchor the list of css_sets. Not + * reference-counted, to improve performance when child cgroups + * haven't been created. + */ +struct css_set init_css_set = { + .refcount = ATOMIC_INIT(1), + .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), + .tasks = LIST_HEAD_INIT(init_css_set.tasks), + .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), + .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), + .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), + .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), +}; + +static int css_set_count = 1; /* 1 for init_css_set */ + +/** + * css_set_populated - does a css_set contain any tasks? + * @cset: target css_set + */ +static bool css_set_populated(struct css_set *cset) { - return dentry->d_fsdata; + lockdep_assert_held(&css_set_lock); + + return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); } -static inline struct cftype *__d_cft(struct dentry *dentry) +/** + * cgroup_update_populated - updated populated count of a cgroup + * @cgrp: the target cgroup + * @populated: inc or dec populated count + * + * One of the css_sets associated with @cgrp is either getting its first + * task or losing the last. Update @cgrp->populated_cnt accordingly. The + * count is propagated towards root so that a given cgroup's populated_cnt + * is zero iff the cgroup and all its descendants don't contain any tasks. + * + * @cgrp's interface file "cgroup.populated" is zero if + * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt + * changes from or to zero, userland is notified that the content of the + * interface file has changed. This can be used to detect when @cgrp and + * its descendants become populated or empty. + */ +static void cgroup_update_populated(struct cgroup *cgrp, bool populated) { - return __d_cfe(dentry)->type; + lockdep_assert_held(&css_set_lock); + + do { + bool trigger; + + if (populated) + trigger = !cgrp->populated_cnt++; + else + trigger = !--cgrp->populated_cnt; + + if (!trigger) + break; + + check_for_release(cgrp); + cgroup_file_notify(&cgrp->events_file); + + cgrp = cgroup_parent(cgrp); + } while (cgrp); } /** - * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. - * @cgrp: the cgroup to be checked for liveness + * css_set_update_populated - update populated state of a css_set + * @cset: target css_set + * @populated: whether @cset is populated or depopulated * - * On success, returns true; the mutex should be later unlocked. On - * failure returns false with no lock held. + * @cset is either getting the first task or losing the last. Update the + * ->populated_cnt of all associated cgroups accordingly. */ -static bool cgroup_lock_live_group(struct cgroup *cgrp) +static void css_set_update_populated(struct css_set *cset, bool populated) { - mutex_lock(&cgroup_mutex); - if (cgroup_is_removed(cgrp)) { - mutex_unlock(&cgroup_mutex); - return false; - } - return true; + struct cgrp_cset_link *link; + + lockdep_assert_held(&css_set_lock); + + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) + cgroup_update_populated(link->cgrp, populated); } -/* the list of cgroups eligible for automatic release. Protected by - * release_list_lock */ -static LIST_HEAD(release_list); -static DEFINE_RAW_SPINLOCK(release_list_lock); -static void cgroup_release_agent(struct work_struct *work); -static DECLARE_WORK(release_agent_work, cgroup_release_agent); -static void check_for_release(struct cgroup *cgrp); +/** + * css_set_move_task - move a task from one css_set to another + * @task: task being moved + * @from_cset: css_set @task currently belongs to (may be NULL) + * @to_cset: new css_set @task is being moved to (may be NULL) + * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks + * + * Move @task from @from_cset to @to_cset. If @task didn't belong to any + * css_set, @from_cset can be NULL. If @task is being disassociated + * instead of moved, @to_cset can be NULL. + * + * This function automatically handles populated_cnt updates and + * css_task_iter adjustments but the caller is responsible for managing + * @from_cset and @to_cset's reference counts. + */ +static void css_set_move_task(struct task_struct *task, + struct css_set *from_cset, struct css_set *to_cset, + bool use_mg_tasks) +{ + lockdep_assert_held(&css_set_lock); -/* Link structure for associating css_set objects with cgroups */ -struct cg_cgroup_link { - /* - * List running through cg_cgroup_links associated with a - * cgroup, anchored on cgroup->css_sets - */ - struct list_head cgrp_link_list; - struct cgroup *cgrp; - /* - * List running through cg_cgroup_links pointing at a - * single css_set object, anchored on css_set->cg_links - */ - struct list_head cg_link_list; - struct css_set *cg; -}; + if (from_cset) { + struct css_task_iter *it, *pos; -/* The default css_set - used by init and its children prior to any - * hierarchies being mounted. It contains a pointer to the root state - * for each subsystem. Also used to anchor the list of css_sets. Not - * reference-counted, to improve performance when child cgroups - * haven't been created. - */ + WARN_ON_ONCE(list_empty(&task->cg_list)); -static struct css_set init_css_set; -static struct cg_cgroup_link init_css_set_link; + /* + * @task is leaving, advance task iterators which are + * pointing to it so that they can resume at the next + * position. Advancing an iterator might remove it from + * the list, use safe walk. See css_task_iter_advance*() + * for details. + */ + list_for_each_entry_safe(it, pos, &from_cset->task_iters, + iters_node) + if (it->task_pos == &task->cg_list) + css_task_iter_advance(it); + + list_del_init(&task->cg_list); + if (!css_set_populated(from_cset)) + css_set_update_populated(from_cset, false); + } else { + WARN_ON_ONCE(!list_empty(&task->cg_list)); + } -static int cgroup_init_idr(struct cgroup_subsys *ss, - struct cgroup_subsys_state *css); + if (to_cset) { + /* + * We are synchronized through cgroup_threadgroup_rwsem + * against PF_EXITING setting such that we can't race + * against cgroup_exit() changing the css_set to + * init_css_set and dropping the old one. + */ + WARN_ON_ONCE(task->flags & PF_EXITING); -/* css_set_lock protects the list of css_set objects, and the - * chain of tasks off each css_set. Nests outside task->alloc_lock - * due to cgroup_iter_start() */ -static DEFINE_RWLOCK(css_set_lock); -static int css_set_count; + if (!css_set_populated(to_cset)) + css_set_update_populated(to_cset, true); + rcu_assign_pointer(task->cgroups, to_cset); + list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : + &to_cset->tasks); + } +} /* * hash table for cgroup groups. This improves the performance to find @@ -365,141 +741,123 @@ static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) { - int i; unsigned long key = 0UL; + struct cgroup_subsys *ss; + int i; - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) + for_each_subsys(ss, i) key += (unsigned long)css[i]; key = (key >> 16) ^ key; return key; } -/* We don't maintain the lists running through each css_set to its - * task until after the first call to cgroup_iter_start(). This - * reduces the fork()/exit() overhead for people who have cgroups - * compiled into their kernel but not actually in use */ -static int use_task_css_set_links __read_mostly; - -static void __put_css_set(struct css_set *cg, int taskexit) +static void put_css_set_locked(struct css_set *cset) { - struct cg_cgroup_link *link; - struct cg_cgroup_link *saved_link; - /* - * Ensure that the refcount doesn't hit zero while any readers - * can see it. Similar to atomic_dec_and_lock(), but for an - * rwlock - */ - if (atomic_add_unless(&cg->refcount, -1, 1)) - return; - write_lock(&css_set_lock); - if (!atomic_dec_and_test(&cg->refcount)) { - write_unlock(&css_set_lock); - return; - } + struct cgrp_cset_link *link, *tmp_link; + struct cgroup_subsys *ss; + int ssid; - /* This css_set is dead. unlink it and release cgroup refcounts */ - hash_del(&cg->hlist); - css_set_count--; + lockdep_assert_held(&css_set_lock); - list_for_each_entry_safe(link, saved_link, &cg->cg_links, - cg_link_list) { - struct cgroup *cgrp = link->cgrp; - list_del(&link->cg_link_list); - list_del(&link->cgrp_link_list); + if (!atomic_dec_and_test(&cset->refcount)) + return; - /* - * We may not be holding cgroup_mutex, and if cgrp->count is - * dropped to 0 the cgroup can be destroyed at any time, hence - * rcu_read_lock is used to keep it alive. - */ - rcu_read_lock(); - if (atomic_dec_and_test(&cgrp->count) && - notify_on_release(cgrp)) { - if (taskexit) - set_bit(CGRP_RELEASABLE, &cgrp->flags); - check_for_release(cgrp); - } - rcu_read_unlock(); + /* This css_set is dead. unlink it and release cgroup and css refs */ + for_each_subsys(ss, ssid) { + list_del(&cset->e_cset_node[ssid]); + css_put(cset->subsys[ssid]); + } + hash_del(&cset->hlist); + css_set_count--; + list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { + list_del(&link->cset_link); + list_del(&link->cgrp_link); + if (cgroup_parent(link->cgrp)) + cgroup_put(link->cgrp); kfree(link); } - write_unlock(&css_set_lock); - kfree_rcu(cg, rcu_head); + kfree_rcu(cset, rcu_head); } -/* - * refcounted get/put for css_set objects - */ -static inline void get_css_set(struct css_set *cg) +static void put_css_set(struct css_set *cset) { - atomic_inc(&cg->refcount); -} + /* + * Ensure that the refcount doesn't hit zero while any readers + * can see it. Similar to atomic_dec_and_lock(), but for an + * rwlock + */ + if (atomic_add_unless(&cset->refcount, -1, 1)) + return; -static inline void put_css_set(struct css_set *cg) -{ - __put_css_set(cg, 0); + spin_lock_bh(&css_set_lock); + put_css_set_locked(cset); + spin_unlock_bh(&css_set_lock); } -static inline void put_css_set_taskexit(struct css_set *cg) +/* + * refcounted get/put for css_set objects + */ +static inline void get_css_set(struct css_set *cset) { - __put_css_set(cg, 1); + atomic_inc(&cset->refcount); } -/* +/** * compare_css_sets - helper function for find_existing_css_set(). - * @cg: candidate css_set being tested - * @old_cg: existing css_set for a task + * @cset: candidate css_set being tested + * @old_cset: existing css_set for a task * @new_cgrp: cgroup that's being entered by the task * @template: desired set of css pointers in css_set (pre-calculated) * - * Returns true if "cg" matches "old_cg" except for the hierarchy + * Returns true if "cset" matches "old_cset" except for the hierarchy * which "new_cgrp" belongs to, for which it should match "new_cgrp". */ -static bool compare_css_sets(struct css_set *cg, - struct css_set *old_cg, +static bool compare_css_sets(struct css_set *cset, + struct css_set *old_cset, struct cgroup *new_cgrp, struct cgroup_subsys_state *template[]) { struct list_head *l1, *l2; - if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { - /* Not all subsystems matched */ + /* + * On the default hierarchy, there can be csets which are + * associated with the same set of cgroups but different csses. + * Let's first ensure that csses match. + */ + if (memcmp(template, cset->subsys, sizeof(cset->subsys))) return false; - } /* * Compare cgroup pointers in order to distinguish between - * different cgroups in heirarchies with no subsystems. We - * could get by with just this check alone (and skip the - * memcmp above) but on most setups the memcmp check will - * avoid the need for this more expensive check on almost all - * candidates. + * different cgroups in hierarchies. As different cgroups may + * share the same effective css, this comparison is always + * necessary. */ - - l1 = &cg->cg_links; - l2 = &old_cg->cg_links; + l1 = &cset->cgrp_links; + l2 = &old_cset->cgrp_links; while (1) { - struct cg_cgroup_link *cgl1, *cgl2; - struct cgroup *cg1, *cg2; + struct cgrp_cset_link *link1, *link2; + struct cgroup *cgrp1, *cgrp2; l1 = l1->next; l2 = l2->next; /* See if we reached the end - both lists are equal length. */ - if (l1 == &cg->cg_links) { - BUG_ON(l2 != &old_cg->cg_links); + if (l1 == &cset->cgrp_links) { + BUG_ON(l2 != &old_cset->cgrp_links); break; } else { - BUG_ON(l2 == &old_cg->cg_links); + BUG_ON(l2 == &old_cset->cgrp_links); } /* Locate the cgroups associated with these links. */ - cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); - cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); - cg1 = cgl1->cgrp; - cg2 = cgl2->cgrp; + link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); + link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); + cgrp1 = link1->cgrp; + cgrp2 = link2->cgrp; /* Hierarchies should be linked in the same order. */ - BUG_ON(cg1->root != cg2->root); + BUG_ON(cgrp1->root != cgrp2->root); /* * If this hierarchy is the hierarchy of the cgroup @@ -508,238 +866,346 @@ * hierarchy, then this css_set should point to the * same cgroup as the old css_set. */ - if (cg1->root == new_cgrp->root) { - if (cg1 != new_cgrp) + if (cgrp1->root == new_cgrp->root) { + if (cgrp1 != new_cgrp) return false; } else { - if (cg1 != cg2) + if (cgrp1 != cgrp2) return false; } } return true; } -/* - * find_existing_css_set() is a helper for - * find_css_set(), and checks to see whether an existing - * css_set is suitable. - * - * oldcg: the cgroup group that we're using before the cgroup - * transition - * - * cgrp: the cgroup that we're moving into - * - * template: location in which to build the desired set of subsystem - * state objects for the new cgroup group - */ -static struct css_set *find_existing_css_set( - struct css_set *oldcg, - struct cgroup *cgrp, - struct cgroup_subsys_state *template[]) +/** + * find_existing_css_set - init css array and find the matching css_set + * @old_cset: the css_set that we're using before the cgroup transition + * @cgrp: the cgroup that we're moving into + * @template: out param for the new set of csses, should be clear on entry + */ +static struct css_set *find_existing_css_set(struct css_set *old_cset, + struct cgroup *cgrp, + struct cgroup_subsys_state *template[]) { - int i; - struct cgroupfs_root *root = cgrp->root; - struct css_set *cg; + struct cgroup_root *root = cgrp->root; + struct cgroup_subsys *ss; + struct css_set *cset; unsigned long key; + int i; /* * Build the set of subsystem state objects that we want to see in the * new css_set. while subsystems can change globally, the entries here * won't change, so no need for locking. */ - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { + for_each_subsys(ss, i) { if (root->subsys_mask & (1UL << i)) { - /* Subsystem is in this hierarchy. So we want - * the subsystem state from the new - * cgroup */ - template[i] = cgrp->subsys[i]; + /* + * @ss is in this hierarchy, so we want the + * effective css from @cgrp. + */ + template[i] = cgroup_e_css(cgrp, ss); } else { - /* Subsystem is not in this hierarchy, so we - * don't want to change the subsystem state */ - template[i] = oldcg->subsys[i]; + /* + * @ss is not in this hierarchy, so we don't want + * to change the css. + */ + template[i] = old_cset->subsys[i]; } } key = css_set_hash(template); - hash_for_each_possible(css_set_table, cg, hlist, key) { - if (!compare_css_sets(cg, oldcg, cgrp, template)) + hash_for_each_possible(css_set_table, cset, hlist, key) { + if (!compare_css_sets(cset, old_cset, cgrp, template)) continue; /* This css_set matches what we need */ - return cg; + return cset; } /* No existing cgroup group matched */ return NULL; } -static void free_cg_links(struct list_head *tmp) +static void free_cgrp_cset_links(struct list_head *links_to_free) { - struct cg_cgroup_link *link; - struct cg_cgroup_link *saved_link; + struct cgrp_cset_link *link, *tmp_link; - list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) { - list_del(&link->cgrp_link_list); + list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { + list_del(&link->cset_link); kfree(link); } } -/* - * allocate_cg_links() allocates "count" cg_cgroup_link structures - * and chains them on tmp through their cgrp_link_list fields. Returns 0 on - * success or a negative error +/** + * allocate_cgrp_cset_links - allocate cgrp_cset_links + * @count: the number of links to allocate + * @tmp_links: list_head the allocated links are put on + * + * Allocate @count cgrp_cset_link structures and chain them on @tmp_links + * through ->cset_link. Returns 0 on success or -errno. */ -static int allocate_cg_links(int count, struct list_head *tmp) +static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) { - struct cg_cgroup_link *link; + struct cgrp_cset_link *link; int i; - INIT_LIST_HEAD(tmp); + + INIT_LIST_HEAD(tmp_links); + for (i = 0; i < count; i++) { - link = kmalloc(sizeof(*link), GFP_KERNEL); + link = kzalloc(sizeof(*link), GFP_KERNEL); if (!link) { - free_cg_links(tmp); + free_cgrp_cset_links(tmp_links); return -ENOMEM; } - list_add(&link->cgrp_link_list, tmp); + list_add(&link->cset_link, tmp_links); } return 0; } /** * link_css_set - a helper function to link a css_set to a cgroup - * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links() - * @cg: the css_set to be linked + * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() + * @cset: the css_set to be linked * @cgrp: the destination cgroup */ -static void link_css_set(struct list_head *tmp_cg_links, - struct css_set *cg, struct cgroup *cgrp) +static void link_css_set(struct list_head *tmp_links, struct css_set *cset, + struct cgroup *cgrp) { - struct cg_cgroup_link *link; + struct cgrp_cset_link *link; + + BUG_ON(list_empty(tmp_links)); - BUG_ON(list_empty(tmp_cg_links)); - link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, - cgrp_link_list); - link->cg = cg; + if (cgroup_on_dfl(cgrp)) + cset->dfl_cgrp = cgrp; + + link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); + link->cset = cset; link->cgrp = cgrp; - atomic_inc(&cgrp->count); - list_move(&link->cgrp_link_list, &cgrp->css_sets); + /* - * Always add links to the tail of the list so that the list - * is sorted by order of hierarchy creation + * Always add links to the tail of the lists so that the lists are + * in choronological order. */ - list_add_tail(&link->cg_link_list, &cg->cg_links); -} - -/* - * find_css_set() takes an existing cgroup group and a - * cgroup object, and returns a css_set object that's - * equivalent to the old group, but with the given cgroup - * substituted into the appropriate hierarchy. Must be called with - * cgroup_mutex held - */ -static struct css_set *find_css_set( - struct css_set *oldcg, struct cgroup *cgrp) -{ - struct css_set *res; - struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; + list_move_tail(&link->cset_link, &cgrp->cset_links); + list_add_tail(&link->cgrp_link, &cset->cgrp_links); - struct list_head tmp_cg_links; + if (cgroup_parent(cgrp)) + cgroup_get(cgrp); +} - struct cg_cgroup_link *link; +/** + * find_css_set - return a new css_set with one cgroup updated + * @old_cset: the baseline css_set + * @cgrp: the cgroup to be updated + * + * Return a new css_set that's equivalent to @old_cset, but with @cgrp + * substituted into the appropriate hierarchy. + */ +static struct css_set *find_css_set(struct css_set *old_cset, + struct cgroup *cgrp) +{ + struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; + struct css_set *cset; + struct list_head tmp_links; + struct cgrp_cset_link *link; + struct cgroup_subsys *ss; unsigned long key; + int ssid; + + lockdep_assert_held(&cgroup_mutex); /* First see if we already have a cgroup group that matches * the desired set */ - read_lock(&css_set_lock); - res = find_existing_css_set(oldcg, cgrp, template); - if (res) - get_css_set(res); - read_unlock(&css_set_lock); + spin_lock_bh(&css_set_lock); + cset = find_existing_css_set(old_cset, cgrp, template); + if (cset) + get_css_set(cset); + spin_unlock_bh(&css_set_lock); - if (res) - return res; + if (cset) + return cset; - res = kmalloc(sizeof(*res), GFP_KERNEL); - if (!res) + cset = kzalloc(sizeof(*cset), GFP_KERNEL); + if (!cset) return NULL; - /* Allocate all the cg_cgroup_link objects that we'll need */ - if (allocate_cg_links(root_count, &tmp_cg_links) < 0) { - kfree(res); + /* Allocate all the cgrp_cset_link objects that we'll need */ + if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { + kfree(cset); return NULL; } - atomic_set(&res->refcount, 1); - INIT_LIST_HEAD(&res->cg_links); - INIT_LIST_HEAD(&res->tasks); - INIT_HLIST_NODE(&res->hlist); + atomic_set(&cset->refcount, 1); + INIT_LIST_HEAD(&cset->cgrp_links); + INIT_LIST_HEAD(&cset->tasks); + INIT_LIST_HEAD(&cset->mg_tasks); + INIT_LIST_HEAD(&cset->mg_preload_node); + INIT_LIST_HEAD(&cset->mg_node); + INIT_LIST_HEAD(&cset->task_iters); + INIT_HLIST_NODE(&cset->hlist); /* Copy the set of subsystem state objects generated in * find_existing_css_set() */ - memcpy(res->subsys, template, sizeof(res->subsys)); + memcpy(cset->subsys, template, sizeof(cset->subsys)); - write_lock(&css_set_lock); + spin_lock_bh(&css_set_lock); /* Add reference counts and links from the new css_set. */ - list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { + list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; + if (c->root == cgrp->root) c = cgrp; - link_css_set(&tmp_cg_links, res, c); + link_css_set(&tmp_links, cset, c); } - BUG_ON(!list_empty(&tmp_cg_links)); + BUG_ON(!list_empty(&tmp_links)); css_set_count++; - /* Add this cgroup group to the hash table */ - key = css_set_hash(res->subsys); - hash_add(css_set_table, &res->hlist, key); + /* Add @cset to the hash table */ + key = css_set_hash(cset->subsys); + hash_add(css_set_table, &cset->hlist, key); - write_unlock(&css_set_lock); + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *css = cset->subsys[ssid]; - return res; + list_add_tail(&cset->e_cset_node[ssid], + &css->cgroup->e_csets[ssid]); + css_get(css); + } + + spin_unlock_bh(&css_set_lock); + + return cset; } -/* - * Return the cgroup for "task" from the given hierarchy. Must be - * called with cgroup_mutex held. - */ -static struct cgroup *task_cgroup_from_root(struct task_struct *task, - struct cgroupfs_root *root) +static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) { - struct css_set *css; - struct cgroup *res = NULL; + struct cgroup *root_cgrp = kf_root->kn->priv; + + return root_cgrp->root; +} + +static int cgroup_init_root_id(struct cgroup_root *root) +{ + int id; + + lockdep_assert_held(&cgroup_mutex); + + id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); + if (id < 0) + return id; + + root->hierarchy_id = id; + return 0; +} + +static void cgroup_exit_root_id(struct cgroup_root *root) +{ + lockdep_assert_held(&cgroup_mutex); + + if (root->hierarchy_id) { + idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); + root->hierarchy_id = 0; + } +} + +static void cgroup_free_root(struct cgroup_root *root) +{ + if (root) { + /* hierarchy ID should already have been released */ + WARN_ON_ONCE(root->hierarchy_id); + + idr_destroy(&root->cgroup_idr); + kfree(root); + } +} + +static void cgroup_destroy_root(struct cgroup_root *root) +{ + struct cgroup *cgrp = &root->cgrp; + struct cgrp_cset_link *link, *tmp_link; + + mutex_lock(&cgroup_mutex); + + BUG_ON(atomic_read(&root->nr_cgrps)); + BUG_ON(!list_empty(&cgrp->self.children)); + + /* Rebind all subsystems back to the default hierarchy */ + rebind_subsystems(&cgrp_dfl_root, root->subsys_mask); - BUG_ON(!mutex_is_locked(&cgroup_mutex)); - read_lock(&css_set_lock); /* - * No need to lock the task - since we hold cgroup_mutex the - * task can't change groups, so the only thing that can happen - * is that it exits and its css is set back to init_css_set. + * Release all the links from cset_links to this hierarchy's + * root cgroup */ - css = task->cgroups; - if (css == &init_css_set) { - res = &root->top_cgroup; + spin_lock_bh(&css_set_lock); + + list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { + list_del(&link->cset_link); + list_del(&link->cgrp_link); + kfree(link); + } + + spin_unlock_bh(&css_set_lock); + + if (!list_empty(&root->root_list)) { + list_del(&root->root_list); + cgroup_root_count--; + } + + cgroup_exit_root_id(root); + + mutex_unlock(&cgroup_mutex); + + kernfs_destroy_root(root->kf_root); + cgroup_free_root(root); +} + +/* look up cgroup associated with given css_set on the specified hierarchy */ +static struct cgroup *cset_cgroup_from_root(struct css_set *cset, + struct cgroup_root *root) +{ + struct cgroup *res = NULL; + + lockdep_assert_held(&cgroup_mutex); + lockdep_assert_held(&css_set_lock); + + if (cset == &init_css_set) { + res = &root->cgrp; } else { - struct cg_cgroup_link *link; - list_for_each_entry(link, &css->cg_links, cg_link_list) { + struct cgrp_cset_link *link; + + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; + if (c->root == root) { res = c; break; } } } - read_unlock(&css_set_lock); + BUG_ON(!res); return res; } /* - * There is one global cgroup mutex. We also require taking - * task_lock() when dereferencing a task's cgroup subsys pointers. - * See "The task_lock() exception", at the end of this comment. - * + * Return the cgroup for "task" from the given hierarchy. Must be + * called with cgroup_mutex and css_set_lock held. + */ +static struct cgroup *task_cgroup_from_root(struct task_struct *task, + struct cgroup_root *root) +{ + /* + * No need to lock the task - since we hold cgroup_mutex the + * task can't change groups, so the only thing that can happen + * is that it exits and its css is set back to init_css_set. + */ + return cset_cgroup_from_root(task_css_set(task), root); +} + +/* * A task must hold cgroup_mutex to modify cgroups. * * Any task can increment and decrement the count field without lock. @@ -754,396 +1220,422 @@ * knows that the cgroup won't be removed, as cgroup_rmdir() * needs that mutex. * - * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't - * (usually) take cgroup_mutex. These are the two most performance - * critical pieces of code here. The exception occurs on cgroup_exit(), - * when a task in a notify_on_release cgroup exits. Then cgroup_mutex - * is taken, and if the cgroup count is zero, a usermode call made - * to the release agent with the name of the cgroup (path relative to - * the root of cgroup file system) as the argument. - * * A cgroup can only be deleted if both its 'count' of using tasks * is zero, and its list of 'children' cgroups is empty. Since all * tasks in the system use _some_ cgroup, and since there is always at - * least one task in the system (init, pid == 1), therefore, top_cgroup + * least one task in the system (init, pid == 1), therefore, root cgroup * always has either children cgroups and/or using tasks. So we don't - * need a special hack to ensure that top_cgroup cannot be deleted. - * - * The task_lock() exception - * - * The need for this exception arises from the action of - * cgroup_attach_task(), which overwrites one task's cgroup pointer with - * another. It does so using cgroup_mutex, however there are - * several performance critical places that need to reference - * task->cgroup without the expense of grabbing a system global - * mutex. Therefore except as noted below, when dereferencing or, as - * in cgroup_attach_task(), modifying a task's cgroup pointer we use - * task_lock(), which acts on a spinlock (task->alloc_lock) already in - * the task_struct routinely used for such matters. + * need a special hack to ensure that root cgroup cannot be deleted. * * P.S. One more locking exception. RCU is used to guard the * update of a tasks cgroup pointer by cgroup_attach_task() */ -/* - * A couple of forward declarations required, due to cyclic reference loop: - * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> - * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations - * -> cgroup_mkdir. - */ - -static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode); -static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int); -static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); -static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files, - unsigned long subsys_mask); -static const struct inode_operations cgroup_dir_inode_operations; +static struct kernfs_syscall_ops cgroup_kf_syscall_ops; static const struct file_operations proc_cgroupstats_operations; -static struct backing_dev_info cgroup_backing_dev_info = { - .name = "cgroup", - .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK, -}; - -static int alloc_css_id(struct cgroup_subsys *ss, - struct cgroup *parent, struct cgroup *child); - -static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb) +static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, + char *buf) { - struct inode *inode = new_inode(sb); + struct cgroup_subsys *ss = cft->ss; - if (inode) { - inode->i_ino = get_next_ino(); - inode->i_mode = mode; - inode->i_uid = current_fsuid(); - inode->i_gid = current_fsgid(); - inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; - inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; - } - return inode; + if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && + !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) + snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", + cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, + cft->name); + else + strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); + return buf; } -static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry) +/** + * cgroup_file_mode - deduce file mode of a control file + * @cft: the control file in question + * + * S_IRUGO for read, S_IWUSR for write. + */ +static umode_t cgroup_file_mode(const struct cftype *cft) { - struct cgroup_name *name; + umode_t mode = 0; - name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL); - if (!name) - return NULL; - strcpy(name->name, dentry->d_name.name); - return name; + if (cft->read_u64 || cft->read_s64 || cft->seq_show) + mode |= S_IRUGO; + + if (cft->write_u64 || cft->write_s64 || cft->write) { + if (cft->flags & CFTYPE_WORLD_WRITABLE) + mode |= S_IWUGO; + else + mode |= S_IWUSR; + } + + return mode; } -static void cgroup_free_fn(struct work_struct *work) +/** + * cgroup_calc_child_subsys_mask - calculate child_subsys_mask + * @cgrp: the target cgroup + * @subtree_control: the new subtree_control mask to consider + * + * On the default hierarchy, a subsystem may request other subsystems to be + * enabled together through its ->depends_on mask. In such cases, more + * subsystems than specified in "cgroup.subtree_control" may be enabled. + * + * This function calculates which subsystems need to be enabled if + * @subtree_control is to be applied to @cgrp. The returned mask is always + * a superset of @subtree_control and follows the usual hierarchy rules. + */ +static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp, + unsigned long subtree_control) { - struct cgroup *cgrp = container_of(work, struct cgroup, free_work); + struct cgroup *parent = cgroup_parent(cgrp); + unsigned long cur_ss_mask = subtree_control; struct cgroup_subsys *ss; + int ssid; - mutex_lock(&cgroup_mutex); - /* - * Release the subsystem state objects. - */ - for_each_subsys(cgrp->root, ss) - ss->css_free(cgrp); - - cgrp->root->number_of_cgroups--; - mutex_unlock(&cgroup_mutex); + lockdep_assert_held(&cgroup_mutex); - /* - * We get a ref to the parent's dentry, and put the ref when - * this cgroup is being freed, so it's guaranteed that the - * parent won't be destroyed before its children. - */ - dput(cgrp->parent->dentry); + if (!cgroup_on_dfl(cgrp)) + return cur_ss_mask; - ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id); + while (true) { + unsigned long new_ss_mask = cur_ss_mask; - /* - * Drop the active superblock reference that we took when we - * created the cgroup. This will free cgrp->root, if we are - * holding the last reference to @sb. - */ - deactivate_super(cgrp->root->sb); + for_each_subsys_which(ss, ssid, &cur_ss_mask) + new_ss_mask |= ss->depends_on; - /* - * if we're getting rid of the cgroup, refcount should ensure - * that there are no pidlists left. - */ - BUG_ON(!list_empty(&cgrp->pidlists)); + /* + * Mask out subsystems which aren't available. This can + * happen only if some depended-upon subsystems were bound + * to non-default hierarchies. + */ + if (parent) + new_ss_mask &= parent->child_subsys_mask; + else + new_ss_mask &= cgrp->root->subsys_mask; - simple_xattrs_free(&cgrp->xattrs); + if (new_ss_mask == cur_ss_mask) + break; + cur_ss_mask = new_ss_mask; + } - kfree(rcu_dereference_raw(cgrp->name)); - kfree(cgrp); + return cur_ss_mask; } -static void cgroup_free_rcu(struct rcu_head *head) +/** + * cgroup_refresh_child_subsys_mask - update child_subsys_mask + * @cgrp: the target cgroup + * + * Update @cgrp->child_subsys_mask according to the current + * @cgrp->subtree_control using cgroup_calc_child_subsys_mask(). + */ +static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp) { - struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head); - - queue_work(cgroup_destroy_wq, &cgrp->free_work); + cgrp->child_subsys_mask = + cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control); } -static void cgroup_diput(struct dentry *dentry, struct inode *inode) +/** + * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * + * This helper undoes cgroup_kn_lock_live() and should be invoked before + * the method finishes if locking succeeded. Note that once this function + * returns the cgroup returned by cgroup_kn_lock_live() may become + * inaccessible any time. If the caller intends to continue to access the + * cgroup, it should pin it before invoking this function. + */ +static void cgroup_kn_unlock(struct kernfs_node *kn) { - /* is dentry a directory ? if so, kfree() associated cgroup */ - if (S_ISDIR(inode->i_mode)) { - struct cgroup *cgrp = dentry->d_fsdata; + struct cgroup *cgrp; - BUG_ON(!(cgroup_is_removed(cgrp))); - call_rcu(&cgrp->rcu_head, cgroup_free_rcu); - } else { - struct cfent *cfe = __d_cfe(dentry); - struct cgroup *cgrp = dentry->d_parent->d_fsdata; + if (kernfs_type(kn) == KERNFS_DIR) + cgrp = kn->priv; + else + cgrp = kn->parent->priv; - WARN_ONCE(!list_empty(&cfe->node) && - cgrp != &cgrp->root->top_cgroup, - "cfe still linked for %s\n", cfe->type->name); - simple_xattrs_free(&cfe->xattrs); - kfree(cfe); - } - iput(inode); -} + mutex_unlock(&cgroup_mutex); -static int cgroup_delete(const struct dentry *d) -{ - return 1; + kernfs_unbreak_active_protection(kn); + cgroup_put(cgrp); } -static void remove_dir(struct dentry *d) +/** + * cgroup_kn_lock_live - locking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * + * This helper is to be used by a cgroup kernfs method currently servicing + * @kn. It breaks the active protection, performs cgroup locking and + * verifies that the associated cgroup is alive. Returns the cgroup if + * alive; otherwise, %NULL. A successful return should be undone by a + * matching cgroup_kn_unlock() invocation. + * + * Any cgroup kernfs method implementation which requires locking the + * associated cgroup should use this helper. It avoids nesting cgroup + * locking under kernfs active protection and allows all kernfs operations + * including self-removal. + */ +static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn) { - struct dentry *parent = dget(d->d_parent); + struct cgroup *cgrp; - d_delete(d); - simple_rmdir(parent->d_inode, d); - dput(parent); + if (kernfs_type(kn) == KERNFS_DIR) + cgrp = kn->priv; + else + cgrp = kn->parent->priv; + + /* + * We're gonna grab cgroup_mutex which nests outside kernfs + * active_ref. cgroup liveliness check alone provides enough + * protection against removal. Ensure @cgrp stays accessible and + * break the active_ref protection. + */ + if (!cgroup_tryget(cgrp)) + return NULL; + kernfs_break_active_protection(kn); + + mutex_lock(&cgroup_mutex); + + if (!cgroup_is_dead(cgrp)) + return cgrp; + + cgroup_kn_unlock(kn); + return NULL; } static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) { - struct cfent *cfe; + char name[CGROUP_FILE_NAME_MAX]; - lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex); lockdep_assert_held(&cgroup_mutex); - /* - * If we're doing cleanup due to failure of cgroup_create(), - * the corresponding @cfe may not exist. - */ - list_for_each_entry(cfe, &cgrp->files, node) { - struct dentry *d = cfe->dentry; + if (cft->file_offset) { + struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); + struct cgroup_file *cfile = (void *)css + cft->file_offset; - if (cft && cfe->type != cft) - continue; - - dget(d); - d_delete(d); - simple_unlink(cgrp->dentry->d_inode, d); - list_del_init(&cfe->node); - dput(d); - - break; + spin_lock_irq(&cgroup_file_kn_lock); + cfile->kn = NULL; + spin_unlock_irq(&cgroup_file_kn_lock); } + + kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); } /** - * cgroup_clear_directory - selective removal of base and subsystem files - * @dir: directory containing the files - * @base_files: true if the base files should be removed - * @subsys_mask: mask of the subsystem ids whose files should be removed + * css_clear_dir - remove subsys files in a cgroup directory + * @css: taget css + * @cgrp_override: specify if target cgroup is different from css->cgroup */ -static void cgroup_clear_directory(struct dentry *dir, bool base_files, - unsigned long subsys_mask) +static void css_clear_dir(struct cgroup_subsys_state *css, + struct cgroup *cgrp_override) { - struct cgroup *cgrp = __d_cgrp(dir); - struct cgroup_subsys *ss; + struct cgroup *cgrp = cgrp_override ?: css->cgroup; + struct cftype *cfts; - for_each_subsys(cgrp->root, ss) { - struct cftype_set *set; - if (!test_bit(ss->subsys_id, &subsys_mask)) - continue; - list_for_each_entry(set, &ss->cftsets, node) - cgroup_addrm_files(cgrp, NULL, set->cfts, false); - } - if (base_files) { - while (!list_empty(&cgrp->files)) - cgroup_rm_file(cgrp, NULL); - } + list_for_each_entry(cfts, &css->ss->cfts, node) + cgroup_addrm_files(css, cgrp, cfts, false); } -/* - * NOTE : the dentry must have been dget()'ed +/** + * css_populate_dir - create subsys files in a cgroup directory + * @css: target css + * @cgrp_overried: specify if target cgroup is different from css->cgroup + * + * On failure, no file is added. */ -static void cgroup_d_remove_dir(struct dentry *dentry) +static int css_populate_dir(struct cgroup_subsys_state *css, + struct cgroup *cgrp_override) { - struct dentry *parent; - struct cgroupfs_root *root = dentry->d_sb->s_fs_info; + struct cgroup *cgrp = cgrp_override ?: css->cgroup; + struct cftype *cfts, *failed_cfts; + int ret; + + if (!css->ss) { + if (cgroup_on_dfl(cgrp)) + cfts = cgroup_dfl_base_files; + else + cfts = cgroup_legacy_base_files; - cgroup_clear_directory(dentry, true, root->subsys_mask); + return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); + } - parent = dentry->d_parent; - spin_lock(&parent->d_lock); - spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); - list_del_init(&dentry->d_child); - spin_unlock(&dentry->d_lock); - spin_unlock(&parent->d_lock); - remove_dir(dentry); + list_for_each_entry(cfts, &css->ss->cfts, node) { + ret = cgroup_addrm_files(css, cgrp, cfts, true); + if (ret < 0) { + failed_cfts = cfts; + goto err; + } + } + return 0; +err: + list_for_each_entry(cfts, &css->ss->cfts, node) { + if (cfts == failed_cfts) + break; + cgroup_addrm_files(css, cgrp, cfts, false); + } + return ret; } -/* - * Call with cgroup_mutex held. Drops reference counts on modules, including - * any duplicate ones that parse_cgroupfs_options took. If this function - * returns an error, no reference counts are touched. - */ -static int rebind_subsystems(struct cgroupfs_root *root, - unsigned long final_subsys_mask) +static int rebind_subsystems(struct cgroup_root *dst_root, + unsigned long ss_mask) { - unsigned long added_mask, removed_mask; - struct cgroup *cgrp = &root->top_cgroup; - int i; + struct cgroup *dcgrp = &dst_root->cgrp; + struct cgroup_subsys *ss; + unsigned long tmp_ss_mask; + int ssid, i, ret; + + lockdep_assert_held(&cgroup_mutex); + + for_each_subsys_which(ss, ssid, &ss_mask) { + /* if @ss has non-root csses attached to it, can't move */ + if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss))) + return -EBUSY; + + /* can't move between two non-dummy roots either */ + if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) + return -EBUSY; + } - BUG_ON(!mutex_is_locked(&cgroup_mutex)); - BUG_ON(!mutex_is_locked(&cgroup_root_mutex)); + /* skip creating root files on dfl_root for inhibited subsystems */ + tmp_ss_mask = ss_mask; + if (dst_root == &cgrp_dfl_root) + tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask; + + for_each_subsys_which(ss, ssid, &tmp_ss_mask) { + struct cgroup *scgrp = &ss->root->cgrp; + int tssid; - removed_mask = root->actual_subsys_mask & ~final_subsys_mask; - added_mask = final_subsys_mask & ~root->actual_subsys_mask; - /* Check that any added subsystems are currently free */ - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - unsigned long bit = 1UL << i; - struct cgroup_subsys *ss = subsys[i]; - if (!(bit & added_mask)) + ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp); + if (!ret) continue; + /* - * Nobody should tell us to do a subsys that doesn't exist: - * parse_cgroupfs_options should catch that case and refcounts - * ensure that subsystems won't disappear once selected. + * Rebinding back to the default root is not allowed to + * fail. Using both default and non-default roots should + * be rare. Moving subsystems back and forth even more so. + * Just warn about it and continue. */ - BUG_ON(ss == NULL); - if (ss->root != &rootnode) { - /* Subsystem isn't free */ - return -EBUSY; + if (dst_root == &cgrp_dfl_root) { + if (cgrp_dfl_root_visible) { + pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n", + ret, ss_mask); + pr_warn("you may retry by moving them to a different hierarchy and unbinding\n"); + } + continue; } - } - /* Currently we don't handle adding/removing subsystems when - * any child cgroups exist. This is theoretically supportable - * but involves complex error handling, so it's being left until - * later */ - if (root->number_of_cgroups > 1) - return -EBUSY; + for_each_subsys_which(ss, tssid, &tmp_ss_mask) { + if (tssid == ssid) + break; + css_clear_dir(cgroup_css(scgrp, ss), dcgrp); + } + return ret; + } - /* Process each subsystem */ - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - unsigned long bit = 1UL << i; - if (bit & added_mask) { - /* We're binding this subsystem to this hierarchy */ - BUG_ON(ss == NULL); - BUG_ON(cgrp->subsys[i]); - BUG_ON(!dummytop->subsys[i]); - BUG_ON(dummytop->subsys[i]->cgroup != dummytop); - cgrp->subsys[i] = dummytop->subsys[i]; - cgrp->subsys[i]->cgroup = cgrp; - list_move(&ss->sibling, &root->subsys_list); - ss->root = root; - if (ss->bind) - ss->bind(cgrp); - /* refcount was already taken, and we're keeping it */ - } else if (bit & removed_mask) { - /* We're removing this subsystem */ - BUG_ON(ss == NULL); - BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); - BUG_ON(cgrp->subsys[i]->cgroup != cgrp); - if (ss->bind) - ss->bind(dummytop); - dummytop->subsys[i]->cgroup = dummytop; - cgrp->subsys[i] = NULL; - subsys[i]->root = &rootnode; - list_move(&ss->sibling, &rootnode.subsys_list); - /* subsystem is now free - drop reference on module */ - module_put(ss->module); - } else if (bit & final_subsys_mask) { - /* Subsystem state should already exist */ - BUG_ON(ss == NULL); - BUG_ON(!cgrp->subsys[i]); - /* - * a refcount was taken, but we already had one, so - * drop the extra reference. - */ - module_put(ss->module); -#ifdef CONFIG_MODULE_UNLOAD - BUG_ON(ss->module && !module_refcount(ss->module)); -#endif + /* + * Nothing can fail from this point on. Remove files for the + * removed subsystems and rebind each subsystem. + */ + for_each_subsys_which(ss, ssid, &ss_mask) { + struct cgroup_root *src_root = ss->root; + struct cgroup *scgrp = &src_root->cgrp; + struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); + struct css_set *cset; + + WARN_ON(!css || cgroup_css(dcgrp, ss)); + + css_clear_dir(css, NULL); + + RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); + rcu_assign_pointer(dcgrp->subsys[ssid], css); + ss->root = dst_root; + css->cgroup = dcgrp; + + spin_lock_bh(&css_set_lock); + hash_for_each(css_set_table, i, cset, hlist) + list_move_tail(&cset->e_cset_node[ss->id], + &dcgrp->e_csets[ss->id]); + spin_unlock_bh(&css_set_lock); + + src_root->subsys_mask &= ~(1 << ssid); + scgrp->subtree_control &= ~(1 << ssid); + cgroup_refresh_child_subsys_mask(scgrp); + + /* default hierarchy doesn't enable controllers by default */ + dst_root->subsys_mask |= 1 << ssid; + if (dst_root == &cgrp_dfl_root) { + static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); } else { - /* Subsystem state shouldn't exist */ - BUG_ON(cgrp->subsys[i]); + dcgrp->subtree_control |= 1 << ssid; + cgroup_refresh_child_subsys_mask(dcgrp); + static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); } + + if (ss->bind) + ss->bind(css); } - root->subsys_mask = root->actual_subsys_mask = final_subsys_mask; + kernfs_activate(dcgrp->kn); return 0; } -static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry) +static int cgroup_show_options(struct seq_file *seq, + struct kernfs_root *kf_root) { - struct cgroupfs_root *root = dentry->d_sb->s_fs_info; + struct cgroup_root *root = cgroup_root_from_kf(kf_root); struct cgroup_subsys *ss; + int ssid; - mutex_lock(&cgroup_root_mutex); - for_each_subsys(root, ss) - seq_printf(seq, ",%s", ss->name); - if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) - seq_puts(seq, ",sane_behavior"); + if (root != &cgrp_dfl_root) + for_each_subsys(ss, ssid) + if (root->subsys_mask & (1 << ssid)) + seq_show_option(seq, ss->legacy_name, NULL); if (root->flags & CGRP_ROOT_NOPREFIX) seq_puts(seq, ",noprefix"); if (root->flags & CGRP_ROOT_XATTR) seq_puts(seq, ",xattr"); + + spin_lock(&release_agent_path_lock); if (strlen(root->release_agent_path)) - seq_printf(seq, ",release_agent=%s", root->release_agent_path); - if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags)) + seq_show_option(seq, "release_agent", + root->release_agent_path); + spin_unlock(&release_agent_path_lock); + + if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) seq_puts(seq, ",clone_children"); if (strlen(root->name)) - seq_printf(seq, ",name=%s", root->name); - mutex_unlock(&cgroup_root_mutex); + seq_show_option(seq, "name", root->name); return 0; } struct cgroup_sb_opts { unsigned long subsys_mask; - unsigned long flags; + unsigned int flags; char *release_agent; bool cpuset_clone_children; char *name; /* User explicitly requested empty subsystem */ bool none; - - struct cgroupfs_root *new_root; - }; -/* - * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call - * with cgroup_mutex held to protect the subsys[] array. This function takes - * refcounts on subsystems to be used, unless it returns error, in which case - * no refcounts are taken. - */ static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) { char *token, *o = data; bool all_ss = false, one_ss = false; - unsigned long mask = (unsigned long)-1; + unsigned long mask = -1UL; + struct cgroup_subsys *ss; + int nr_opts = 0; int i; - bool module_pin_failed = false; - - BUG_ON(!mutex_is_locked(&cgroup_mutex)); #ifdef CONFIG_CPUSETS - mask = ~(1UL << cpuset_subsys_id); + mask = ~(1U << cpuset_cgrp_id); #endif memset(opts, 0, sizeof(*opts)); while ((token = strsep(&o, ",")) != NULL) { + nr_opts++; + if (!*token) return -EINVAL; if (!strcmp(token, "none")) { @@ -1210,19 +1702,16 @@ continue; } - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (ss == NULL) + for_each_subsys(ss, i) { + if (strcmp(token, ss->legacy_name)) continue; - if (strcmp(token, ss->name)) - continue; - if (ss->disabled) + if (!cgroup_ssid_enabled(i)) continue; /* Mutually exclusive option 'all' + subsystem name */ if (all_ss) return -EINVAL; - set_bit(i, &opts->subsys_mask); + opts->subsys_mask |= (1 << i); one_ss = true; break; @@ -1231,50 +1720,24 @@ return -ENOENT; } - /* - * If the 'all' option was specified select all the subsystems, - * otherwise if 'none', 'name=' and a subsystem name options - * were not specified, let's default to 'all' - */ - if (all_ss || (!one_ss && !opts->none && !opts->name)) { - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (ss == NULL) - continue; - if (ss->disabled) - continue; - set_bit(i, &opts->subsys_mask); - } - } - - /* Consistency checks */ - if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) { - pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n"); - - if (opts->flags & CGRP_ROOT_NOPREFIX) { - pr_err("cgroup: sane_behavior: noprefix is not allowed\n"); - return -EINVAL; - } - - if (opts->cpuset_clone_children) { - pr_err("cgroup: sane_behavior: clone_children is not allowed\n"); + pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n"); + if (nr_opts != 1) { + pr_err("sane_behavior: no other mount options allowed\n"); return -EINVAL; } + return 0; } /* - * Option noprefix was introduced just for backward compatibility - * with the old cpuset, so we allow noprefix only if mounting just - * the cpuset subsystem. + * If the 'all' option was specified select all the subsystems, + * otherwise if 'none', 'name=' and a subsystem name options were + * not specified, let's default to 'all' */ - if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) - return -EINVAL; - - - /* Can't specify "none" and some subsystems */ - if (opts->subsys_mask && opts->none) - return -EINVAL; + if (all_ss || (!one_ss && !opts->none && !opts->name)) + for_each_subsys(ss, i) + if (cgroup_ssid_enabled(i)) + opts->subsys_mask |= (1 << i); /* * We either have to specify by name or by subsystems. (So all @@ -1284,494 +1747,445 @@ return -EINVAL; /* - * Grab references on all the modules we'll need, so the subsystems - * don't dance around before rebind_subsystems attaches them. This may - * take duplicate reference counts on a subsystem that's already used, - * but rebind_subsystems handles this case. + * Option noprefix was introduced just for backward compatibility + * with the old cpuset, so we allow noprefix only if mounting just + * the cpuset subsystem. */ - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - unsigned long bit = 1UL << i; - - if (!(bit & opts->subsys_mask)) - continue; - if (!try_module_get(subsys[i]->module)) { - module_pin_failed = true; - break; - } - } - if (module_pin_failed) { - /* - * oops, one of the modules was going away. this means that we - * raced with a module_delete call, and to the user this is - * essentially a "subsystem doesn't exist" case. - */ - for (i--; i >= 0; i--) { - /* drop refcounts only on the ones we took */ - unsigned long bit = 1UL << i; + if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) + return -EINVAL; - if (!(bit & opts->subsys_mask)) - continue; - module_put(subsys[i]->module); - } - return -ENOENT; - } + /* Can't specify "none" and some subsystems */ + if (opts->subsys_mask && opts->none) + return -EINVAL; return 0; } -static void drop_parsed_module_refcounts(unsigned long subsys_mask) -{ - int i; - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - unsigned long bit = 1UL << i; - - if (!(bit & subsys_mask)) - continue; - module_put(subsys[i]->module); - } -} - -static int cgroup_remount(struct super_block *sb, int *flags, char *data) +static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) { int ret = 0; - struct cgroupfs_root *root = sb->s_fs_info; - struct cgroup *cgrp = &root->top_cgroup; + struct cgroup_root *root = cgroup_root_from_kf(kf_root); struct cgroup_sb_opts opts; unsigned long added_mask, removed_mask; - if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) { - pr_err("cgroup: sane_behavior: remount is not allowed\n"); + if (root == &cgrp_dfl_root) { + pr_err("remount is not allowed\n"); return -EINVAL; } - mutex_lock(&cgrp->dentry->d_inode->i_mutex); mutex_lock(&cgroup_mutex); - mutex_lock(&cgroup_root_mutex); /* See what subsystems are wanted */ ret = parse_cgroupfs_options(data, &opts); if (ret) goto out_unlock; - if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent) - pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n", - task_tgid_nr(current), current->comm); + if (opts.subsys_mask != root->subsys_mask || opts.release_agent) + pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", + task_tgid_nr(current), current->comm); added_mask = opts.subsys_mask & ~root->subsys_mask; removed_mask = root->subsys_mask & ~opts.subsys_mask; /* Don't allow flags or name to change at remount */ - if (opts.flags != root->flags || + if ((opts.flags ^ root->flags) || (opts.name && strcmp(opts.name, root->name))) { + pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", + opts.flags, opts.name ?: "", root->flags, root->name); ret = -EINVAL; - drop_parsed_module_refcounts(opts.subsys_mask); goto out_unlock; } - /* - * Clear out the files of subsystems that should be removed, do - * this before rebind_subsystems, since rebind_subsystems may - * change this hierarchy's subsys_list. - */ - cgroup_clear_directory(cgrp->dentry, false, removed_mask); - - ret = rebind_subsystems(root, opts.subsys_mask); - if (ret) { - /* rebind_subsystems failed, re-populate the removed files */ - cgroup_populate_dir(cgrp, false, removed_mask); - drop_parsed_module_refcounts(opts.subsys_mask); + /* remounting is not allowed for populated hierarchies */ + if (!list_empty(&root->cgrp.self.children)) { + ret = -EBUSY; goto out_unlock; } - /* re-populate subsystem files */ - cgroup_populate_dir(cgrp, false, added_mask); + ret = rebind_subsystems(root, added_mask); + if (ret) + goto out_unlock; + + rebind_subsystems(&cgrp_dfl_root, removed_mask); - if (opts.release_agent) + if (opts.release_agent) { + spin_lock(&release_agent_path_lock); strcpy(root->release_agent_path, opts.release_agent); + spin_unlock(&release_agent_path_lock); + } out_unlock: kfree(opts.release_agent); kfree(opts.name); - mutex_unlock(&cgroup_root_mutex); mutex_unlock(&cgroup_mutex); - mutex_unlock(&cgrp->dentry->d_inode->i_mutex); return ret; } -static const struct super_operations cgroup_ops = { - .statfs = simple_statfs, - .drop_inode = generic_delete_inode, - .show_options = cgroup_show_options, - .remount_fs = cgroup_remount, -}; +/* + * To reduce the fork() overhead for systems that are not actually using + * their cgroups capability, we don't maintain the lists running through + * each css_set to its tasks until we see the list actually used - in other + * words after the first mount. + */ +static bool use_task_css_set_links __read_mostly; -static void init_cgroup_housekeeping(struct cgroup *cgrp) +static void cgroup_enable_task_cg_lists(void) { - INIT_LIST_HEAD(&cgrp->sibling); - INIT_LIST_HEAD(&cgrp->children); - INIT_LIST_HEAD(&cgrp->files); - INIT_LIST_HEAD(&cgrp->css_sets); - INIT_LIST_HEAD(&cgrp->allcg_node); - INIT_LIST_HEAD(&cgrp->release_list); - INIT_LIST_HEAD(&cgrp->pidlists); - INIT_WORK(&cgrp->free_work, cgroup_free_fn); - mutex_init(&cgrp->pidlist_mutex); - INIT_LIST_HEAD(&cgrp->event_list); - spin_lock_init(&cgrp->event_list_lock); - simple_xattrs_init(&cgrp->xattrs); -} + struct task_struct *p, *g; -static void init_cgroup_root(struct cgroupfs_root *root) -{ - struct cgroup *cgrp = &root->top_cgroup; + spin_lock_bh(&css_set_lock); - INIT_LIST_HEAD(&root->subsys_list); - INIT_LIST_HEAD(&root->root_list); - INIT_LIST_HEAD(&root->allcg_list); - root->number_of_cgroups = 1; - cgrp->root = root; - cgrp->name = &root_cgroup_name; - init_cgroup_housekeeping(cgrp); - list_add_tail(&cgrp->allcg_node, &root->allcg_list); -} + if (use_task_css_set_links) + goto out_unlock; -static bool init_root_id(struct cgroupfs_root *root) -{ - int ret = 0; + use_task_css_set_links = true; - do { - if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) - return false; - spin_lock(&hierarchy_id_lock); - /* Try to allocate the next unused ID */ - ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, - &root->hierarchy_id); - if (ret == -ENOSPC) - /* Try again starting from 0 */ - ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); - if (!ret) { - next_hierarchy_id = root->hierarchy_id + 1; - } else if (ret != -EAGAIN) { - /* Can only get here if the 31-bit IDR is full ... */ - BUG_ON(ret); + /* + * We need tasklist_lock because RCU is not safe against + * while_each_thread(). Besides, a forking task that has passed + * cgroup_post_fork() without seeing use_task_css_set_links = 1 + * is not guaranteed to have its child immediately visible in the + * tasklist if we walk through it with RCU. + */ + read_lock(&tasklist_lock); + do_each_thread(g, p) { + WARN_ON_ONCE(!list_empty(&p->cg_list) || + task_css_set(p) != &init_css_set); + + /* + * We should check if the process is exiting, otherwise + * it will race with cgroup_exit() in that the list + * entry won't be deleted though the process has exited. + * Do it while holding siglock so that we don't end up + * racing against cgroup_exit(). + */ + spin_lock_irq(&p->sighand->siglock); + if (!(p->flags & PF_EXITING)) { + struct css_set *cset = task_css_set(p); + + if (!css_set_populated(cset)) + css_set_update_populated(cset, true); + list_add_tail(&p->cg_list, &cset->tasks); + get_css_set(cset); } - spin_unlock(&hierarchy_id_lock); - } while (ret); - return true; + spin_unlock_irq(&p->sighand->siglock); + } while_each_thread(g, p); + read_unlock(&tasklist_lock); +out_unlock: + spin_unlock_bh(&css_set_lock); } -static int cgroup_test_super(struct super_block *sb, void *data) +static void init_cgroup_housekeeping(struct cgroup *cgrp) { - struct cgroup_sb_opts *opts = data; - struct cgroupfs_root *root = sb->s_fs_info; + struct cgroup_subsys *ss; + int ssid; - /* If we asked for a name then it must match */ - if (opts->name && strcmp(opts->name, root->name)) - return 0; + INIT_LIST_HEAD(&cgrp->self.sibling); + INIT_LIST_HEAD(&cgrp->self.children); + INIT_LIST_HEAD(&cgrp->cset_links); + INIT_LIST_HEAD(&cgrp->pidlists); + mutex_init(&cgrp->pidlist_mutex); + cgrp->self.cgroup = cgrp; + cgrp->self.flags |= CSS_ONLINE; - /* - * If we asked for subsystems (or explicitly for no - * subsystems) then they must match - */ - if ((opts->subsys_mask || opts->none) - && (opts->subsys_mask != root->subsys_mask)) - return 0; + for_each_subsys(ss, ssid) + INIT_LIST_HEAD(&cgrp->e_csets[ssid]); - return 1; + init_waitqueue_head(&cgrp->offline_waitq); + INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent); } -static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) +static void init_cgroup_root(struct cgroup_root *root, + struct cgroup_sb_opts *opts) { - struct cgroupfs_root *root; - - if (!opts->subsys_mask && !opts->none) - return NULL; - - root = kzalloc(sizeof(*root), GFP_KERNEL); - if (!root) - return ERR_PTR(-ENOMEM); + struct cgroup *cgrp = &root->cgrp; - if (!init_root_id(root)) { - kfree(root); - return ERR_PTR(-ENOMEM); - } - init_cgroup_root(root); + INIT_LIST_HEAD(&root->root_list); + atomic_set(&root->nr_cgrps, 1); + cgrp->root = root; + init_cgroup_housekeeping(cgrp); + idr_init(&root->cgroup_idr); - root->subsys_mask = opts->subsys_mask; root->flags = opts->flags; - ida_init(&root->cgroup_ida); if (opts->release_agent) strcpy(root->release_agent_path, opts->release_agent); if (opts->name) strcpy(root->name, opts->name); if (opts->cpuset_clone_children) - set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags); - return root; + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); } -static void cgroup_drop_root(struct cgroupfs_root *root) +static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask) { - if (!root) - return; + LIST_HEAD(tmp_links); + struct cgroup *root_cgrp = &root->cgrp; + struct css_set *cset; + int i, ret; - BUG_ON(!root->hierarchy_id); - spin_lock(&hierarchy_id_lock); - ida_remove(&hierarchy_ida, root->hierarchy_id); - spin_unlock(&hierarchy_id_lock); - ida_destroy(&root->cgroup_ida); - kfree(root); -} + lockdep_assert_held(&cgroup_mutex); -static int cgroup_set_super(struct super_block *sb, void *data) -{ - int ret; - struct cgroup_sb_opts *opts = data; + ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); + if (ret < 0) + goto out; + root_cgrp->id = ret; - /* If we don't have a new root, we can't set up a new sb */ - if (!opts->new_root) - return -EINVAL; + ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0, + GFP_KERNEL); + if (ret) + goto out; - BUG_ON(!opts->subsys_mask && !opts->none); + /* + * We're accessing css_set_count without locking css_set_lock here, + * but that's OK - it can only be increased by someone holding + * cgroup_lock, and that's us. The worst that can happen is that we + * have some link structures left over + */ + ret = allocate_cgrp_cset_links(css_set_count, &tmp_links); + if (ret) + goto cancel_ref; - ret = set_anon_super(sb, NULL); + ret = cgroup_init_root_id(root); if (ret) - return ret; + goto cancel_ref; - sb->s_fs_info = opts->new_root; - opts->new_root->sb = sb; + root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops, + KERNFS_ROOT_CREATE_DEACTIVATED, + root_cgrp); + if (IS_ERR(root->kf_root)) { + ret = PTR_ERR(root->kf_root); + goto exit_root_id; + } + root_cgrp->kn = root->kf_root->kn; - sb->s_blocksize = PAGE_CACHE_SIZE; - sb->s_blocksize_bits = PAGE_CACHE_SHIFT; - sb->s_magic = CGROUP_SUPER_MAGIC; - sb->s_op = &cgroup_ops; + ret = css_populate_dir(&root_cgrp->self, NULL); + if (ret) + goto destroy_root; - return 0; -} + ret = rebind_subsystems(root, ss_mask); + if (ret) + goto destroy_root; -static int cgroup_get_rootdir(struct super_block *sb) -{ - static const struct dentry_operations cgroup_dops = { - .d_iput = cgroup_diput, - .d_delete = cgroup_delete, - }; + /* + * There must be no failure case after here, since rebinding takes + * care of subsystems' refcounts, which are explicitly dropped in + * the failure exit path. + */ + list_add(&root->root_list, &cgroup_roots); + cgroup_root_count++; - struct inode *inode = - cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); + /* + * Link the root cgroup in this hierarchy into all the css_set + * objects. + */ + spin_lock_bh(&css_set_lock); + hash_for_each(css_set_table, i, cset, hlist) { + link_css_set(&tmp_links, cset, root_cgrp); + if (css_set_populated(cset)) + cgroup_update_populated(root_cgrp, true); + } + spin_unlock_bh(&css_set_lock); - if (!inode) - return -ENOMEM; + BUG_ON(!list_empty(&root_cgrp->self.children)); + BUG_ON(atomic_read(&root->nr_cgrps) != 1); - inode->i_fop = &simple_dir_operations; - inode->i_op = &cgroup_dir_inode_operations; - /* directories start off with i_nlink == 2 (for "." entry) */ - inc_nlink(inode); - sb->s_root = d_make_root(inode); - if (!sb->s_root) - return -ENOMEM; - /* for everything else we want ->d_op set */ - sb->s_d_op = &cgroup_dops; - return 0; + kernfs_activate(root_cgrp->kn); + ret = 0; + goto out; + +destroy_root: + kernfs_destroy_root(root->kf_root); + root->kf_root = NULL; +exit_root_id: + cgroup_exit_root_id(root); +cancel_ref: + percpu_ref_exit(&root_cgrp->self.refcnt); +out: + free_cgrp_cset_links(&tmp_links); + return ret; } static struct dentry *cgroup_mount(struct file_system_type *fs_type, int flags, const char *unused_dev_name, void *data) { + struct super_block *pinned_sb = NULL; + struct cgroup_subsys *ss; + struct cgroup_root *root; struct cgroup_sb_opts opts; - struct cgroupfs_root *root; - int ret = 0; - struct super_block *sb; - struct cgroupfs_root *new_root; - struct inode *inode; + struct dentry *dentry; + int ret; + int i; + bool new_sb; + + /* + * The first time anyone tries to mount a cgroup, enable the list + * linking each css_set to its tasks and fix up all existing tasks. + */ + if (!use_task_css_set_links) + cgroup_enable_task_cg_lists(); - /* First find the desired set of subsystems */ mutex_lock(&cgroup_mutex); + + /* First find the desired set of subsystems */ ret = parse_cgroupfs_options(data, &opts); - mutex_unlock(&cgroup_mutex); if (ret) - goto out_err; + goto out_unlock; - /* - * Allocate a new cgroup root. We may not need it if we're - * reusing an existing hierarchy. - */ - new_root = cgroup_root_from_opts(&opts); - if (IS_ERR(new_root)) { - ret = PTR_ERR(new_root); - goto drop_modules; - } - opts.new_root = new_root; - - /* Locate an existing or new sb for this hierarchy */ - sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts); - if (IS_ERR(sb)) { - ret = PTR_ERR(sb); - cgroup_drop_root(opts.new_root); - goto drop_modules; - } - - root = sb->s_fs_info; - BUG_ON(!root); - if (root == opts.new_root) { - /* We used the new root structure, so this is a new hierarchy */ - struct list_head tmp_cg_links; - struct cgroup *root_cgrp = &root->top_cgroup; - struct cgroupfs_root *existing_root; - const struct cred *cred; - int i; - struct css_set *cg; + /* look for a matching existing root */ + if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) { + cgrp_dfl_root_visible = true; + root = &cgrp_dfl_root; + cgroup_get(&root->cgrp); + ret = 0; + goto out_unlock; + } - BUG_ON(sb->s_root != NULL); + /* + * Destruction of cgroup root is asynchronous, so subsystems may + * still be dying after the previous unmount. Let's drain the + * dying subsystems. We just need to ensure that the ones + * unmounted previously finish dying and don't care about new ones + * starting. Testing ref liveliness is good enough. + */ + for_each_subsys(ss, i) { + if (!(opts.subsys_mask & (1 << i)) || + ss->root == &cgrp_dfl_root) + continue; - ret = cgroup_get_rootdir(sb); - if (ret) - goto drop_new_super; - inode = sb->s_root->d_inode; + if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { + mutex_unlock(&cgroup_mutex); + msleep(10); + ret = restart_syscall(); + goto out_free; + } + cgroup_put(&ss->root->cgrp); + } - mutex_lock(&inode->i_mutex); - mutex_lock(&cgroup_mutex); - mutex_lock(&cgroup_root_mutex); + for_each_root(root) { + bool name_match = false; - /* Check for name clashes with existing mounts */ - ret = -EBUSY; - if (strlen(root->name)) - for_each_active_root(existing_root) - if (!strcmp(existing_root->name, root->name)) - goto unlock_drop; + if (root == &cgrp_dfl_root) + continue; /* - * We're accessing css_set_count without locking - * css_set_lock here, but that's OK - it can only be - * increased by someone holding cgroup_lock, and - * that's us. The worst that can happen is that we - * have some link structures left over + * If we asked for a name then it must match. Also, if + * name matches but sybsys_mask doesn't, we should fail. + * Remember whether name matched. */ - ret = allocate_cg_links(css_set_count, &tmp_cg_links); - if (ret) - goto unlock_drop; - - ret = rebind_subsystems(root, root->subsys_mask); - if (ret == -EBUSY) { - free_cg_links(&tmp_cg_links); - goto unlock_drop; + if (opts.name) { + if (strcmp(opts.name, root->name)) + continue; + name_match = true; } + /* - * There must be no failure case after here, since rebinding - * takes care of subsystems' refcounts, which are explicitly - * dropped in the failure exit path. + * If we asked for subsystems (or explicitly for no + * subsystems) then they must match. */ + if ((opts.subsys_mask || opts.none) && + (opts.subsys_mask != root->subsys_mask)) { + if (!name_match) + continue; + ret = -EBUSY; + goto out_unlock; + } - /* EBUSY should be the only error here */ - BUG_ON(ret); - - list_add(&root->root_list, &roots); - root_count++; - - sb->s_root->d_fsdata = root_cgrp; - root->top_cgroup.dentry = sb->s_root; + if (root->flags ^ opts.flags) + pr_warn("new mount options do not match the existing superblock, will be ignored\n"); - /* Link the top cgroup in this hierarchy into all - * the css_set objects */ - write_lock(&css_set_lock); - hash_for_each(css_set_table, i, cg, hlist) - link_css_set(&tmp_cg_links, cg, root_cgrp); - write_unlock(&css_set_lock); - - free_cg_links(&tmp_cg_links); - - BUG_ON(!list_empty(&root_cgrp->children)); - BUG_ON(root->number_of_cgroups != 1); - - cred = override_creds(&init_cred); - cgroup_populate_dir(root_cgrp, true, root->subsys_mask); - revert_creds(cred); - mutex_unlock(&cgroup_root_mutex); - mutex_unlock(&cgroup_mutex); - mutex_unlock(&inode->i_mutex); - } else { /* - * We re-used an existing hierarchy - the new root (if - * any) is not needed + * We want to reuse @root whose lifetime is governed by its + * ->cgrp. Let's check whether @root is alive and keep it + * that way. As cgroup_kill_sb() can happen anytime, we + * want to block it by pinning the sb so that @root doesn't + * get killed before mount is complete. + * + * With the sb pinned, tryget_live can reliably indicate + * whether @root can be reused. If it's being killed, + * drain it. We can use wait_queue for the wait but this + * path is super cold. Let's just sleep a bit and retry. */ - cgroup_drop_root(opts.new_root); - - if (root->flags != opts.flags) { - if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) { - pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n"); - ret = -EINVAL; - goto drop_new_super; - } else { - pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n"); - } + pinned_sb = kernfs_pin_sb(root->kf_root, NULL); + if (IS_ERR(pinned_sb) || + !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { + mutex_unlock(&cgroup_mutex); + if (!IS_ERR_OR_NULL(pinned_sb)) + deactivate_super(pinned_sb); + msleep(10); + ret = restart_syscall(); + goto out_free; } - /* no subsys rebinding, so refcounts don't change */ - drop_parsed_module_refcounts(opts.subsys_mask); + ret = 0; + goto out_unlock; } - kfree(opts.release_agent); - kfree(opts.name); - return dget(sb->s_root); + /* + * No such thing, create a new one. name= matching without subsys + * specification is allowed for already existing hierarchies but we + * can't create new one without subsys specification. + */ + if (!opts.subsys_mask && !opts.none) { + ret = -EINVAL; + goto out_unlock; + } - unlock_drop: - mutex_unlock(&cgroup_root_mutex); - mutex_unlock(&cgroup_mutex); - mutex_unlock(&inode->i_mutex); - drop_new_super: - deactivate_locked_super(sb); - drop_modules: - drop_parsed_module_refcounts(opts.subsys_mask); - out_err: - kfree(opts.release_agent); - kfree(opts.name); - return ERR_PTR(ret); -} + root = kzalloc(sizeof(*root), GFP_KERNEL); + if (!root) { + ret = -ENOMEM; + goto out_unlock; + } -static void cgroup_kill_sb(struct super_block *sb) { - struct cgroupfs_root *root = sb->s_fs_info; - struct cgroup *cgrp = &root->top_cgroup; - int ret; - struct cg_cgroup_link *link; - struct cg_cgroup_link *saved_link; + init_cgroup_root(root, &opts); - BUG_ON(!root); + ret = cgroup_setup_root(root, opts.subsys_mask); + if (ret) + cgroup_free_root(root); - BUG_ON(root->number_of_cgroups != 1); - BUG_ON(!list_empty(&cgrp->children)); +out_unlock: + mutex_unlock(&cgroup_mutex); +out_free: + kfree(opts.release_agent); + kfree(opts.name); - mutex_lock(&cgroup_mutex); - mutex_lock(&cgroup_root_mutex); + if (ret) + return ERR_PTR(ret); - /* Rebind all subsystems back to the default hierarchy */ - ret = rebind_subsystems(root, 0); - /* Shouldn't be able to fail ... */ - BUG_ON(ret); + dentry = kernfs_mount(fs_type, flags, root->kf_root, + CGROUP_SUPER_MAGIC, &new_sb); + if (IS_ERR(dentry) || !new_sb) + cgroup_put(&root->cgrp); /* - * Release all the links from css_sets to this hierarchy's - * root cgroup + * If @pinned_sb, we're reusing an existing root and holding an + * extra ref on its sb. Mount is complete. Put the extra ref. */ - write_lock(&css_set_lock); - - list_for_each_entry_safe(link, saved_link, &cgrp->css_sets, - cgrp_link_list) { - list_del(&link->cg_link_list); - list_del(&link->cgrp_link_list); - kfree(link); + if (pinned_sb) { + WARN_ON(new_sb); + deactivate_super(pinned_sb); } - write_unlock(&css_set_lock); - if (!list_empty(&root->root_list)) { - list_del(&root->root_list); - root_count--; - } + return dentry; +} - mutex_unlock(&cgroup_root_mutex); - mutex_unlock(&cgroup_mutex); +static void cgroup_kill_sb(struct super_block *sb) +{ + struct kernfs_root *kf_root = kernfs_root_from_sb(sb); + struct cgroup_root *root = cgroup_root_from_kf(kf_root); - simple_xattrs_free(&cgrp->xattrs); + /* + * If @root doesn't have any mounts or children, start killing it. + * This prevents new mounts by disabling percpu_ref_tryget_live(). + * cgroup_mount() may wait for @root's release. + * + * And don't kill the default root. + */ + if (!list_empty(&root->cgrp.self.children) || + root == &cgrp_dfl_root) + cgroup_put(&root->cgrp); + else + percpu_ref_kill(&root->cgrp.self.refcnt); - kill_litter_super(sb); - cgroup_drop_root(root); + kernfs_kill_sb(sb); } static struct file_system_type cgroup_fs_type = { @@ -1780,369 +2194,559 @@ .kill_sb = cgroup_kill_sb, }; -static struct kobject *cgroup_kobj; - /** - * cgroup_path - generate the path of a cgroup - * @cgrp: the cgroup in question + * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy + * @task: target task * @buf: the buffer to write the path into * @buflen: the length of the buffer * - * Writes path of cgroup into buf. Returns 0 on success, -errno on error. + * Determine @task's cgroup on the first (the one with the lowest non-zero + * hierarchy_id) cgroup hierarchy and copy its path into @buf. This + * function grabs cgroup_mutex and shouldn't be used inside locks used by + * cgroup controller callbacks. * - * We can't generate cgroup path using dentry->d_name, as accessing - * dentry->name must be protected by irq-unsafe dentry->d_lock or parent - * inode's i_mutex, while on the other hand cgroup_path() can be called - * with some irq-safe spinlocks held. + * Return value is the same as kernfs_path(). */ -int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) +char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) { - int ret = -ENAMETOOLONG; - char *start; + struct cgroup_root *root; + struct cgroup *cgrp; + int hierarchy_id = 1; + char *path = NULL; - if (!cgrp->parent) { - if (strlcpy(buf, "/", buflen) >= buflen) - return -ENAMETOOLONG; - return 0; + mutex_lock(&cgroup_mutex); + spin_lock_bh(&css_set_lock); + + root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); + + if (root) { + cgrp = task_cgroup_from_root(task, root); + path = cgroup_path(cgrp, buf, buflen); + } else { + /* if no hierarchy exists, everyone is in "/" */ + if (strlcpy(buf, "/", buflen) < buflen) + path = buf; } - start = buf + buflen - 1; - *start = '\0'; + spin_unlock_bh(&css_set_lock); + mutex_unlock(&cgroup_mutex); + return path; +} +EXPORT_SYMBOL_GPL(task_cgroup_path); - rcu_read_lock(); - do { - const char *name = cgroup_name(cgrp); - int len; +/* used to track tasks and other necessary states during migration */ +struct cgroup_taskset { + /* the src and dst cset list running through cset->mg_node */ + struct list_head src_csets; + struct list_head dst_csets; - len = strlen(name); - if ((start -= len) < buf) - goto out; - memcpy(start, name, len); - - if (--start < buf) - goto out; - *start = '/'; + /* the subsys currently being processed */ + int ssid; - cgrp = cgrp->parent; - } while (cgrp->parent); - ret = 0; - memmove(buf, start, buf + buflen - start); -out: - rcu_read_unlock(); - return ret; + /* + * Fields for cgroup_taskset_*() iteration. + * + * Before migration is committed, the target migration tasks are on + * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of + * the csets on ->dst_csets. ->csets point to either ->src_csets + * or ->dst_csets depending on whether migration is committed. + * + * ->cur_csets and ->cur_task point to the current task position + * during iteration. + */ + struct list_head *csets; + struct css_set *cur_cset; + struct task_struct *cur_task; +}; + +#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \ + .src_csets = LIST_HEAD_INIT(tset.src_csets), \ + .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \ + .csets = &tset.src_csets, \ } -EXPORT_SYMBOL_GPL(cgroup_path); -/* - * Control Group taskset +/** + * cgroup_taskset_add - try to add a migration target task to a taskset + * @task: target task + * @tset: target taskset + * + * Add @task, which is a migration target, to @tset. This function becomes + * noop if @task doesn't need to be migrated. @task's css_set should have + * been added as a migration source and @task->cg_list will be moved from + * the css_set's tasks list to mg_tasks one. */ -struct task_and_cgroup { - struct task_struct *task; - struct cgroup *cgrp; - struct css_set *cg; -}; +static void cgroup_taskset_add(struct task_struct *task, + struct cgroup_taskset *tset) +{ + struct css_set *cset; -struct cgroup_taskset { - struct task_and_cgroup single; - struct flex_array *tc_array; - int tc_array_len; - int idx; - struct cgroup *cur_cgrp; -}; + lockdep_assert_held(&css_set_lock); + + /* @task either already exited or can't exit until the end */ + if (task->flags & PF_EXITING) + return; + + /* leave @task alone if post_fork() hasn't linked it yet */ + if (list_empty(&task->cg_list)) + return; + + cset = task_css_set(task); + if (!cset->mg_src_cgrp) + return; + + list_move_tail(&task->cg_list, &cset->mg_tasks); + if (list_empty(&cset->mg_node)) + list_add_tail(&cset->mg_node, &tset->src_csets); + if (list_empty(&cset->mg_dst_cset->mg_node)) + list_move_tail(&cset->mg_dst_cset->mg_node, + &tset->dst_csets); +} /** * cgroup_taskset_first - reset taskset and return the first task * @tset: taskset of interest + * @dst_cssp: output variable for the destination css * * @tset iteration is initialized and the first task is returned. */ -struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) +struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, + struct cgroup_subsys_state **dst_cssp) { - if (tset->tc_array) { - tset->idx = 0; - return cgroup_taskset_next(tset); - } else { - tset->cur_cgrp = tset->single.cgrp; - return tset->single.task; - } + tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); + tset->cur_task = NULL; + + return cgroup_taskset_next(tset, dst_cssp); } -EXPORT_SYMBOL_GPL(cgroup_taskset_first); /** * cgroup_taskset_next - iterate to the next task in taskset * @tset: taskset of interest + * @dst_cssp: output variable for the destination css * * Return the next task in @tset. Iteration must have been initialized * with cgroup_taskset_first(). */ -struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) +struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, + struct cgroup_subsys_state **dst_cssp) { - struct task_and_cgroup *tc; + struct css_set *cset = tset->cur_cset; + struct task_struct *task = tset->cur_task; - if (!tset->tc_array || tset->idx >= tset->tc_array_len) - return NULL; + while (&cset->mg_node != tset->csets) { + if (!task) + task = list_first_entry(&cset->mg_tasks, + struct task_struct, cg_list); + else + task = list_next_entry(task, cg_list); - tc = flex_array_get(tset->tc_array, tset->idx++); - tset->cur_cgrp = tc->cgrp; - return tc->task; + if (&task->cg_list != &cset->mg_tasks) { + tset->cur_cset = cset; + tset->cur_task = task; + + /* + * This function may be called both before and + * after cgroup_taskset_migrate(). The two cases + * can be distinguished by looking at whether @cset + * has its ->mg_dst_cset set. + */ + if (cset->mg_dst_cset) + *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; + else + *dst_cssp = cset->subsys[tset->ssid]; + + return task; + } + + cset = list_next_entry(cset, mg_node); + task = NULL; + } + + return NULL; } -EXPORT_SYMBOL_GPL(cgroup_taskset_next); /** - * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task - * @tset: taskset of interest + * cgroup_taskset_migrate - migrate a taskset to a cgroup + * @tset: taget taskset + * @dst_cgrp: destination cgroup + * + * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the + * ->can_attach callbacks fails and guarantees that either all or none of + * the tasks in @tset are migrated. @tset is consumed regardless of + * success. + */ +static int cgroup_taskset_migrate(struct cgroup_taskset *tset, + struct cgroup *dst_cgrp) +{ + struct cgroup_subsys_state *css, *failed_css = NULL; + struct task_struct *task, *tmp_task; + struct css_set *cset, *tmp_cset; + int i, ret; + + /* methods shouldn't be called if no task is actually migrating */ + if (list_empty(&tset->src_csets)) + return 0; + + /* check that we can legitimately attach to the cgroup */ + for_each_e_css(css, i, dst_cgrp) { + if (css->ss->can_attach) { + tset->ssid = i; + ret = css->ss->can_attach(tset); + if (ret) { + failed_css = css; + goto out_cancel_attach; + } + } + } + + /* + * Now that we're guaranteed success, proceed to move all tasks to + * the new cgroup. There are no failure cases after here, so this + * is the commit point. + */ + spin_lock_bh(&css_set_lock); + list_for_each_entry(cset, &tset->src_csets, mg_node) { + list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { + struct css_set *from_cset = task_css_set(task); + struct css_set *to_cset = cset->mg_dst_cset; + + get_css_set(to_cset); + css_set_move_task(task, from_cset, to_cset, true); + put_css_set_locked(from_cset); + } + } + spin_unlock_bh(&css_set_lock); + + /* + * Migration is committed, all target tasks are now on dst_csets. + * Nothing is sensitive to fork() after this point. Notify + * controllers that migration is complete. + */ + tset->csets = &tset->dst_csets; + + for_each_e_css(css, i, dst_cgrp) { + if (css->ss->attach) { + tset->ssid = i; + css->ss->attach(tset); + } + } + + ret = 0; + goto out_release_tset; + +out_cancel_attach: + for_each_e_css(css, i, dst_cgrp) { + if (css == failed_css) + break; + if (css->ss->cancel_attach) { + tset->ssid = i; + css->ss->cancel_attach(tset); + } + } +out_release_tset: + spin_lock_bh(&css_set_lock); + list_splice_init(&tset->dst_csets, &tset->src_csets); + list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { + list_splice_tail_init(&cset->mg_tasks, &cset->tasks); + list_del_init(&cset->mg_node); + } + spin_unlock_bh(&css_set_lock); + return ret; +} + +/** + * cgroup_migrate_finish - cleanup after attach + * @preloaded_csets: list of preloaded css_sets * - * Return the cgroup for the current (last returned) task of @tset. This - * function must be preceded by either cgroup_taskset_first() or - * cgroup_taskset_next(). + * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See + * those functions for details. */ -struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset) +static void cgroup_migrate_finish(struct list_head *preloaded_csets) { - return tset->cur_cgrp; + struct css_set *cset, *tmp_cset; + + lockdep_assert_held(&cgroup_mutex); + + spin_lock_bh(&css_set_lock); + list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) { + cset->mg_src_cgrp = NULL; + cset->mg_dst_cset = NULL; + list_del_init(&cset->mg_preload_node); + put_css_set_locked(cset); + } + spin_unlock_bh(&css_set_lock); } -EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup); /** - * cgroup_taskset_size - return the number of tasks in taskset - * @tset: taskset of interest - */ -int cgroup_taskset_size(struct cgroup_taskset *tset) + * cgroup_migrate_add_src - add a migration source css_set + * @src_cset: the source css_set to add + * @dst_cgrp: the destination cgroup + * @preloaded_csets: list of preloaded css_sets + * + * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin + * @src_cset and add it to @preloaded_csets, which should later be cleaned + * up by cgroup_migrate_finish(). + * + * This function may be called without holding cgroup_threadgroup_rwsem + * even if the target is a process. Threads may be created and destroyed + * but as long as cgroup_mutex is not dropped, no new css_set can be put + * into play and the preloaded css_sets are guaranteed to cover all + * migrations. + */ +static void cgroup_migrate_add_src(struct css_set *src_cset, + struct cgroup *dst_cgrp, + struct list_head *preloaded_csets) { - return tset->tc_array ? tset->tc_array_len : 1; -} -EXPORT_SYMBOL_GPL(cgroup_taskset_size); + struct cgroup *src_cgrp; + lockdep_assert_held(&cgroup_mutex); + lockdep_assert_held(&css_set_lock); -/* - * cgroup_task_migrate - move a task from one cgroup to another. - * - * Must be called with cgroup_mutex and threadgroup locked. + /* + * If ->dead, @src_set is associated with one or more dead cgroups + * and doesn't contain any migratable tasks. Ignore it early so + * that the rest of migration path doesn't get confused by it. + */ + if (src_cset->dead) + return; + + src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); + + if (!list_empty(&src_cset->mg_preload_node)) + return; + + WARN_ON(src_cset->mg_src_cgrp); + WARN_ON(!list_empty(&src_cset->mg_tasks)); + WARN_ON(!list_empty(&src_cset->mg_node)); + + src_cset->mg_src_cgrp = src_cgrp; + get_css_set(src_cset); + list_add(&src_cset->mg_preload_node, preloaded_csets); +} + +/** + * cgroup_migrate_prepare_dst - prepare destination css_sets for migration + * @dst_cgrp: the destination cgroup (may be %NULL) + * @preloaded_csets: list of preloaded source css_sets + * + * Tasks are about to be moved to @dst_cgrp and all the source css_sets + * have been preloaded to @preloaded_csets. This function looks up and + * pins all destination css_sets, links each to its source, and append them + * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each + * source css_set is assumed to be its cgroup on the default hierarchy. + * + * This function must be called after cgroup_migrate_add_src() has been + * called on each migration source css_set. After migration is performed + * using cgroup_migrate(), cgroup_migrate_finish() must be called on + * @preloaded_csets. */ -static void cgroup_task_migrate(struct cgroup *oldcgrp, - struct task_struct *tsk, struct css_set *newcg) +static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp, + struct list_head *preloaded_csets) { - struct css_set *oldcg; + LIST_HEAD(csets); + struct css_set *src_cset, *tmp_cset; + + lockdep_assert_held(&cgroup_mutex); /* - * We are synchronized through threadgroup_lock() against PF_EXITING - * setting such that we can't race against cgroup_exit() changing the - * css_set to init_css_set and dropping the old one. + * Except for the root, child_subsys_mask must be zero for a cgroup + * with tasks so that child cgroups don't compete against tasks. */ - WARN_ON_ONCE(tsk->flags & PF_EXITING); - oldcg = tsk->cgroups; + if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) && + dst_cgrp->child_subsys_mask) + return -EBUSY; - task_lock(tsk); - rcu_assign_pointer(tsk->cgroups, newcg); - task_unlock(tsk); + /* look up the dst cset for each src cset and link it to src */ + list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) { + struct css_set *dst_cset; + + dst_cset = find_css_set(src_cset, + dst_cgrp ?: src_cset->dfl_cgrp); + if (!dst_cset) + goto err; - /* Update the css_set linked lists if we're using them */ - write_lock(&css_set_lock); - if (!list_empty(&tsk->cg_list)) - list_move(&tsk->cg_list, &newcg->tasks); - write_unlock(&css_set_lock); + WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); - /* - * We just gained a reference on oldcg by taking it from the task. As - * trading it for newcg is protected by cgroup_mutex, we're safe to drop - * it here; it will be freed under RCU. - */ - set_bit(CGRP_RELEASABLE, &oldcgrp->flags); - put_css_set(oldcg); + /* + * If src cset equals dst, it's noop. Drop the src. + * cgroup_migrate() will skip the cset too. Note that we + * can't handle src == dst as some nodes are used by both. + */ + if (src_cset == dst_cset) { + src_cset->mg_src_cgrp = NULL; + list_del_init(&src_cset->mg_preload_node); + put_css_set(src_cset); + put_css_set(dst_cset); + continue; + } + + src_cset->mg_dst_cset = dst_cset; + + if (list_empty(&dst_cset->mg_preload_node)) + list_add(&dst_cset->mg_preload_node, &csets); + else + put_css_set(dst_cset); + } + + list_splice_tail(&csets, preloaded_csets); + return 0; +err: + cgroup_migrate_finish(&csets); + return -ENOMEM; } /** - * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup - * @cgrp: the cgroup to attach to - * @tsk: the task or the leader of the threadgroup to be attached - * @threadgroup: attach the whole threadgroup? + * cgroup_migrate - migrate a process or task to a cgroup + * @leader: the leader of the process or the task to migrate + * @threadgroup: whether @leader points to the whole process or a single task + * @cgrp: the destination cgroup * - * Call holding cgroup_mutex and the group_rwsem of the leader. Will take - * task_lock of @tsk or each thread in the threadgroup individually in turn. + * Migrate a process or task denoted by @leader to @cgrp. If migrating a + * process, the caller must be holding cgroup_threadgroup_rwsem. The + * caller is also responsible for invoking cgroup_migrate_add_src() and + * cgroup_migrate_prepare_dst() on the targets before invoking this + * function and following up with cgroup_migrate_finish(). + * + * As long as a controller's ->can_attach() doesn't fail, this function is + * guaranteed to succeed. This means that, excluding ->can_attach() + * failure, when migrating multiple targets, the success or failure can be + * decided for all targets by invoking group_migrate_prepare_dst() before + * actually starting migrating. */ -static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk, - bool threadgroup) +static int cgroup_migrate(struct task_struct *leader, bool threadgroup, + struct cgroup *cgrp) { - int retval, i, group_size; - struct cgroup_subsys *ss, *failed_ss = NULL; - struct cgroupfs_root *root = cgrp->root; - /* threadgroup list cursor and array */ - struct task_struct *leader = tsk; - struct task_and_cgroup *tc; - struct flex_array *group; - struct cgroup_taskset tset = { }; - - /* - * step 0: in order to do expensive, possibly blocking operations for - * every thread, we cannot iterate the thread group list, since it needs - * rcu or tasklist locked. instead, build an array of all threads in the - * group - group_rwsem prevents new threads from appearing, and if - * threads exit, this will just be an over-estimate. - */ - if (threadgroup) - group_size = get_nr_threads(tsk); - else - group_size = 1; - /* flex_array supports very large thread-groups better than kmalloc. */ - group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL); - if (!group) - return -ENOMEM; - /* pre-allocate to guarantee space while iterating in rcu read-side. */ - retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL); - if (retval) - goto out_free_group_list; + struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset); + struct task_struct *task; - i = 0; /* * Prevent freeing of tasks while we take a snapshot. Tasks that are * already PF_EXITING could be freed from underneath us unless we * take an rcu_read_lock. */ + spin_lock_bh(&css_set_lock); rcu_read_lock(); + task = leader; do { - struct task_and_cgroup ent; + cgroup_taskset_add(task, &tset); + if (!threadgroup) + break; + } while_each_thread(leader, task); + rcu_read_unlock(); + spin_unlock_bh(&css_set_lock); - /* @tsk either already exited or can't exit until the end */ - if (tsk->flags & PF_EXITING) - goto next; - - /* as per above, nr_threads may decrease, but not increase. */ - BUG_ON(i >= group_size); - ent.task = tsk; - ent.cgrp = task_cgroup_from_root(tsk, root); - /* nothing to do if this task is already in the cgroup */ - if (ent.cgrp == cgrp) - goto next; - /* - * saying GFP_ATOMIC has no effect here because we did prealloc - * earlier, but it's good form to communicate our expectations. - */ - retval = flex_array_put(group, i, &ent, GFP_ATOMIC); - BUG_ON(retval != 0); - i++; - next: + return cgroup_taskset_migrate(&tset, cgrp); +} + +/** + * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup + * @dst_cgrp: the cgroup to attach to + * @leader: the task or the leader of the threadgroup to be attached + * @threadgroup: attach the whole threadgroup? + * + * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. + */ +static int cgroup_attach_task(struct cgroup *dst_cgrp, + struct task_struct *leader, bool threadgroup) +{ + LIST_HEAD(preloaded_csets); + struct task_struct *task; + int ret; + + /* look up all src csets */ + spin_lock_bh(&css_set_lock); + rcu_read_lock(); + task = leader; + do { + cgroup_migrate_add_src(task_css_set(task), dst_cgrp, + &preloaded_csets); if (!threadgroup) break; - } while_each_thread(leader, tsk); + } while_each_thread(leader, task); rcu_read_unlock(); - /* remember the number of threads in the array for later. */ - group_size = i; - tset.tc_array = group; - tset.tc_array_len = group_size; + spin_unlock_bh(&css_set_lock); - /* methods shouldn't be called if no task is actually migrating */ - retval = 0; - if (!group_size) - goto out_free_group_list; + /* prepare dst csets and commit */ + ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets); + if (!ret) + ret = cgroup_migrate(leader, threadgroup, dst_cgrp); - /* - * step 1: check that we can legitimately attach to the cgroup. - */ - for_each_subsys(root, ss) { - if (ss->can_attach) { - retval = ss->can_attach(cgrp, &tset); - if (retval) { - failed_ss = ss; - goto out_cancel_attach; - } - } - } + cgroup_migrate_finish(&preloaded_csets); + return ret; +} - /* - * step 2: make sure css_sets exist for all threads to be migrated. - * we use find_css_set, which allocates a new one if necessary. - */ - for (i = 0; i < group_size; i++) { - tc = flex_array_get(group, i); - tc->cg = find_css_set(tc->task->cgroups, cgrp); - if (!tc->cg) { - retval = -ENOMEM; - goto out_put_css_set_refs; - } - } +static int cgroup_procs_write_permission(struct task_struct *task, + struct cgroup *dst_cgrp, + struct kernfs_open_file *of) +{ + const struct cred *cred = current_cred(); + const struct cred *tcred = get_task_cred(task); + int ret = 0; /* - * step 3: now that we're guaranteed success wrt the css_sets, - * proceed to move all tasks to the new cgroup. There are no - * failure cases after here, so this is the commit point. + * even if we're attaching all tasks in the thread group, we only + * need to check permissions on one of them. */ - for (i = 0; i < group_size; i++) { - tc = flex_array_get(group, i); - cgroup_task_migrate(tc->cgrp, tc->task, tc->cg); - } - /* nothing is sensitive to fork() after this point. */ + if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && + !uid_eq(cred->euid, tcred->uid) && + !uid_eq(cred->euid, tcred->suid)) + ret = -EACCES; - /* - * step 4: do subsystem attach callbacks. - */ - for_each_subsys(root, ss) { - if (ss->attach) - ss->attach(cgrp, &tset); - } + if (!ret && cgroup_on_dfl(dst_cgrp)) { + struct super_block *sb = of->file->f_path.dentry->d_sb; + struct cgroup *cgrp; + struct inode *inode; - /* - * step 5: success! and cleanup - */ - retval = 0; -out_put_css_set_refs: - if (retval) { - for (i = 0; i < group_size; i++) { - tc = flex_array_get(group, i); - if (!tc->cg) - break; - put_css_set(tc->cg); - } - } -out_cancel_attach: - if (retval) { - for_each_subsys(root, ss) { - if (ss == failed_ss) - break; - if (ss->cancel_attach) - ss->cancel_attach(cgrp, &tset); + spin_lock_bh(&css_set_lock); + cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); + spin_unlock_bh(&css_set_lock); + + while (!cgroup_is_descendant(dst_cgrp, cgrp)) + cgrp = cgroup_parent(cgrp); + + ret = -ENOMEM; + inode = kernfs_get_inode(sb, cgrp->procs_file.kn); + if (inode) { + ret = inode_permission(inode, MAY_WRITE); + iput(inode); } } -out_free_group_list: - flex_array_free(group); - return retval; + + put_cred(tcred); + return ret; } /* * Find the task_struct of the task to attach by vpid and pass it along to the * function to attach either it or all tasks in its threadgroup. Will lock - * cgroup_mutex and threadgroup; may take task_lock of task. + * cgroup_mutex and threadgroup. */ -static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup) +static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off, bool threadgroup) { struct task_struct *tsk; - const struct cred *cred = current_cred(), *tcred; - int ret; + struct cgroup_subsys *ss; + struct cgroup *cgrp; + pid_t pid; + int ssid, ret; - if (!cgroup_lock_live_group(cgrp)) + if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) + return -EINVAL; + + cgrp = cgroup_kn_lock_live(of->kn); + if (!cgrp) return -ENODEV; -retry_find_task: + percpu_down_write(&cgroup_threadgroup_rwsem); rcu_read_lock(); if (pid) { tsk = find_task_by_vpid(pid); if (!tsk) { - rcu_read_unlock(); - ret= -ESRCH; - goto out_unlock_cgroup; + ret = -ESRCH; + goto out_unlock_rcu; } - /* - * even if we're attaching all tasks in the thread group, we - * only need to check permissions on one of them. - */ - tcred = __task_cred(tsk); - if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && - !uid_eq(cred->euid, tcred->uid) && - !uid_eq(cred->euid, tcred->suid)) { - rcu_read_unlock(); - ret = -EACCES; - goto out_unlock_cgroup; - } - } else + } else { tsk = current; + } if (threadgroup) tsk = tsk->group_leader; @@ -2154,37 +2758,28 @@ */ if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { ret = -EINVAL; - rcu_read_unlock(); - goto out_unlock_cgroup; + goto out_unlock_rcu; } get_task_struct(tsk); rcu_read_unlock(); - threadgroup_lock(tsk); - if (threadgroup) { - if (!thread_group_leader(tsk)) { - /* - * a race with de_thread from another thread's exec() - * may strip us of our leadership, if this happens, - * there is no choice but to throw this task away and - * try again; this is - * "double-double-toil-and-trouble-check locking". - */ - threadgroup_unlock(tsk); - put_task_struct(tsk); - goto retry_find_task; - } - } - - ret = cgroup_attach_task(cgrp, tsk, threadgroup); - - threadgroup_unlock(tsk); + ret = cgroup_procs_write_permission(tsk, cgrp, of); + if (!ret) + ret = cgroup_attach_task(cgrp, tsk, threadgroup); put_task_struct(tsk); -out_unlock_cgroup: - mutex_unlock(&cgroup_mutex); - return ret; + goto out_unlock_threadgroup; + +out_unlock_rcu: + rcu_read_unlock(); +out_unlock_threadgroup: + percpu_up_write(&cgroup_threadgroup_rwsem); + for_each_subsys(ss, ssid) + if (ss->post_attach) + ss->post_attach(); + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; } /** @@ -2194,14 +2789,21 @@ */ int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) { - struct cgroupfs_root *root; + struct cgroup_root *root; int retval = 0; mutex_lock(&cgroup_mutex); - for_each_active_root(root) { - struct cgroup *from_cg = task_cgroup_from_root(from, root); + for_each_root(root) { + struct cgroup *from_cgrp; + + if (root == &cgrp_dfl_root) + continue; + + spin_lock_bh(&css_set_lock); + from_cgrp = task_cgroup_from_root(from, root); + spin_unlock_bh(&css_set_lock); - retval = cgroup_attach_task(from_cg, tsk, false); + retval = cgroup_attach_task(from_cgrp, tsk, false); if (retval) break; } @@ -2211,609 +2813,731 @@ } EXPORT_SYMBOL_GPL(cgroup_attach_task_all); -static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) +static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) { - return attach_task_by_pid(cgrp, pid, false); + return __cgroup_procs_write(of, buf, nbytes, off, false); } -static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid) +static ssize_t cgroup_procs_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) { - return attach_task_by_pid(cgrp, tgid, true); + return __cgroup_procs_write(of, buf, nbytes, off, true); } -static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft, - const char *buffer) +static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) { + struct cgroup *cgrp; + BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); - if (strlen(buffer) >= PATH_MAX) - return -EINVAL; - if (!cgroup_lock_live_group(cgrp)) + + cgrp = cgroup_kn_lock_live(of->kn); + if (!cgrp) return -ENODEV; - mutex_lock(&cgroup_root_mutex); - strcpy(cgrp->root->release_agent_path, buffer); - mutex_unlock(&cgroup_root_mutex); - mutex_unlock(&cgroup_mutex); - return 0; + spin_lock(&release_agent_path_lock); + strlcpy(cgrp->root->release_agent_path, strstrip(buf), + sizeof(cgrp->root->release_agent_path)); + spin_unlock(&release_agent_path_lock); + cgroup_kn_unlock(of->kn); + return nbytes; } -static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft, - struct seq_file *seq) +static int cgroup_release_agent_show(struct seq_file *seq, void *v) { - if (!cgroup_lock_live_group(cgrp)) - return -ENODEV; + struct cgroup *cgrp = seq_css(seq)->cgroup; + + spin_lock(&release_agent_path_lock); seq_puts(seq, cgrp->root->release_agent_path); + spin_unlock(&release_agent_path_lock); seq_putc(seq, '\n'); - mutex_unlock(&cgroup_mutex); return 0; } -static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft, - struct seq_file *seq) +static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) { - seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp)); + seq_puts(seq, "0\n"); return 0; } -/* A buffer size big enough for numbers or short strings */ -#define CGROUP_LOCAL_BUFFER_SIZE 64 - -static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, - struct file *file, - const char __user *userbuf, - size_t nbytes, loff_t *unused_ppos) +static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask) { - char buffer[CGROUP_LOCAL_BUFFER_SIZE]; - int retval = 0; - char *end; - - if (!nbytes) - return -EINVAL; - if (nbytes >= sizeof(buffer)) - return -E2BIG; - if (copy_from_user(buffer, userbuf, nbytes)) - return -EFAULT; + struct cgroup_subsys *ss; + bool printed = false; + int ssid; - buffer[nbytes] = 0; /* nul-terminate */ - if (cft->write_u64) { - u64 val = simple_strtoull(strstrip(buffer), &end, 0); - if (*end) - return -EINVAL; - retval = cft->write_u64(cgrp, cft, val); - } else { - s64 val = simple_strtoll(strstrip(buffer), &end, 0); - if (*end) - return -EINVAL; - retval = cft->write_s64(cgrp, cft, val); + for_each_subsys_which(ss, ssid, &ss_mask) { + if (printed) + seq_putc(seq, ' '); + seq_printf(seq, "%s", ss->name); + printed = true; } - if (!retval) - retval = nbytes; - return retval; + if (printed) + seq_putc(seq, '\n'); } -static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, - struct file *file, - const char __user *userbuf, - size_t nbytes, loff_t *unused_ppos) +/* show controllers which are currently attached to the default hierarchy */ +static int cgroup_root_controllers_show(struct seq_file *seq, void *v) { - char local_buffer[CGROUP_LOCAL_BUFFER_SIZE]; - int retval = 0; - size_t max_bytes = cft->max_write_len; - char *buffer = local_buffer; - - if (!max_bytes) - max_bytes = sizeof(local_buffer) - 1; - if (nbytes >= max_bytes) - return -E2BIG; - /* Allocate a dynamic buffer if we need one */ - if (nbytes >= sizeof(local_buffer)) { - buffer = kmalloc(nbytes + 1, GFP_KERNEL); - if (buffer == NULL) - return -ENOMEM; - } - if (nbytes && copy_from_user(buffer, userbuf, nbytes)) { - retval = -EFAULT; - goto out; - } + struct cgroup *cgrp = seq_css(seq)->cgroup; - buffer[nbytes] = 0; /* nul-terminate */ - retval = cft->write_string(cgrp, cft, strstrip(buffer)); - if (!retval) - retval = nbytes; -out: - if (buffer != local_buffer) - kfree(buffer); - return retval; + cgroup_print_ss_mask(seq, cgrp->root->subsys_mask & + ~cgrp_dfl_root_inhibit_ss_mask); + return 0; } -static ssize_t cgroup_file_write(struct file *file, const char __user *buf, - size_t nbytes, loff_t *ppos) +/* show controllers which are enabled from the parent */ +static int cgroup_controllers_show(struct seq_file *seq, void *v) { - struct cftype *cft = __d_cft(file->f_dentry); - struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); + struct cgroup *cgrp = seq_css(seq)->cgroup; - if (cgroup_is_removed(cgrp)) - return -ENODEV; - if (cft->write) - return cft->write(cgrp, cft, file, buf, nbytes, ppos); - if (cft->write_u64 || cft->write_s64) - return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos); - if (cft->write_string) - return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos); - if (cft->trigger) { - int ret = cft->trigger(cgrp, (unsigned int)cft->private); - return ret ? ret : nbytes; - } - return -EINVAL; + cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control); + return 0; } -static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft, - struct file *file, - char __user *buf, size_t nbytes, - loff_t *ppos) +/* show controllers which are enabled for a given cgroup's children */ +static int cgroup_subtree_control_show(struct seq_file *seq, void *v) { - char tmp[CGROUP_LOCAL_BUFFER_SIZE]; - u64 val = cft->read_u64(cgrp, cft); - int len = sprintf(tmp, "%llu\n", (unsigned long long) val); + struct cgroup *cgrp = seq_css(seq)->cgroup; - return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); + cgroup_print_ss_mask(seq, cgrp->subtree_control); + return 0; } -static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft, - struct file *file, - char __user *buf, size_t nbytes, - loff_t *ppos) +/** + * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy + * @cgrp: root of the subtree to update csses for + * + * @cgrp's child_subsys_mask has changed and its subtree's (self excluded) + * css associations need to be updated accordingly. This function looks up + * all css_sets which are attached to the subtree, creates the matching + * updated css_sets and migrates the tasks to the new ones. + */ +static int cgroup_update_dfl_csses(struct cgroup *cgrp) { - char tmp[CGROUP_LOCAL_BUFFER_SIZE]; - s64 val = cft->read_s64(cgrp, cft); - int len = sprintf(tmp, "%lld\n", (long long) val); + LIST_HEAD(preloaded_csets); + struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset); + struct cgroup_subsys_state *css; + struct css_set *src_cset; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + percpu_down_write(&cgroup_threadgroup_rwsem); + + /* look up all csses currently attached to @cgrp's subtree */ + spin_lock_bh(&css_set_lock); + css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) { + struct cgrp_cset_link *link; + + /* self is not affected by child_subsys_mask change */ + if (css->cgroup == cgrp) + continue; + + list_for_each_entry(link, &css->cgroup->cset_links, cset_link) + cgroup_migrate_add_src(link->cset, cgrp, + &preloaded_csets); + } + spin_unlock_bh(&css_set_lock); + + /* NULL dst indicates self on default hierarchy */ + ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets); + if (ret) + goto out_finish; + + spin_lock_bh(&css_set_lock); + list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) { + struct task_struct *task, *ntask; - return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); + /* src_csets precede dst_csets, break on the first dst_cset */ + if (!src_cset->mg_src_cgrp) + break; + + /* all tasks in src_csets need to be migrated */ + list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) + cgroup_taskset_add(task, &tset); + } + spin_unlock_bh(&css_set_lock); + + ret = cgroup_taskset_migrate(&tset, cgrp); +out_finish: + cgroup_migrate_finish(&preloaded_csets); + percpu_up_write(&cgroup_threadgroup_rwsem); + return ret; } -static ssize_t cgroup_file_read(struct file *file, char __user *buf, - size_t nbytes, loff_t *ppos) -{ - struct cftype *cft = __d_cft(file->f_dentry); - struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); +/* change the enabled child controllers for a cgroup in the default hierarchy */ +static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + unsigned long enable = 0, disable = 0; + unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss; + struct cgroup *cgrp, *child; + struct cgroup_subsys *ss; + char *tok; + int ssid, ret; + + /* + * Parse input - space separated list of subsystem names prefixed + * with either + or -. + */ + buf = strstrip(buf); + while ((tok = strsep(&buf, " "))) { + unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask; + + if (tok[0] == '\0') + continue; + for_each_subsys_which(ss, ssid, &tmp_ss_mask) { + if (!cgroup_ssid_enabled(ssid) || + strcmp(tok + 1, ss->name)) + continue; + + if (*tok == '+') { + enable |= 1 << ssid; + disable &= ~(1 << ssid); + } else if (*tok == '-') { + disable |= 1 << ssid; + enable &= ~(1 << ssid); + } else { + return -EINVAL; + } + break; + } + if (ssid == CGROUP_SUBSYS_COUNT) + return -EINVAL; + } - if (cgroup_is_removed(cgrp)) + cgrp = cgroup_kn_lock_live(of->kn); + if (!cgrp) return -ENODEV; - if (cft->read) - return cft->read(cgrp, cft, file, buf, nbytes, ppos); - if (cft->read_u64) - return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos); - if (cft->read_s64) - return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos); - return -EINVAL; -} + for_each_subsys(ss, ssid) { + if (enable & (1 << ssid)) { + if (cgrp->subtree_control & (1 << ssid)) { + enable &= ~(1 << ssid); + continue; + } -/* - * seqfile ops/methods for returning structured data. Currently just - * supports string->u64 maps, but can be extended in future. - */ + /* unavailable or not enabled on the parent? */ + if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) || + (cgroup_parent(cgrp) && + !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) { + ret = -ENOENT; + goto out_unlock; + } + } else if (disable & (1 << ssid)) { + if (!(cgrp->subtree_control & (1 << ssid))) { + disable &= ~(1 << ssid); + continue; + } -struct cgroup_seqfile_state { - struct cftype *cft; - struct cgroup *cgroup; -}; + /* a child has it enabled? */ + cgroup_for_each_live_child(child, cgrp) { + if (child->subtree_control & (1 << ssid)) { + ret = -EBUSY; + goto out_unlock; + } + } + } + } -static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value) -{ - struct seq_file *sf = cb->state; - return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value); -} + if (!enable && !disable) { + ret = 0; + goto out_unlock; + } -static int cgroup_seqfile_show(struct seq_file *m, void *arg) -{ - struct cgroup_seqfile_state *state = m->private; - struct cftype *cft = state->cft; - if (cft->read_map) { - struct cgroup_map_cb cb = { - .fill = cgroup_map_add, - .state = m, - }; - return cft->read_map(state->cgroup, cft, &cb); + /* + * Except for the root, subtree_control must be zero for a cgroup + * with tasks so that child cgroups don't compete against tasks. + */ + if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) { + ret = -EBUSY; + goto out_unlock; } - return cft->read_seq_string(state->cgroup, cft, m); -} -static int cgroup_seqfile_release(struct inode *inode, struct file *file) -{ - struct seq_file *seq = file->private_data; - kfree(seq->private); - return single_release(inode, file); -} + /* + * Update subsys masks and calculate what needs to be done. More + * subsystems than specified may need to be enabled or disabled + * depending on subsystem dependencies. + */ + old_sc = cgrp->subtree_control; + old_ss = cgrp->child_subsys_mask; + new_sc = (old_sc | enable) & ~disable; + new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc); + + css_enable = ~old_ss & new_ss; + css_disable = old_ss & ~new_ss; + enable |= css_enable; + disable |= css_disable; + + /* + * Because css offlining is asynchronous, userland might try to + * re-enable the same controller while the previous instance is + * still around. In such cases, wait till it's gone using + * offline_waitq. + */ + for_each_subsys_which(ss, ssid, &css_enable) { + cgroup_for_each_live_child(child, cgrp) { + DEFINE_WAIT(wait); -static const struct file_operations cgroup_seqfile_operations = { - .read = seq_read, - .write = cgroup_file_write, - .llseek = seq_lseek, - .release = cgroup_seqfile_release, -}; + if (!cgroup_css(child, ss)) + continue; -static int cgroup_file_open(struct inode *inode, struct file *file) -{ - int err; - struct cftype *cft; + cgroup_get(child); + prepare_to_wait(&child->offline_waitq, &wait, + TASK_UNINTERRUPTIBLE); + cgroup_kn_unlock(of->kn); + schedule(); + finish_wait(&child->offline_waitq, &wait); + cgroup_put(child); - err = generic_file_open(inode, file); - if (err) - return err; - cft = __d_cft(file->f_dentry); + return restart_syscall(); + } + } - if (cft->read_map || cft->read_seq_string) { - struct cgroup_seqfile_state *state = - kzalloc(sizeof(*state), GFP_USER); - if (!state) - return -ENOMEM; - state->cft = cft; - state->cgroup = __d_cgrp(file->f_dentry->d_parent); - file->f_op = &cgroup_seqfile_operations; - err = single_open(file, cgroup_seqfile_show, state); - if (err < 0) - kfree(state); - } else if (cft->open) - err = cft->open(inode, file); - else - err = 0; + cgrp->subtree_control = new_sc; + cgrp->child_subsys_mask = new_ss; - return err; -} + /* + * Create new csses or make the existing ones visible. A css is + * created invisible if it's being implicitly enabled through + * dependency. An invisible css is made visible when the userland + * explicitly enables it. + */ + for_each_subsys(ss, ssid) { + if (!(enable & (1 << ssid))) + continue; -static int cgroup_file_release(struct inode *inode, struct file *file) -{ - struct cftype *cft = __d_cft(file->f_dentry); - if (cft->release) - return cft->release(inode, file); - return 0; -} + cgroup_for_each_live_child(child, cgrp) { + if (css_enable & (1 << ssid)) + ret = create_css(child, ss, + cgrp->subtree_control & (1 << ssid)); + else + ret = css_populate_dir(cgroup_css(child, ss), + NULL); + if (ret) + goto err_undo_css; + } + } -/* - * cgroup_rename - Only allow simple rename of directories in place. - */ -static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, - struct inode *new_dir, struct dentry *new_dentry) -{ - int ret; - struct cgroup_name *name, *old_name; - struct cgroup *cgrp; + /* + * At this point, cgroup_e_css() results reflect the new csses + * making the following cgroup_update_dfl_csses() properly update + * css associations of all tasks in the subtree. + */ + ret = cgroup_update_dfl_csses(cgrp); + if (ret) + goto err_undo_css; /* - * It's convinient to use parent dir's i_mutex to protected - * cgrp->name. + * All tasks are migrated out of disabled csses. Kill or hide + * them. A css is hidden when the userland requests it to be + * disabled while other subsystems are still depending on it. The + * css must not actively control resources and be in the vanilla + * state if it's made visible again later. Controllers which may + * be depended upon should provide ->css_reset() for this purpose. */ - lockdep_assert_held(&old_dir->i_mutex); + for_each_subsys(ss, ssid) { + if (!(disable & (1 << ssid))) + continue; - if (!S_ISDIR(old_dentry->d_inode->i_mode)) - return -ENOTDIR; - if (new_dentry->d_inode) - return -EEXIST; - if (old_dir != new_dir) - return -EIO; + cgroup_for_each_live_child(child, cgrp) { + struct cgroup_subsys_state *css = cgroup_css(child, ss); + + if (css_disable & (1 << ssid)) { + kill_css(css); + } else { + css_clear_dir(css, NULL); + if (ss->css_reset) + ss->css_reset(css); + } + } + } - cgrp = __d_cgrp(old_dentry); + /* + * The effective csses of all the descendants (excluding @cgrp) may + * have changed. Subsystems can optionally subscribe to this event + * by implementing ->css_e_css_changed() which is invoked if any of + * the effective csses seen from the css's cgroup may have changed. + */ + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss); + struct cgroup_subsys_state *css; - name = cgroup_alloc_name(new_dentry); - if (!name) - return -ENOMEM; + if (!ss->css_e_css_changed || !this_css) + continue; - ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry); - if (ret) { - kfree(name); - return ret; + css_for_each_descendant_pre(css, this_css) + if (css != this_css) + ss->css_e_css_changed(css); } - old_name = cgrp->name; - rcu_assign_pointer(cgrp->name, name); + kernfs_activate(cgrp->kn); + ret = 0; +out_unlock: + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; - kfree_rcu(old_name, rcu_head); - return 0; -} +err_undo_css: + cgrp->subtree_control = old_sc; + cgrp->child_subsys_mask = old_ss; -static struct simple_xattrs *__d_xattrs(struct dentry *dentry) -{ - if (S_ISDIR(dentry->d_inode->i_mode)) - return &__d_cgrp(dentry)->xattrs; - else - return &__d_cfe(dentry)->xattrs; + for_each_subsys(ss, ssid) { + if (!(enable & (1 << ssid))) + continue; + + cgroup_for_each_live_child(child, cgrp) { + struct cgroup_subsys_state *css = cgroup_css(child, ss); + + if (!css) + continue; + + if (css_enable & (1 << ssid)) + kill_css(css); + else + css_clear_dir(css, NULL); + } + } + goto out_unlock; } -static inline int xattr_enabled(struct dentry *dentry) +static int cgroup_events_show(struct seq_file *seq, void *v) { - struct cgroupfs_root *root = dentry->d_sb->s_fs_info; - return root->flags & CGRP_ROOT_XATTR; + seq_printf(seq, "populated %d\n", + cgroup_is_populated(seq_css(seq)->cgroup)); + return 0; } -static bool is_valid_xattr(const char *name) +static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) { - if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) || - !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN)) - return true; - return false; + struct cgroup *cgrp = of->kn->parent->priv; + struct cftype *cft = of->kn->priv; + struct cgroup_subsys_state *css; + int ret; + + if (cft->write) + return cft->write(of, buf, nbytes, off); + + /* + * kernfs guarantees that a file isn't deleted with operations in + * flight, which means that the matching css is and stays alive and + * doesn't need to be pinned. The RCU locking is not necessary + * either. It's just for the convenience of using cgroup_css(). + */ + rcu_read_lock(); + css = cgroup_css(cgrp, cft->ss); + rcu_read_unlock(); + + if (cft->write_u64) { + unsigned long long v; + ret = kstrtoull(buf, 0, &v); + if (!ret) + ret = cft->write_u64(css, cft, v); + } else if (cft->write_s64) { + long long v; + ret = kstrtoll(buf, 0, &v); + if (!ret) + ret = cft->write_s64(css, cft, v); + } else { + ret = -EINVAL; + } + + return ret ?: nbytes; } -static int cgroup_setxattr(struct dentry *dentry, const char *name, - const void *val, size_t size, int flags) +static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) { - if (!xattr_enabled(dentry)) - return -EOPNOTSUPP; - if (!is_valid_xattr(name)) - return -EINVAL; - return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags); + return seq_cft(seq)->seq_start(seq, ppos); } -static int cgroup_removexattr(struct dentry *dentry, const char *name) +static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) { - if (!xattr_enabled(dentry)) - return -EOPNOTSUPP; - if (!is_valid_xattr(name)) - return -EINVAL; - return simple_xattr_remove(__d_xattrs(dentry), name); + return seq_cft(seq)->seq_next(seq, v, ppos); } -static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name, - void *buf, size_t size) +static void cgroup_seqfile_stop(struct seq_file *seq, void *v) { - if (!xattr_enabled(dentry)) - return -EOPNOTSUPP; - if (!is_valid_xattr(name)) - return -EINVAL; - return simple_xattr_get(__d_xattrs(dentry), name, buf, size); + seq_cft(seq)->seq_stop(seq, v); } -static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size) +static int cgroup_seqfile_show(struct seq_file *m, void *arg) { - if (!xattr_enabled(dentry)) - return -EOPNOTSUPP; - return simple_xattr_list(__d_xattrs(dentry), buf, size); -} + struct cftype *cft = seq_cft(m); + struct cgroup_subsys_state *css = seq_css(m); -static const struct file_operations cgroup_file_operations = { - .read = cgroup_file_read, - .write = cgroup_file_write, - .llseek = generic_file_llseek, - .open = cgroup_file_open, - .release = cgroup_file_release, -}; + if (cft->seq_show) + return cft->seq_show(m, arg); -static const struct inode_operations cgroup_file_inode_operations = { - .setxattr = cgroup_setxattr, - .getxattr = cgroup_getxattr, - .listxattr = cgroup_listxattr, - .removexattr = cgroup_removexattr, -}; + if (cft->read_u64) + seq_printf(m, "%llu\n", cft->read_u64(css, cft)); + else if (cft->read_s64) + seq_printf(m, "%lld\n", cft->read_s64(css, cft)); + else + return -EINVAL; + return 0; +} -static const struct inode_operations cgroup_dir_inode_operations = { - .lookup = cgroup_lookup, - .mkdir = cgroup_mkdir, - .rmdir = cgroup_rmdir, - .rename = cgroup_rename, - .setxattr = cgroup_setxattr, - .getxattr = cgroup_getxattr, - .listxattr = cgroup_listxattr, - .removexattr = cgroup_removexattr, +static struct kernfs_ops cgroup_kf_single_ops = { + .atomic_write_len = PAGE_SIZE, + .write = cgroup_file_write, + .seq_show = cgroup_seqfile_show, }; -static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) -{ - if (dentry->d_name.len > NAME_MAX) - return ERR_PTR(-ENAMETOOLONG); - d_add(dentry, NULL); - return NULL; -} +static struct kernfs_ops cgroup_kf_ops = { + .atomic_write_len = PAGE_SIZE, + .write = cgroup_file_write, + .seq_start = cgroup_seqfile_start, + .seq_next = cgroup_seqfile_next, + .seq_stop = cgroup_seqfile_stop, + .seq_show = cgroup_seqfile_show, +}; /* - * Check if a file is a control file + * cgroup_rename - Only allow simple rename of directories in place. */ -static inline struct cftype *__file_cft(struct file *file) +static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, + const char *new_name_str) { - if (file_inode(file)->i_fop != &cgroup_file_operations) - return ERR_PTR(-EINVAL); - return __d_cft(file->f_dentry); -} + struct cgroup *cgrp = kn->priv; + int ret; -static int cgroup_create_file(struct dentry *dentry, umode_t mode, - struct super_block *sb) -{ - struct inode *inode; + if (kernfs_type(kn) != KERNFS_DIR) + return -ENOTDIR; + if (kn->parent != new_parent) + return -EIO; - if (!dentry) - return -ENOENT; - if (dentry->d_inode) - return -EEXIST; + /* + * This isn't a proper migration and its usefulness is very + * limited. Disallow on the default hierarchy. + */ + if (cgroup_on_dfl(cgrp)) + return -EPERM; - inode = cgroup_new_inode(mode, sb); - if (!inode) - return -ENOMEM; + /* + * We're gonna grab cgroup_mutex which nests outside kernfs + * active_ref. kernfs_rename() doesn't require active_ref + * protection. Break them before grabbing cgroup_mutex. + */ + kernfs_break_active_protection(new_parent); + kernfs_break_active_protection(kn); - if (S_ISDIR(mode)) { - inode->i_op = &cgroup_dir_inode_operations; - inode->i_fop = &simple_dir_operations; - - /* start off with i_nlink == 2 (for "." entry) */ - inc_nlink(inode); - inc_nlink(dentry->d_parent->d_inode); + mutex_lock(&cgroup_mutex); - /* - * Control reaches here with cgroup_mutex held. - * @inode->i_mutex should nest outside cgroup_mutex but we - * want to populate it immediately without releasing - * cgroup_mutex. As @inode isn't visible to anyone else - * yet, trylock will always succeed without affecting - * lockdep checks. - */ - WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex)); - } else if (S_ISREG(mode)) { - inode->i_size = 0; - inode->i_fop = &cgroup_file_operations; - inode->i_op = &cgroup_file_inode_operations; - } - d_instantiate(dentry, inode); - dget(dentry); /* Extra count - pin the dentry in core */ - return 0; -} + ret = kernfs_rename(kn, new_parent, new_name_str); -/** - * cgroup_file_mode - deduce file mode of a control file - * @cft: the control file in question - * - * returns cft->mode if ->mode is not 0 - * returns S_IRUGO|S_IWUSR if it has both a read and a write handler - * returns S_IRUGO if it has only a read handler - * returns S_IWUSR if it has only a write hander - */ -static umode_t cgroup_file_mode(const struct cftype *cft) -{ - umode_t mode = 0; + mutex_unlock(&cgroup_mutex); - if (cft->mode) - return cft->mode; + kernfs_unbreak_active_protection(kn); + kernfs_unbreak_active_protection(new_parent); + return ret; +} - if (cft->read || cft->read_u64 || cft->read_s64 || - cft->read_map || cft->read_seq_string) - mode |= S_IRUGO; +/* set uid and gid of cgroup dirs and files to that of the creator */ +static int cgroup_kn_set_ugid(struct kernfs_node *kn) +{ + struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, + .ia_uid = current_fsuid(), + .ia_gid = current_fsgid(), }; - if (cft->write || cft->write_u64 || cft->write_s64 || - cft->write_string || cft->trigger) - mode |= S_IWUSR; + if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && + gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) + return 0; - return mode; + return kernfs_setattr(kn, &iattr); } -static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys, +static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, struct cftype *cft) { - struct dentry *dir = cgrp->dentry; - struct cgroup *parent = __d_cgrp(dir); - struct dentry *dentry; - struct cfent *cfe; - int error; - umode_t mode; - char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; + char name[CGROUP_FILE_NAME_MAX]; + struct kernfs_node *kn; + struct lock_class_key *key = NULL; + int ret; - if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) { - strcpy(name, subsys->name); - strcat(name, "."); - } - strcat(name, cft->name); +#ifdef CONFIG_DEBUG_LOCK_ALLOC + key = &cft->lockdep_key; +#endif + kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), + cgroup_file_mode(cft), 0, cft->kf_ops, cft, + NULL, key); + if (IS_ERR(kn)) + return PTR_ERR(kn); - BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); + ret = cgroup_kn_set_ugid(kn); + if (ret) { + kernfs_remove(kn); + return ret; + } - cfe = kzalloc(sizeof(*cfe), GFP_KERNEL); - if (!cfe) - return -ENOMEM; + if (cft->file_offset) { + struct cgroup_file *cfile = (void *)css + cft->file_offset; - dentry = lookup_one_len(name, dir, strlen(name)); - if (IS_ERR(dentry)) { - error = PTR_ERR(dentry); - goto out; + spin_lock_irq(&cgroup_file_kn_lock); + cfile->kn = kn; + spin_unlock_irq(&cgroup_file_kn_lock); } - cfe->type = (void *)cft; - cfe->dentry = dentry; - dentry->d_fsdata = cfe; - simple_xattrs_init(&cfe->xattrs); - - mode = cgroup_file_mode(cft); - error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb); - if (!error) { - list_add_tail(&cfe->node, &parent->files); - cfe = NULL; - } - dput(dentry); -out: - kfree(cfe); - return error; + return 0; } -static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys, - struct cftype cfts[], bool is_add) +/** + * cgroup_addrm_files - add or remove files to a cgroup directory + * @css: the target css + * @cgrp: the target cgroup (usually css->cgroup) + * @cfts: array of cftypes to be added + * @is_add: whether to add or remove + * + * Depending on @is_add, add or remove files defined by @cfts on @cgrp. + * For removals, this function never fails. + */ +static int cgroup_addrm_files(struct cgroup_subsys_state *css, + struct cgroup *cgrp, struct cftype cfts[], + bool is_add) { - struct cftype *cft; - int err, ret = 0; + struct cftype *cft, *cft_end = NULL; + int ret; - for (cft = cfts; cft->name[0] != '\0'; cft++) { + lockdep_assert_held(&cgroup_mutex); + +restart: + for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { /* does cft->flags tell us to skip this file on @cgrp? */ - if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp)) + if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) + continue; + if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) continue; - if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent) + if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) continue; - if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent) + if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) continue; if (is_add) { - err = cgroup_add_file(cgrp, subsys, cft); - if (err) - pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n", - cft->name, err); - ret = err; + ret = cgroup_add_file(css, cgrp, cft); + if (ret) { + pr_warn("%s: failed to add %s, err=%d\n", + __func__, cft->name, ret); + cft_end = cft; + is_add = false; + goto restart; + } } else { cgroup_rm_file(cgrp, cft); } } - return ret; + return 0; } -static DEFINE_MUTEX(cgroup_cft_mutex); +static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) +{ + LIST_HEAD(pending); + struct cgroup_subsys *ss = cfts[0].ss; + struct cgroup *root = &ss->root->cgrp; + struct cgroup_subsys_state *css; + int ret = 0; + + lockdep_assert_held(&cgroup_mutex); + + /* add/rm files for all cgroups created before */ + css_for_each_descendant_pre(css, cgroup_css(root, ss)) { + struct cgroup *cgrp = css->cgroup; + + if (cgroup_is_dead(cgrp)) + continue; -static void cgroup_cfts_prepare(void) - __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex) + ret = cgroup_addrm_files(css, cgrp, cfts, is_add); + if (ret) + break; + } + + if (is_add && !ret) + kernfs_activate(root->kn); + return ret; +} + +static void cgroup_exit_cftypes(struct cftype *cfts) { - /* - * Thanks to the entanglement with vfs inode locking, we can't walk - * the existing cgroups under cgroup_mutex and create files. - * Instead, we increment reference on all cgroups and build list of - * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure - * exclusive access to the field. - */ - mutex_lock(&cgroup_cft_mutex); - mutex_lock(&cgroup_mutex); + struct cftype *cft; + + for (cft = cfts; cft->name[0] != '\0'; cft++) { + /* free copy for custom atomic_write_len, see init_cftypes() */ + if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) + kfree(cft->kf_ops); + cft->kf_ops = NULL; + cft->ss = NULL; + + /* revert flags set by cgroup core while adding @cfts */ + cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); + } } -static void cgroup_cfts_commit(struct cgroup_subsys *ss, - struct cftype *cfts, bool is_add) - __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex) +static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { - LIST_HEAD(pending); - struct cgroup *cgrp, *n; - struct super_block *sb = ss->root->sb; + struct cftype *cft; - /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */ - if (cfts && ss->root != &rootnode && - atomic_inc_not_zero(&sb->s_active)) { - list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) { - dget(cgrp->dentry); - list_add_tail(&cgrp->cft_q_node, &pending); + for (cft = cfts; cft->name[0] != '\0'; cft++) { + struct kernfs_ops *kf_ops; + + WARN_ON(cft->ss || cft->kf_ops); + + if (cft->seq_start) + kf_ops = &cgroup_kf_ops; + else + kf_ops = &cgroup_kf_single_ops; + + /* + * Ugh... if @cft wants a custom max_write_len, we need to + * make a copy of kf_ops to set its atomic_write_len. + */ + if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { + kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); + if (!kf_ops) { + cgroup_exit_cftypes(cfts); + return -ENOMEM; + } + kf_ops->atomic_write_len = cft->max_write_len; } - } else { - sb = NULL; + + cft->kf_ops = kf_ops; + cft->ss = ss; } - mutex_unlock(&cgroup_mutex); + return 0; +} - /* - * All new cgroups will see @cfts update on @ss->cftsets. Add/rm - * files for all cgroups which were created before. - */ - list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) { - struct inode *inode = cgrp->dentry->d_inode; +static int cgroup_rm_cftypes_locked(struct cftype *cfts) +{ + lockdep_assert_held(&cgroup_mutex); - mutex_lock(&inode->i_mutex); - mutex_lock(&cgroup_mutex); - if (!cgroup_is_removed(cgrp)) - cgroup_addrm_files(cgrp, ss, cfts, is_add); - mutex_unlock(&cgroup_mutex); - mutex_unlock(&inode->i_mutex); + if (!cfts || !cfts[0].ss) + return -ENOENT; - list_del_init(&cgrp->cft_q_node); - dput(cgrp->dentry); - } + list_del(&cfts->node); + cgroup_apply_cftypes(cfts, false); + cgroup_exit_cftypes(cfts); + return 0; +} - if (sb) - deactivate_super(sb); +/** + * cgroup_rm_cftypes - remove an array of cftypes from a subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Unregister @cfts. Files described by @cfts are removed from all + * existing cgroups and all future cgroups won't have them either. This + * function can be called anytime whether @cfts' subsys is attached or not. + * + * Returns 0 on successful unregistration, -ENOENT if @cfts is not + * registered. + */ +int cgroup_rm_cftypes(struct cftype *cfts) +{ + int ret; - mutex_unlock(&cgroup_cft_mutex); + mutex_lock(&cgroup_mutex); + ret = cgroup_rm_cftypes_locked(cfts); + mutex_unlock(&cgroup_mutex); + return ret; } /** @@ -2830,52 +3554,79 @@ * function currently returns 0 as long as @cfts registration is successful * even if some file creation attempts on existing cgroups fail. */ -int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { - struct cftype_set *set; + int ret; - set = kzalloc(sizeof(*set), GFP_KERNEL); - if (!set) - return -ENOMEM; + if (!cgroup_ssid_enabled(ss->id)) + return 0; - cgroup_cfts_prepare(); - set->cfts = cfts; - list_add_tail(&set->node, &ss->cftsets); - cgroup_cfts_commit(ss, cfts, true); + if (!cfts || cfts[0].name[0] == '\0') + return 0; - return 0; + ret = cgroup_init_cftypes(ss, cfts); + if (ret) + return ret; + + mutex_lock(&cgroup_mutex); + + list_add_tail(&cfts->node, &ss->cfts); + ret = cgroup_apply_cftypes(cfts, true); + if (ret) + cgroup_rm_cftypes_locked(cfts); + + mutex_unlock(&cgroup_mutex); + return ret; } -EXPORT_SYMBOL_GPL(cgroup_add_cftypes); /** - * cgroup_rm_cftypes - remove an array of cftypes from a subsystem + * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy * @ss: target cgroup subsystem * @cfts: zero-length name terminated array of cftypes * - * Unregister @cfts from @ss. Files described by @cfts are removed from - * all existing cgroups to which @ss is attached and all future cgroups - * won't have them either. This function can be called anytime whether @ss - * is attached or not. + * Similar to cgroup_add_cftypes() but the added files are only used for + * the default hierarchy. + */ +int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft && cft->name[0] != '\0'; cft++) + cft->flags |= __CFTYPE_ONLY_ON_DFL; + return cgroup_add_cftypes(ss, cfts); +} + +/** + * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies + * @ss: target cgroup subsystem + * @cfts: zero-length name terminated array of cftypes * - * Returns 0 on successful unregistration, -ENOENT if @cfts is not - * registered with @ss. + * Similar to cgroup_add_cftypes() but the added files are only used for + * the legacy hierarchies. */ -int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) { - struct cftype_set *set; + struct cftype *cft; - cgroup_cfts_prepare(); + for (cft = cfts; cft && cft->name[0] != '\0'; cft++) + cft->flags |= __CFTYPE_NOT_ON_DFL; + return cgroup_add_cftypes(ss, cfts); +} - list_for_each_entry(set, &ss->cftsets, node) { - if (set->cfts == cfts) { - list_del_init(&set->node); - cgroup_cfts_commit(ss, cfts, false); - return 0; - } - } +/** + * cgroup_file_notify - generate a file modified event for a cgroup_file + * @cfile: target cgroup_file + * + * @cfile must have been obtained by setting cftype->file_offset. + */ +void cgroup_file_notify(struct cgroup_file *cfile) +{ + unsigned long flags; - cgroup_cfts_commit(ss, NULL, false); - return -ENOENT; + spin_lock_irqsave(&cgroup_file_kn_lock, flags); + if (cfile->kn) + kernfs_notify(cfile->kn); + spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); } /** @@ -2884,419 +3635,467 @@ * * Return the number of tasks in the cgroup. */ -int cgroup_task_count(const struct cgroup *cgrp) +static int cgroup_task_count(const struct cgroup *cgrp) { int count = 0; - struct cg_cgroup_link *link; + struct cgrp_cset_link *link; - read_lock(&css_set_lock); - list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { - count += atomic_read(&link->cg->refcount); - } - read_unlock(&css_set_lock); + spin_lock_bh(&css_set_lock); + list_for_each_entry(link, &cgrp->cset_links, cset_link) + count += atomic_read(&link->cset->refcount); + spin_unlock_bh(&css_set_lock); return count; } -/* - * Advance a list_head iterator. The iterator should be positioned at - * the start of a css_set - */ -static void cgroup_advance_iter(struct cgroup *cgrp, - struct cgroup_iter *it) -{ - struct list_head *l = it->cg_link; - struct cg_cgroup_link *link; - struct css_set *cg; - - /* Advance to the next non-empty css_set */ - do { - l = l->next; - if (l == &cgrp->css_sets) { - it->cg_link = NULL; - return; - } - link = list_entry(l, struct cg_cgroup_link, cgrp_link_list); - cg = link->cg; - } while (list_empty(&cg->tasks)); - it->cg_link = l; - it->task = cg->tasks.next; -} +/** + * css_next_child - find the next child of a given css + * @pos: the current position (%NULL to initiate traversal) + * @parent: css whose children to walk + * + * This function returns the next child of @parent and should be called + * under either cgroup_mutex or RCU read lock. The only requirement is + * that @parent and @pos are accessible. The next sibling is guaranteed to + * be returned regardless of their states. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *parent) +{ + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* + * @pos could already have been unlinked from the sibling list. + * Once a cgroup is removed, its ->sibling.next is no longer + * updated when its next sibling changes. CSS_RELEASED is set when + * @pos is taken off list, at which time its next pointer is valid, + * and, as releases are serialized, the one pointed to by the next + * pointer is guaranteed to not have started release yet. This + * implies that if we observe !CSS_RELEASED on @pos in this RCU + * critical section, the one pointed to by its next pointer is + * guaranteed to not have finished its RCU grace period even if we + * have dropped rcu_read_lock() inbetween iterations. + * + * If @pos has CSS_RELEASED set, its next pointer can't be + * dereferenced; however, as each css is given a monotonically + * increasing unique serial number and always appended to the + * sibling list, the next one can be found by walking the parent's + * children until the first css with higher serial number than + * @pos's. While this path can be slower, it happens iff iteration + * races against release and the race window is very small. + */ + if (!pos) { + next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); + } else if (likely(!(pos->flags & CSS_RELEASED))) { + next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); + } else { + list_for_each_entry_rcu(next, &parent->children, sibling) + if (next->serial_nr > pos->serial_nr) + break; + } -/* - * To reduce the fork() overhead for systems that are not actually - * using their cgroups capability, we don't maintain the lists running - * through each css_set to its tasks until we see the list actually - * used - in other words after the first call to cgroup_iter_start(). - */ -static void cgroup_enable_task_cg_lists(void) -{ - struct task_struct *p, *g; - write_lock(&css_set_lock); - use_task_css_set_links = 1; /* - * We need tasklist_lock because RCU is not safe against - * while_each_thread(). Besides, a forking task that has passed - * cgroup_post_fork() without seeing use_task_css_set_links = 1 - * is not guaranteed to have its child immediately visible in the - * tasklist if we walk through it with RCU. + * @next, if not pointing to the head, can be dereferenced and is + * the next sibling. */ - read_lock(&tasklist_lock); - do_each_thread(g, p) { - task_lock(p); - /* - * We should check if the process is exiting, otherwise - * it will race with cgroup_exit() in that the list - * entry won't be deleted though the process has exited. - */ - if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) - list_add(&p->cg_list, &p->cgroups->tasks); - task_unlock(p); - } while_each_thread(g, p); - read_unlock(&tasklist_lock); - write_unlock(&css_set_lock); + if (&next->sibling != &parent->children) + return next; + return NULL; } /** - * cgroup_next_descendant_pre - find the next descendant for pre-order walk + * css_next_descendant_pre - find the next descendant for pre-order walk * @pos: the current position (%NULL to initiate traversal) - * @cgroup: cgroup whose descendants to walk + * @root: css whose descendants to walk + * + * To be used by css_for_each_descendant_pre(). Find the next descendant + * to visit for pre-order traversal of @root's descendants. @root is + * included in the iteration and the first node to be visited. * - * To be used by cgroup_for_each_descendant_pre(). Find the next - * descendant to visit for pre-order traversal of @cgroup's descendants. + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct next descendant as long + * as both @pos and @root are accessible and @pos is a descendant of @root. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. */ -struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos, - struct cgroup *cgroup) +struct cgroup_subsys_state * +css_next_descendant_pre(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *root) { - struct cgroup *next; + struct cgroup_subsys_state *next; - WARN_ON_ONCE(!rcu_read_lock_held()); + cgroup_assert_mutex_or_rcu_locked(); - /* if first iteration, pretend we just visited @cgroup */ + /* if first iteration, visit @root */ if (!pos) - pos = cgroup; + return root; /* visit the first child if exists */ - next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling); + next = css_next_child(NULL, pos); if (next) return next; /* no child, visit my or the closest ancestor's next sibling */ - while (pos != cgroup) { - next = list_entry_rcu(pos->sibling.next, struct cgroup, - sibling); - if (&next->sibling != &pos->parent->children) + while (pos != root) { + next = css_next_child(pos, pos->parent); + if (next) return next; - pos = pos->parent; } return NULL; } -EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre); /** - * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup - * @pos: cgroup of interest + * css_rightmost_descendant - return the rightmost descendant of a css + * @pos: css of interest * - * Return the rightmost descendant of @pos. If there's no descendant, - * @pos is returned. This can be used during pre-order traversal to skip + * Return the rightmost descendant of @pos. If there's no descendant, @pos + * is returned. This can be used during pre-order traversal to skip * subtree of @pos. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct rightmost descendant as + * long as @pos is accessible. */ -struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos) +struct cgroup_subsys_state * +css_rightmost_descendant(struct cgroup_subsys_state *pos) { - struct cgroup *last, *tmp; + struct cgroup_subsys_state *last, *tmp; - WARN_ON_ONCE(!rcu_read_lock_held()); + cgroup_assert_mutex_or_rcu_locked(); do { last = pos; /* ->prev isn't RCU safe, walk ->next till the end */ pos = NULL; - list_for_each_entry_rcu(tmp, &last->children, sibling) + css_for_each_child(tmp, last) pos = tmp; } while (pos); return last; } -EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant); -static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos) +static struct cgroup_subsys_state * +css_leftmost_descendant(struct cgroup_subsys_state *pos) { - struct cgroup *last; + struct cgroup_subsys_state *last; do { last = pos; - pos = list_first_or_null_rcu(&pos->children, struct cgroup, - sibling); + pos = css_next_child(NULL, pos); } while (pos); return last; } /** - * cgroup_next_descendant_post - find the next descendant for post-order walk + * css_next_descendant_post - find the next descendant for post-order walk * @pos: the current position (%NULL to initiate traversal) - * @cgroup: cgroup whose descendants to walk + * @root: css whose descendants to walk * - * To be used by cgroup_for_each_descendant_post(). Find the next - * descendant to visit for post-order traversal of @cgroup's descendants. - */ -struct cgroup *cgroup_next_descendant_post(struct cgroup *pos, - struct cgroup *cgroup) + * To be used by css_for_each_descendant_post(). Find the next descendant + * to visit for post-order traversal of @root's descendants. @root is + * included in the iteration and the last node to be visited. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct next descendant as long + * as both @pos and @cgroup are accessible and @pos is a descendant of + * @cgroup. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state * +css_next_descendant_post(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *root) { - struct cgroup *next; + struct cgroup_subsys_state *next; - WARN_ON_ONCE(!rcu_read_lock_held()); + cgroup_assert_mutex_or_rcu_locked(); - /* if first iteration, visit the leftmost descendant */ - if (!pos) { - next = cgroup_leftmost_descendant(cgroup); - return next != cgroup ? next : NULL; - } + /* if first iteration, visit leftmost descendant which may be @root */ + if (!pos) + return css_leftmost_descendant(root); + + /* if we visited @root, we're done */ + if (pos == root) + return NULL; /* if there's an unvisited sibling, visit its leftmost descendant */ - next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling); - if (&next->sibling != &pos->parent->children) - return cgroup_leftmost_descendant(next); + next = css_next_child(pos, pos->parent); + if (next) + return css_leftmost_descendant(next); /* no sibling left, visit parent */ - next = pos->parent; - return next != cgroup ? next : NULL; + return pos->parent; } -EXPORT_SYMBOL_GPL(cgroup_next_descendant_post); -void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) - __acquires(css_set_lock) +/** + * css_has_online_children - does a css have online children + * @css: the target css + * + * Returns %true if @css has any online children; otherwise, %false. This + * function can be called from any context but the caller is responsible + * for synchronizing against on/offlining as necessary. + */ +bool css_has_online_children(struct cgroup_subsys_state *css) { - /* - * The first time anyone tries to iterate across a cgroup, - * we need to enable the list linking each css_set to its - * tasks, and fix up all existing tasks. - */ - if (!use_task_css_set_links) - cgroup_enable_task_cg_lists(); + struct cgroup_subsys_state *child; + bool ret = false; - read_lock(&css_set_lock); - it->cg_link = &cgrp->css_sets; - cgroup_advance_iter(cgrp, it); + rcu_read_lock(); + css_for_each_child(child, css) { + if (child->flags & CSS_ONLINE) { + ret = true; + break; + } + } + rcu_read_unlock(); + return ret; } -struct task_struct *cgroup_iter_next(struct cgroup *cgrp, - struct cgroup_iter *it) +/** + * css_task_iter_advance_css_set - advance a task itererator to the next css_set + * @it: the iterator to advance + * + * Advance @it to the next css_set to walk. + */ +static void css_task_iter_advance_css_set(struct css_task_iter *it) { - struct task_struct *res; - struct list_head *l = it->task; - struct cg_cgroup_link *link; + struct list_head *l = it->cset_pos; + struct cgrp_cset_link *link; + struct css_set *cset; - /* If the iterator cg is NULL, we have no tasks */ - if (!it->cg_link) - return NULL; - res = list_entry(l, struct task_struct, cg_list); - /* Advance iterator to find next entry */ - l = l->next; - link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list); - if (l == &link->cg->tasks) { - /* We reached the end of this task list - move on to - * the next cg_cgroup_link */ - cgroup_advance_iter(cgrp, it); - } else { - it->task = l; + lockdep_assert_held(&css_set_lock); + + /* Advance to the next non-empty css_set */ + do { + l = l->next; + if (l == it->cset_head) { + it->cset_pos = NULL; + it->task_pos = NULL; + return; + } + + if (it->ss) { + cset = container_of(l, struct css_set, + e_cset_node[it->ss->id]); + } else { + link = list_entry(l, struct cgrp_cset_link, cset_link); + cset = link->cset; + } + } while (!css_set_populated(cset)); + + it->cset_pos = l; + + if (!list_empty(&cset->tasks)) + it->task_pos = cset->tasks.next; + else + it->task_pos = cset->mg_tasks.next; + + it->tasks_head = &cset->tasks; + it->mg_tasks_head = &cset->mg_tasks; + + /* + * We don't keep css_sets locked across iteration steps and thus + * need to take steps to ensure that iteration can be resumed after + * the lock is re-acquired. Iteration is performed at two levels - + * css_sets and tasks in them. + * + * Once created, a css_set never leaves its cgroup lists, so a + * pinned css_set is guaranteed to stay put and we can resume + * iteration afterwards. + * + * Tasks may leave @cset across iteration steps. This is resolved + * by registering each iterator with the css_set currently being + * walked and making css_set_move_task() advance iterators whose + * next task is leaving. + */ + if (it->cur_cset) { + list_del(&it->iters_node); + put_css_set_locked(it->cur_cset); } - return res; + get_css_set(cset); + it->cur_cset = cset; + list_add(&it->iters_node, &cset->task_iters); } -void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) - __releases(css_set_lock) +static void css_task_iter_advance(struct css_task_iter *it) { - read_unlock(&css_set_lock); + struct list_head *l = it->task_pos; + + lockdep_assert_held(&css_set_lock); + WARN_ON_ONCE(!l); + + /* + * Advance iterator to find next entry. cset->tasks is consumed + * first and then ->mg_tasks. After ->mg_tasks, we move onto the + * next cset. + */ + l = l->next; + + if (l == it->tasks_head) + l = it->mg_tasks_head->next; + + if (l == it->mg_tasks_head) + css_task_iter_advance_css_set(it); + else + it->task_pos = l; } -static inline int started_after_time(struct task_struct *t1, - struct timespec *time, - struct task_struct *t2) +/** + * css_task_iter_start - initiate task iteration + * @css: the css to walk tasks of + * @it: the task iterator to use + * + * Initiate iteration through the tasks of @css. The caller can call + * css_task_iter_next() to walk through the tasks until the function + * returns NULL. On completion of iteration, css_task_iter_end() must be + * called. + */ +void css_task_iter_start(struct cgroup_subsys_state *css, + struct css_task_iter *it) { - int start_diff = timespec_compare(&t1->start_time, time); - if (start_diff > 0) { - return 1; - } else if (start_diff < 0) { - return 0; - } else { - /* - * Arbitrarily, if two processes started at the same - * time, we'll say that the lower pointer value - * started first. Note that t2 may have exited by now - * so this may not be a valid pointer any longer, but - * that's fine - it still serves to distinguish - * between two tasks started (effectively) simultaneously. - */ - return t1 > t2; - } -} + /* no one should try to iterate before mounting cgroups */ + WARN_ON_ONCE(!use_task_css_set_links); -/* - * This function is a callback from heap_insert() and is used to order - * the heap. - * In this case we order the heap in descending task start time. - */ -static inline int started_after(void *p1, void *p2) -{ - struct task_struct *t1 = p1; - struct task_struct *t2 = p2; - return started_after_time(t1, &t2->start_time, t2); + memset(it, 0, sizeof(*it)); + + spin_lock_bh(&css_set_lock); + + it->ss = css->ss; + + if (it->ss) + it->cset_pos = &css->cgroup->e_csets[css->ss->id]; + else + it->cset_pos = &css->cgroup->cset_links; + + it->cset_head = it->cset_pos; + + css_task_iter_advance_css_set(it); + + spin_unlock_bh(&css_set_lock); } /** - * cgroup_scan_tasks - iterate though all the tasks in a cgroup - * @scan: struct cgroup_scanner containing arguments for the scan - * - * Arguments include pointers to callback functions test_task() and - * process_task(). - * Iterate through all the tasks in a cgroup, calling test_task() for each, - * and if it returns true, call process_task() for it also. - * The test_task pointer may be NULL, meaning always true (select all tasks). - * Effectively duplicates cgroup_iter_{start,next,end}() - * but does not lock css_set_lock for the call to process_task(). - * The struct cgroup_scanner may be embedded in any structure of the caller's - * creation. - * It is guaranteed that process_task() will act on every task that - * is a member of the cgroup for the duration of this call. This - * function may or may not call process_task() for tasks that exit - * or move to a different cgroup during the call, or are forked or - * move into the cgroup during the call. - * - * Note that test_task() may be called with locks held, and may in some - * situations be called multiple times for the same task, so it should - * be cheap. - * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been - * pre-allocated and will be used for heap operations (and its "gt" member will - * be overwritten), else a temporary heap will be used (allocation of which - * may cause this function to fail). - */ -int cgroup_scan_tasks(struct cgroup_scanner *scan) -{ - int retval, i; - struct cgroup_iter it; - struct task_struct *p, *dropped; - /* Never dereference latest_task, since it's not refcounted */ - struct task_struct *latest_task = NULL; - struct ptr_heap tmp_heap; - struct ptr_heap *heap; - struct timespec latest_time = { 0, 0 }; - - if (scan->heap) { - /* The caller supplied our heap and pre-allocated its memory */ - heap = scan->heap; - heap->gt = &started_after; - } else { - /* We need to allocate our own heap memory */ - heap = &tmp_heap; - retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); - if (retval) - /* cannot allocate the heap */ - return retval; + * css_task_iter_next - return the next task for the iterator + * @it: the task iterator being iterated + * + * The "next" function for task iteration. @it should have been + * initialized via css_task_iter_start(). Returns NULL when the iteration + * reaches the end. + */ +struct task_struct *css_task_iter_next(struct css_task_iter *it) +{ + if (it->cur_task) { + put_task_struct(it->cur_task); + it->cur_task = NULL; } - again: - /* - * Scan tasks in the cgroup, using the scanner's "test_task" callback - * to determine which are of interest, and using the scanner's - * "process_task" callback to process any of them that need an update. - * Since we don't want to hold any locks during the task updates, - * gather tasks to be processed in a heap structure. - * The heap is sorted by descending task start time. - * If the statically-sized heap fills up, we overflow tasks that - * started later, and in future iterations only consider tasks that - * started after the latest task in the previous pass. This - * guarantees forward progress and that we don't miss any tasks. - */ - heap->size = 0; - cgroup_iter_start(scan->cg, &it); - while ((p = cgroup_iter_next(scan->cg, &it))) { - /* - * Only affect tasks that qualify per the caller's callback, - * if he provided one - */ - if (scan->test_task && !scan->test_task(p, scan)) - continue; - /* - * Only process tasks that started after the last task - * we processed - */ - if (!started_after_time(p, &latest_time, latest_task)) - continue; - dropped = heap_insert(heap, p); - if (dropped == NULL) { - /* - * The new task was inserted; the heap wasn't - * previously full - */ - get_task_struct(p); - } else if (dropped != p) { - /* - * The new task was inserted, and pushed out a - * different task - */ - get_task_struct(p); - put_task_struct(dropped); - } - /* - * Else the new task was newer than anything already in - * the heap and wasn't inserted - */ - } - cgroup_iter_end(scan->cg, &it); + spin_lock_bh(&css_set_lock); - if (heap->size) { - for (i = 0; i < heap->size; i++) { - struct task_struct *q = heap->ptrs[i]; - if (i == 0) { - latest_time = q->start_time; - latest_task = q; - } - /* Process the task per the caller's callback */ - scan->process_task(q, scan); - put_task_struct(q); - } - /* - * If we had to process any tasks at all, scan again - * in case some of them were in the middle of forking - * children that didn't get processed. - * Not the most efficient way to do it, but it avoids - * having to take callback_mutex in the fork path - */ - goto again; + if (it->task_pos) { + it->cur_task = list_entry(it->task_pos, struct task_struct, + cg_list); + get_task_struct(it->cur_task); + css_task_iter_advance(it); } - if (heap == &tmp_heap) - heap_free(&tmp_heap); - return 0; + + spin_unlock_bh(&css_set_lock); + + return it->cur_task; } -static void cgroup_transfer_one_task(struct task_struct *task, - struct cgroup_scanner *scan) +/** + * css_task_iter_end - finish task iteration + * @it: the task iterator to finish + * + * Finish task iteration started by css_task_iter_start(). + */ +void css_task_iter_end(struct css_task_iter *it) { - struct cgroup *new_cgroup = scan->data; + if (it->cur_cset) { + spin_lock_bh(&css_set_lock); + list_del(&it->iters_node); + put_css_set_locked(it->cur_cset); + spin_unlock_bh(&css_set_lock); + } - mutex_lock(&cgroup_mutex); - cgroup_attach_task(new_cgroup, task, false); - mutex_unlock(&cgroup_mutex); + if (it->cur_task) + put_task_struct(it->cur_task); } /** * cgroup_trasnsfer_tasks - move tasks from one cgroup to another * @to: cgroup to which the tasks will be moved * @from: cgroup in which the tasks currently reside + * + * Locking rules between cgroup_post_fork() and the migration path + * guarantee that, if a task is forking while being migrated, the new child + * is guaranteed to be either visible in the source cgroup after the + * parent's migration is complete or put into the target cgroup. No task + * can slip out of migration through forking. */ int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) { - struct cgroup_scanner scan; + LIST_HEAD(preloaded_csets); + struct cgrp_cset_link *link; + struct css_task_iter it; + struct task_struct *task; + int ret; + + mutex_lock(&cgroup_mutex); - scan.cg = from; - scan.test_task = NULL; /* select all tasks in cgroup */ - scan.process_task = cgroup_transfer_one_task; - scan.heap = NULL; - scan.data = to; + /* all tasks in @from are being moved, all csets are source */ + spin_lock_bh(&css_set_lock); + list_for_each_entry(link, &from->cset_links, cset_link) + cgroup_migrate_add_src(link->cset, to, &preloaded_csets); + spin_unlock_bh(&css_set_lock); - return cgroup_scan_tasks(&scan); + ret = cgroup_migrate_prepare_dst(to, &preloaded_csets); + if (ret) + goto out_err; + + /* + * Migrate tasks one-by-one until @form is empty. This fails iff + * ->can_attach() fails. + */ + do { + css_task_iter_start(&from->self, &it); + task = css_task_iter_next(&it); + if (task) + get_task_struct(task); + css_task_iter_end(&it); + + if (task) { + ret = cgroup_migrate(task, false, to); + put_task_struct(task); + } + } while (task && !ret); +out_err: + cgroup_migrate_finish(&preloaded_csets); + mutex_unlock(&cgroup_mutex); + return ret; } /* @@ -3331,14 +4130,12 @@ pid_t *list; /* how many elements the above list has */ int length; - /* how many files are using the current array */ - int use_count; /* each of these stored in a list by its cgroup */ struct list_head links; /* pointer to the cgroup we belong to, for list removal purposes */ struct cgroup *owner; - /* protects the other fields */ - struct rw_semaphore mutex; + /* for delayed destruction */ + struct delayed_work destroy_dwork; }; /* @@ -3354,12 +4151,51 @@ else return kmalloc(count * sizeof(pid_t), GFP_KERNEL); } + static void pidlist_free(void *p) { - if (is_vmalloc_addr(p)) - vfree(p); - else - kfree(p); + kvfree(p); +} + +/* + * Used to destroy all pidlists lingering waiting for destroy timer. None + * should be left afterwards. + */ +static void cgroup_pidlist_destroy_all(struct cgroup *cgrp) +{ + struct cgroup_pidlist *l, *tmp_l; + + mutex_lock(&cgrp->pidlist_mutex); + list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) + mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); + mutex_unlock(&cgrp->pidlist_mutex); + + flush_workqueue(cgroup_pidlist_destroy_wq); + BUG_ON(!list_empty(&cgrp->pidlists)); +} + +static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) +{ + struct delayed_work *dwork = to_delayed_work(work); + struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, + destroy_dwork); + struct cgroup_pidlist *tofree = NULL; + + mutex_lock(&l->owner->pidlist_mutex); + + /* + * Destroy iff we didn't get queued again. The state won't change + * as destroy_dwork can only be queued while locked. + */ + if (!delayed_work_pending(dwork)) { + list_del(&l->links); + pidlist_free(l->list); + put_pid_ns(l->key.ns); + tofree = l; + } + + mutex_unlock(&l->owner->pidlist_mutex); + kfree(tofree); } /* @@ -3392,54 +4228,93 @@ return dest; } +/* + * The two pid files - task and cgroup.procs - guaranteed that the result + * is sorted, which forced this whole pidlist fiasco. As pid order is + * different per namespace, each namespace needs differently sorted list, + * making it impossible to use, for example, single rbtree of member tasks + * sorted by task pointer. As pidlists can be fairly large, allocating one + * per open file is dangerous, so cgroup had to implement shared pool of + * pidlists keyed by cgroup and namespace. + * + * All this extra complexity was caused by the original implementation + * committing to an entirely unnecessary property. In the long term, we + * want to do away with it. Explicitly scramble sort order if on the + * default hierarchy so that no such expectation exists in the new + * interface. + * + * Scrambling is done by swapping every two consecutive bits, which is + * non-identity one-to-one mapping which disturbs sort order sufficiently. + */ +static pid_t pid_fry(pid_t pid) +{ + unsigned a = pid & 0x55555555; + unsigned b = pid & 0xAAAAAAAA; + + return (a << 1) | (b >> 1); +} + +static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid) +{ + if (cgroup_on_dfl(cgrp)) + return pid_fry(pid); + else + return pid; +} + static int cmppid(const void *a, const void *b) { return *(pid_t *)a - *(pid_t *)b; } +static int fried_cmppid(const void *a, const void *b) +{ + return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b); +} + +static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, + enum cgroup_filetype type) +{ + struct cgroup_pidlist *l; + /* don't need task_nsproxy() if we're looking at ourself */ + struct pid_namespace *ns = task_active_pid_ns(current); + + lockdep_assert_held(&cgrp->pidlist_mutex); + + list_for_each_entry(l, &cgrp->pidlists, links) + if (l->key.type == type && l->key.ns == ns) + return l; + return NULL; +} + /* * find the appropriate pidlist for our purpose (given procs vs tasks) * returns with the lock on that pidlist already held, and takes care * of the use count, or returns NULL with no locks held if we're out of * memory. */ -static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, - enum cgroup_filetype type) +static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, + enum cgroup_filetype type) { struct cgroup_pidlist *l; - /* don't need task_nsproxy() if we're looking at ourself */ - struct pid_namespace *ns = task_active_pid_ns(current); - /* - * We can't drop the pidlist_mutex before taking the l->mutex in case - * the last ref-holder is trying to remove l from the list at the same - * time. Holding the pidlist_mutex precludes somebody taking whichever - * list we find out from under us - compare release_pid_array(). - */ - mutex_lock(&cgrp->pidlist_mutex); - list_for_each_entry(l, &cgrp->pidlists, links) { - if (l->key.type == type && l->key.ns == ns) { - /* make sure l doesn't vanish out from under us */ - down_write(&l->mutex); - mutex_unlock(&cgrp->pidlist_mutex); - return l; - } - } + lockdep_assert_held(&cgrp->pidlist_mutex); + + l = cgroup_pidlist_find(cgrp, type); + if (l) + return l; + /* entry not found; create a new one */ - l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); - if (!l) { - mutex_unlock(&cgrp->pidlist_mutex); + l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); + if (!l) return l; - } - init_rwsem(&l->mutex); - down_write(&l->mutex); + + INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); l->key.type = type; - l->key.ns = get_pid_ns(ns); - l->use_count = 0; /* don't increment here */ - l->list = NULL; + /* don't need task_nsproxy() if we're looking at ourself */ + l->key.ns = get_pid_ns(task_active_pid_ns(current)); l->owner = cgrp; list_add(&l->links, &cgrp->pidlists); - mutex_unlock(&cgrp->pidlist_mutex); return l; } @@ -3452,10 +4327,12 @@ pid_t *array; int length; int pid, n = 0; /* used for populating the array */ - struct cgroup_iter it; + struct css_task_iter it; struct task_struct *tsk; struct cgroup_pidlist *l; + lockdep_assert_held(&cgrp->pidlist_mutex); + /* * If cgroup gets more users after we read count, we won't have * enough space - tough. This race is indistinguishable to the @@ -3467,8 +4344,8 @@ if (!array) return -ENOMEM; /* now, populate the array */ - cgroup_iter_start(cgrp, &it); - while ((tsk = cgroup_iter_next(cgrp, &it))) { + css_task_iter_start(&cgrp->self, &it); + while ((tsk = css_task_iter_next(&it))) { if (unlikely(n == length)) break; /* get tgid or pid for procs or tasks file respectively */ @@ -3479,23 +4356,26 @@ if (pid > 0) /* make sure to only use valid results */ array[n++] = pid; } - cgroup_iter_end(cgrp, &it); + css_task_iter_end(&it); length = n; /* now sort & (if procs) strip out duplicates */ - sort(array, length, sizeof(pid_t), cmppid, NULL); + if (cgroup_on_dfl(cgrp)) + sort(array, length, sizeof(pid_t), fried_cmppid, NULL); + else + sort(array, length, sizeof(pid_t), cmppid, NULL); if (type == CGROUP_FILE_PROCS) length = pidlist_uniq(array, length); - l = cgroup_pidlist_find(cgrp, type); + + l = cgroup_pidlist_find_create(cgrp, type); if (!l) { pidlist_free(array); return -ENOMEM; } - /* store array, freeing old if necessary - lock already held */ + + /* store array, freeing old if necessary */ pidlist_free(l->list); l->list = array; l->length = length; - l->use_count++; - up_write(&l->mutex); *lp = l; return 0; } @@ -3511,24 +4391,34 @@ */ int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { - int ret = -EINVAL; + struct kernfs_node *kn = kernfs_node_from_dentry(dentry); struct cgroup *cgrp; - struct cgroup_iter it; + struct css_task_iter it; struct task_struct *tsk; + /* it should be kernfs_node belonging to cgroupfs and is a directory */ + if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || + kernfs_type(kn) != KERNFS_DIR) + return -EINVAL; + + mutex_lock(&cgroup_mutex); + /* - * Validate dentry by checking the superblock operations, - * and make sure it's a directory. + * We aren't being called from kernfs and there's no guarantee on + * @kn->priv's validity. For this and css_tryget_online_from_dir(), + * @kn->priv is RCU safe. Let's do the RCU dancing. */ - if (dentry->d_sb->s_op != &cgroup_ops || - !S_ISDIR(dentry->d_inode->i_mode)) - goto err; - - ret = 0; - cgrp = dentry->d_fsdata; + rcu_read_lock(); + cgrp = rcu_dereference(kn->priv); + if (!cgrp || cgroup_is_dead(cgrp)) { + rcu_read_unlock(); + mutex_unlock(&cgroup_mutex); + return -ENOENT; + } + rcu_read_unlock(); - cgroup_iter_start(cgrp, &it); - while ((tsk = cgroup_iter_next(cgrp, &it))) { + css_task_iter_start(&cgrp->self, &it); + while ((tsk = css_task_iter_next(&it))) { switch (tsk->state) { case TASK_RUNNING: stats->nr_running++; @@ -3548,10 +4438,10 @@ break; } } - cgroup_iter_end(cgrp, &it); + css_task_iter_end(&it); -err: - return ret; + mutex_unlock(&cgroup_mutex); + return 0; } @@ -3569,20 +4459,45 @@ * after a seek to the start). Use a binary-search to find the * next pid to display, if any */ - struct cgroup_pidlist *l = s->private; + struct kernfs_open_file *of = s->private; + struct cgroup *cgrp = seq_css(s)->cgroup; + struct cgroup_pidlist *l; + enum cgroup_filetype type = seq_cft(s)->private; int index = 0, pid = *pos; - int *iter; + int *iter, ret; + + mutex_lock(&cgrp->pidlist_mutex); + + /* + * !NULL @of->priv indicates that this isn't the first start() + * after open. If the matching pidlist is around, we can use that. + * Look for it. Note that @of->priv can't be used directly. It + * could already have been destroyed. + */ + if (of->priv) + of->priv = cgroup_pidlist_find(cgrp, type); + + /* + * Either this is the first start() after open or the matching + * pidlist has been destroyed inbetween. Create a new one. + */ + if (!of->priv) { + ret = pidlist_array_load(cgrp, type, + (struct cgroup_pidlist **)&of->priv); + if (ret) + return ERR_PTR(ret); + } + l = of->priv; - down_read(&l->mutex); if (pid) { int end = l->length; while (index < end) { int mid = (index + end) / 2; - if (l->list[mid] == pid) { + if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) { index = mid; break; - } else if (l->list[mid] <= pid) + } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid) index = mid + 1; else end = mid; @@ -3593,19 +4508,25 @@ return NULL; /* Update the abstract position to be the actual pid that we found */ iter = l->list + index; - *pos = *iter; + *pos = cgroup_pid_fry(cgrp, *iter); return iter; } static void cgroup_pidlist_stop(struct seq_file *s, void *v) { - struct cgroup_pidlist *l = s->private; - up_read(&l->mutex); + struct kernfs_open_file *of = s->private; + struct cgroup_pidlist *l = of->priv; + + if (l) + mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, + CGROUP_PIDLIST_DESTROY_DELAY); + mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); } static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) { - struct cgroup_pidlist *l = s->private; + struct kernfs_open_file *of = s->private; + struct cgroup_pidlist *l = of->priv; pid_t *p = v; pid_t *end = l->list + l->length; /* @@ -3616,498 +4537,304 @@ if (p >= end) { return NULL; } else { - *pos = *p; + *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p); return p; } } static int cgroup_pidlist_show(struct seq_file *s, void *v) { - return seq_printf(s, "%d\n", *(int *)v); -} - -/* - * seq_operations functions for iterating on pidlists through seq_file - - * independent of whether it's tasks or procs - */ -static const struct seq_operations cgroup_pidlist_seq_operations = { - .start = cgroup_pidlist_start, - .stop = cgroup_pidlist_stop, - .next = cgroup_pidlist_next, - .show = cgroup_pidlist_show, -}; - -static void cgroup_release_pid_array(struct cgroup_pidlist *l) -{ - /* - * the case where we're the last user of this particular pidlist will - * have us remove it from the cgroup's list, which entails taking the - * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> - * pidlist_mutex, we have to take pidlist_mutex first. - */ - mutex_lock(&l->owner->pidlist_mutex); - down_write(&l->mutex); - BUG_ON(!l->use_count); - if (!--l->use_count) { - /* we're the last user if refcount is 0; remove and free */ - list_del(&l->links); - mutex_unlock(&l->owner->pidlist_mutex); - pidlist_free(l->list); - put_pid_ns(l->key.ns); - up_write(&l->mutex); - kfree(l); - return; - } - mutex_unlock(&l->owner->pidlist_mutex); - up_write(&l->mutex); -} - -static int cgroup_pidlist_release(struct inode *inode, struct file *file) -{ - struct cgroup_pidlist *l; - if (!(file->f_mode & FMODE_READ)) - return 0; - /* - * the seq_file will only be initialized if the file was opened for - * reading; hence we check if it's not null only in that case. - */ - l = ((struct seq_file *)file->private_data)->private; - cgroup_release_pid_array(l); - return seq_release(inode, file); -} + seq_printf(s, "%d\n", *(int *)v); -static const struct file_operations cgroup_pidlist_operations = { - .read = seq_read, - .llseek = seq_lseek, - .write = cgroup_file_write, - .release = cgroup_pidlist_release, -}; - -/* - * The following functions handle opens on a file that displays a pidlist - * (tasks or procs). Prepare an array of the process/thread IDs of whoever's - * in the cgroup. - */ -/* helper function for the two below it */ -static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) -{ - struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); - struct cgroup_pidlist *l; - int retval; - - /* Nothing to do for write-only files */ - if (!(file->f_mode & FMODE_READ)) - return 0; - - /* have the array populated */ - retval = pidlist_array_load(cgrp, type, &l); - if (retval) - return retval; - /* configure file information */ - file->f_op = &cgroup_pidlist_operations; - - retval = seq_open(file, &cgroup_pidlist_seq_operations); - if (retval) { - cgroup_release_pid_array(l); - return retval; - } - ((struct seq_file *)file->private_data)->private = l; return 0; } -static int cgroup_tasks_open(struct inode *unused, struct file *file) -{ - return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); -} -static int cgroup_procs_open(struct inode *unused, struct file *file) -{ - return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); -} -static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, - struct cftype *cft) +static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, + struct cftype *cft) { - return notify_on_release(cgrp); + return notify_on_release(css->cgroup); } -static int cgroup_write_notify_on_release(struct cgroup *cgrp, - struct cftype *cft, - u64 val) +static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) { - clear_bit(CGRP_RELEASABLE, &cgrp->flags); if (val) - set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); + set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); else - clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); - return 0; -} - -/* - * When dput() is called asynchronously, if umount has been done and - * then deactivate_super() in cgroup_free_fn() kills the superblock, - * there's a small window that vfs will see the root dentry with non-zero - * refcnt and trigger BUG(). - * - * That's why we hold a reference before dput() and drop it right after. - */ -static void cgroup_dput(struct cgroup *cgrp) -{ - struct super_block *sb = cgrp->root->sb; - - atomic_inc(&sb->s_active); - dput(cgrp->dentry); - deactivate_super(sb); -} - -/* - * Unregister event and free resources. - * - * Gets called from workqueue. - */ -static void cgroup_event_remove(struct work_struct *work) -{ - struct cgroup_event *event = container_of(work, struct cgroup_event, - remove); - struct cgroup *cgrp = event->cgrp; - - remove_wait_queue(event->wqh, &event->wait); - - event->cft->unregister_event(cgrp, event->cft, event->eventfd); - - /* Notify userspace the event is going away. */ - eventfd_signal(event->eventfd, 1); - - eventfd_ctx_put(event->eventfd); - kfree(event); - cgroup_dput(cgrp); -} - -/* - * Gets called on POLLHUP on eventfd when user closes it. - * - * Called with wqh->lock held and interrupts disabled. - */ -static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, - int sync, void *key) -{ - struct cgroup_event *event = container_of(wait, - struct cgroup_event, wait); - struct cgroup *cgrp = event->cgrp; - unsigned long flags = (unsigned long)key; - - if (flags & POLLHUP) { - /* - * If the event has been detached at cgroup removal, we - * can simply return knowing the other side will cleanup - * for us. - * - * We can't race against event freeing since the other - * side will require wqh->lock via remove_wait_queue(), - * which we hold. - */ - spin_lock(&cgrp->event_list_lock); - if (!list_empty(&event->list)) { - list_del_init(&event->list); - /* - * We are in atomic context, but cgroup_event_remove() - * may sleep, so we have to call it in workqueue. - */ - schedule_work(&event->remove); - } - spin_unlock(&cgrp->event_list_lock); - } - - return 0; -} - -static void cgroup_event_ptable_queue_proc(struct file *file, - wait_queue_head_t *wqh, poll_table *pt) -{ - struct cgroup_event *event = container_of(pt, - struct cgroup_event, pt); - - event->wqh = wqh; - add_wait_queue(wqh, &event->wait); -} - -/* - * Parse input and register new cgroup event handler. - * - * Input must be in format ' '. - * Interpretation of args is defined by control file implementation. - */ -static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft, - const char *buffer) -{ - struct cgroup_event *event = NULL; - struct cgroup *cgrp_cfile; - unsigned int efd, cfd; - struct file *efile = NULL; - struct file *cfile = NULL; - char *endp; - int ret; - - efd = simple_strtoul(buffer, &endp, 10); - if (*endp != ' ') - return -EINVAL; - buffer = endp + 1; - - cfd = simple_strtoul(buffer, &endp, 10); - if ((*endp != ' ') && (*endp != '\0')) - return -EINVAL; - buffer = endp + 1; - - event = kzalloc(sizeof(*event), GFP_KERNEL); - if (!event) - return -ENOMEM; - event->cgrp = cgrp; - INIT_LIST_HEAD(&event->list); - init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc); - init_waitqueue_func_entry(&event->wait, cgroup_event_wake); - INIT_WORK(&event->remove, cgroup_event_remove); - - efile = eventfd_fget(efd); - if (IS_ERR(efile)) { - ret = PTR_ERR(efile); - goto fail; - } - - event->eventfd = eventfd_ctx_fileget(efile); - if (IS_ERR(event->eventfd)) { - ret = PTR_ERR(event->eventfd); - goto fail; - } - - cfile = fget(cfd); - if (!cfile) { - ret = -EBADF; - goto fail; - } - - /* the process need read permission on control file */ - /* AV: shouldn't we check that it's been opened for read instead? */ - ret = inode_permission(file_inode(cfile), MAY_READ); - if (ret < 0) - goto fail; - - event->cft = __file_cft(cfile); - if (IS_ERR(event->cft)) { - ret = PTR_ERR(event->cft); - goto fail; - } - - /* - * The file to be monitored must be in the same cgroup as - * cgroup.event_control is. - */ - cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent); - if (cgrp_cfile != cgrp) { - ret = -EINVAL; - goto fail; - } - - if (!event->cft->register_event || !event->cft->unregister_event) { - ret = -EINVAL; - goto fail; - } - - ret = event->cft->register_event(cgrp, event->cft, - event->eventfd, buffer); - if (ret) - goto fail; - - efile->f_op->poll(efile, &event->pt); - - /* - * Events should be removed after rmdir of cgroup directory, but before - * destroying subsystem state objects. Let's take reference to cgroup - * directory dentry to do that. - */ - dget(cgrp->dentry); - - spin_lock(&cgrp->event_list_lock); - list_add(&event->list, &cgrp->event_list); - spin_unlock(&cgrp->event_list_lock); - - fput(cfile); - fput(efile); - + clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); return 0; - -fail: - if (cfile) - fput(cfile); - - if (event && event->eventfd && !IS_ERR(event->eventfd)) - eventfd_ctx_put(event->eventfd); - - if (!IS_ERR_OR_NULL(efile)) - fput(efile); - - kfree(event); - - return ret; } -static u64 cgroup_clone_children_read(struct cgroup *cgrp, - struct cftype *cft) +static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, + struct cftype *cft) { - return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); + return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); } -static int cgroup_clone_children_write(struct cgroup *cgrp, - struct cftype *cft, - u64 val) +static int cgroup_clone_children_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) { if (val) - set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); else - clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); + clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); return 0; } -/* - * for the common functions, 'private' gives the type of file - */ -/* for hysterical raisins, we can't put this on the older files */ -#define CGROUP_FILE_GENERIC_PREFIX "cgroup." -static struct cftype files[] = { +/* cgroup core interface files for the default hierarchy */ +static struct cftype cgroup_dfl_base_files[] = { { - .name = "tasks", - .open = cgroup_tasks_open, - .write_u64 = cgroup_tasks_write, - .release = cgroup_pidlist_release, - .mode = S_IRUGO | S_IWUSR, + .name = "cgroup.procs", + .file_offset = offsetof(struct cgroup, procs_file), + .seq_start = cgroup_pidlist_start, + .seq_next = cgroup_pidlist_next, + .seq_stop = cgroup_pidlist_stop, + .seq_show = cgroup_pidlist_show, + .private = CGROUP_FILE_PROCS, + .write = cgroup_procs_write, }, { - .name = CGROUP_FILE_GENERIC_PREFIX "procs", - .open = cgroup_procs_open, - .write_u64 = cgroup_procs_write, - .release = cgroup_pidlist_release, - .mode = S_IRUGO | S_IWUSR, + .name = "cgroup.controllers", + .flags = CFTYPE_ONLY_ON_ROOT, + .seq_show = cgroup_root_controllers_show, }, { - .name = "notify_on_release", - .read_u64 = cgroup_read_notify_on_release, - .write_u64 = cgroup_write_notify_on_release, + .name = "cgroup.controllers", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = cgroup_controllers_show, }, { - .name = CGROUP_FILE_GENERIC_PREFIX "event_control", - .write_string = cgroup_write_event_control, - .mode = S_IWUGO, + .name = "cgroup.subtree_control", + .seq_show = cgroup_subtree_control_show, + .write = cgroup_subtree_control_write, + }, + { + .name = "cgroup.events", + .flags = CFTYPE_NOT_ON_ROOT, + .file_offset = offsetof(struct cgroup, events_file), + .seq_show = cgroup_events_show, + }, + { } /* terminate */ +}; + +/* cgroup core interface files for the legacy hierarchies */ +static struct cftype cgroup_legacy_base_files[] = { + { + .name = "cgroup.procs", + .seq_start = cgroup_pidlist_start, + .seq_next = cgroup_pidlist_next, + .seq_stop = cgroup_pidlist_stop, + .seq_show = cgroup_pidlist_show, + .private = CGROUP_FILE_PROCS, + .write = cgroup_procs_write, }, { .name = "cgroup.clone_children", - .flags = CFTYPE_INSANE, .read_u64 = cgroup_clone_children_read, .write_u64 = cgroup_clone_children_write, }, { .name = "cgroup.sane_behavior", .flags = CFTYPE_ONLY_ON_ROOT, - .read_seq_string = cgroup_sane_behavior_show, + .seq_show = cgroup_sane_behavior_show, + }, + { + .name = "tasks", + .seq_start = cgroup_pidlist_start, + .seq_next = cgroup_pidlist_next, + .seq_stop = cgroup_pidlist_stop, + .seq_show = cgroup_pidlist_show, + .private = CGROUP_FILE_TASKS, + .write = cgroup_tasks_write, + }, + { + .name = "notify_on_release", + .read_u64 = cgroup_read_notify_on_release, + .write_u64 = cgroup_write_notify_on_release, }, { .name = "release_agent", .flags = CFTYPE_ONLY_ON_ROOT, - .read_seq_string = cgroup_release_agent_show, - .write_string = cgroup_release_agent_write, - .max_write_len = PATH_MAX, + .seq_show = cgroup_release_agent_show, + .write = cgroup_release_agent_write, + .max_write_len = PATH_MAX - 1, }, { } /* terminate */ }; -/** - * cgroup_populate_dir - selectively creation of files in a directory - * @cgrp: target cgroup - * @base_files: true if the base files should be added - * @subsys_mask: mask of the subsystem ids whose files should be added +/* + * css destruction is four-stage process. + * + * 1. Destruction starts. Killing of the percpu_ref is initiated. + * Implemented in kill_css(). + * + * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs + * and thus css_tryget_online() is guaranteed to fail, the css can be + * offlined by invoking offline_css(). After offlining, the base ref is + * put. Implemented in css_killed_work_fn(). + * + * 3. When the percpu_ref reaches zero, the only possible remaining + * accessors are inside RCU read sections. css_release() schedules the + * RCU callback. + * + * 4. After the grace period, the css can be freed. Implemented in + * css_free_work_fn(). + * + * It is actually hairier because both step 2 and 4 require process context + * and thus involve punting to css->destroy_work adding two additional + * steps to the already complex sequence. */ -static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files, - unsigned long subsys_mask) +static void css_free_work_fn(struct work_struct *work) { - int err; - struct cgroup_subsys *ss; + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; + + percpu_ref_exit(&css->refcnt); + + if (ss) { + /* css free path */ + struct cgroup_subsys_state *parent = css->parent; + int id = css->id; + + ss->css_free(css); + cgroup_idr_remove(&ss->css_idr, id); + cgroup_put(cgrp); + + if (parent) + css_put(parent); + } else { + /* cgroup free path */ + atomic_dec(&cgrp->root->nr_cgrps); + cgroup_pidlist_destroy_all(cgrp); + cancel_work_sync(&cgrp->release_agent_work); - if (base_files) { - err = cgroup_addrm_files(cgrp, NULL, files, true); - if (err < 0) - return err; + if (cgroup_parent(cgrp)) { + /* + * We get a ref to the parent, and put the ref when + * this cgroup is being freed, so it's guaranteed + * that the parent won't be destroyed before its + * children. + */ + cgroup_put(cgroup_parent(cgrp)); + kernfs_put(cgrp->kn); + kfree(cgrp); + } else { + /* + * This is root cgroup's refcnt reaching zero, + * which indicates that the root should be + * released. + */ + cgroup_destroy_root(cgrp->root); + } } +} - /* process cftsets of each subsystem */ - for_each_subsys(cgrp->root, ss) { - struct cftype_set *set; - if (!test_bit(ss->subsys_id, &subsys_mask)) - continue; +static void css_free_rcu_fn(struct rcu_head *rcu_head) +{ + struct cgroup_subsys_state *css = + container_of(rcu_head, struct cgroup_subsys_state, rcu_head); - list_for_each_entry(set, &ss->cftsets, node) - cgroup_addrm_files(cgrp, ss, set->cfts, true); - } + INIT_WORK(&css->destroy_work, css_free_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); +} + +static void css_release_work_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; + + mutex_lock(&cgroup_mutex); + + css->flags |= CSS_RELEASED; + list_del_rcu(&css->sibling); + + if (ss) { + /* css release path */ + cgroup_idr_replace(&ss->css_idr, NULL, css->id); + if (ss->css_released) + ss->css_released(css); + } else { + /* cgroup release path */ + cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); + cgrp->id = -1; - /* This cgroup is ready now */ - for_each_subsys(cgrp->root, ss) { - struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; /* - * Update id->css pointer and make this css visible from - * CSS ID functions. This pointer will be dereferened - * from RCU-read-side without locks. + * There are two control paths which try to determine + * cgroup from dentry without going through kernfs - + * cgroupstats_build() and css_tryget_online_from_dir(). + * Those are supported by RCU protecting clearing of + * cgrp->kn->priv backpointer. */ - if (css->id) - rcu_assign_pointer(css->id->css, css); + RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL); } - return 0; + mutex_unlock(&cgroup_mutex); + + call_rcu(&css->rcu_head, css_free_rcu_fn); } -static void css_dput_fn(struct work_struct *work) +static void css_release(struct percpu_ref *ref) { struct cgroup_subsys_state *css = - container_of(work, struct cgroup_subsys_state, dput_work); + container_of(ref, struct cgroup_subsys_state, refcnt); - cgroup_dput(css->cgroup); + INIT_WORK(&css->destroy_work, css_release_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); } -static void init_cgroup_css(struct cgroup_subsys_state *css, - struct cgroup_subsys *ss, - struct cgroup *cgrp) +static void init_and_link_css(struct cgroup_subsys_state *css, + struct cgroup_subsys *ss, struct cgroup *cgrp) { + lockdep_assert_held(&cgroup_mutex); + + cgroup_get(cgrp); + + memset(css, 0, sizeof(*css)); css->cgroup = cgrp; - atomic_set(&css->refcnt, 1); - css->flags = 0; - css->id = NULL; - if (cgrp == dummytop) - css->flags |= CSS_ROOT; - BUG_ON(cgrp->subsys[ss->subsys_id]); - cgrp->subsys[ss->subsys_id] = css; + css->ss = ss; + css->id = -1; + INIT_LIST_HEAD(&css->sibling); + INIT_LIST_HEAD(&css->children); + css->serial_nr = css_serial_nr_next++; + atomic_set(&css->online_cnt, 0); - /* - * css holds an extra ref to @cgrp->dentry which is put on the last - * css_put(). dput() requires process context, which css_put() may - * be called without. @css->dput_work will be used to invoke - * dput() asynchronously from css_put(). - */ - INIT_WORK(&css->dput_work, css_dput_fn); + if (cgroup_parent(cgrp)) { + css->parent = cgroup_css(cgroup_parent(cgrp), ss); + css_get(css->parent); + } + + BUG_ON(cgroup_css(cgrp, ss)); } -/* invoke ->post_create() on a new CSS and mark it online if successful */ -static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp) +/* invoke ->css_online() on a new CSS and mark it online if successful */ +static int online_css(struct cgroup_subsys_state *css) { + struct cgroup_subsys *ss = css->ss; int ret = 0; lockdep_assert_held(&cgroup_mutex); if (ss->css_online) - ret = ss->css_online(cgrp); - if (!ret) - cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE; + ret = ss->css_online(css); + if (!ret) { + css->flags |= CSS_ONLINE; + rcu_assign_pointer(css->cgroup->subsys[ss->id], css); + + atomic_inc(&css->online_cnt); + if (css->parent) + atomic_inc(&css->parent->online_cnt); + } return ret; } -/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */ -static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp) - __releases(&cgroup_mutex) __acquires(&cgroup_mutex) +/* if the CSS is online, invoke ->css_offline() on it and mark it offline */ +static void offline_css(struct cgroup_subsys_state *css) { - struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; + struct cgroup_subsys *ss = css->ss; lockdep_assert_held(&cgroup_mutex); @@ -4115,482 +4842,437 @@ return; if (ss->css_offline) - ss->css_offline(cgrp); + ss->css_offline(css); + + css->flags &= ~CSS_ONLINE; + RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); - cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE; + wake_up_all(&css->cgroup->offline_waitq); } -/* - * cgroup_create - create a cgroup - * @parent: cgroup that will be parent of the new cgroup - * @dentry: dentry of the new cgroup - * @mode: mode to set on new inode - * - * Must be called with the mutex on the parent inode held +/** + * create_css - create a cgroup_subsys_state + * @cgrp: the cgroup new css will be associated with + * @ss: the subsys of new css + * @visible: whether to create control knobs for the new css or not + * + * Create a new css associated with @cgrp - @ss pair. On success, the new + * css is online and installed in @cgrp with all interface files created if + * @visible. Returns 0 on success, -errno on failure. */ -static long cgroup_create(struct cgroup *parent, struct dentry *dentry, - umode_t mode) +static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss, + bool visible) { - struct cgroup *cgrp; - struct cgroup_name *name; - struct cgroupfs_root *root = parent->root; - int err = 0; - struct cgroup_subsys *ss; - struct super_block *sb = root->sb; - - /* allocate the cgroup and its ID, 0 is reserved for the root */ - cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); - if (!cgrp) - return -ENOMEM; - - name = cgroup_alloc_name(dentry); - if (!name) - goto err_free_cgrp; - rcu_assign_pointer(cgrp->name, name); - - cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL); - if (cgrp->id < 0) - goto err_free_name; - - /* - * Only live parents can have children. Note that the liveliness - * check isn't strictly necessary because cgroup_mkdir() and - * cgroup_rmdir() are fully synchronized by i_mutex; however, do it - * anyway so that locking is contained inside cgroup proper and we - * don't get nasty surprises if we ever grow another caller. - */ - if (!cgroup_lock_live_group(parent)) { - err = -ENODEV; - goto err_free_id; - } - - /* Grab a reference on the superblock so the hierarchy doesn't - * get deleted on unmount if there are child cgroups. This - * can be done outside cgroup_mutex, since the sb can't - * disappear while someone has an open control file on the - * fs */ - atomic_inc(&sb->s_active); - - init_cgroup_housekeeping(cgrp); - - dentry->d_fsdata = cgrp; - cgrp->dentry = dentry; - - cgrp->parent = parent; - cgrp->root = parent->root; + struct cgroup *parent = cgroup_parent(cgrp); + struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); + struct cgroup_subsys_state *css; + int err; - if (notify_on_release(parent)) - set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); + lockdep_assert_held(&cgroup_mutex); - if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) - set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); + css = ss->css_alloc(parent_css); + if (IS_ERR(css)) + return PTR_ERR(css); - for_each_subsys(root, ss) { - struct cgroup_subsys_state *css; + init_and_link_css(css, ss, cgrp); - css = ss->css_alloc(cgrp); - if (IS_ERR(css)) { - err = PTR_ERR(css); - goto err_free_all; - } - init_cgroup_css(css, ss, cgrp); - if (ss->use_id) { - err = alloc_css_id(ss, parent, cgrp); - if (err) - goto err_free_all; - } - } + err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); + if (err) + goto err_free_css; - /* - * Create directory. cgroup_create_file() returns with the new - * directory locked on success so that it can be populated without - * dropping cgroup_mutex. - */ - err = cgroup_create_file(dentry, S_IFDIR | mode, sb); + err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); if (err < 0) - goto err_free_all; - lockdep_assert_held(&dentry->d_inode->i_mutex); + goto err_free_percpu_ref; + css->id = err; - /* allocation complete, commit to creation */ - list_add_tail(&cgrp->allcg_node, &root->allcg_list); - list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children); - root->number_of_cgroups++; - - /* each css holds a ref to the cgroup's dentry */ - for_each_subsys(root, ss) - dget(dentry); - - /* hold a ref to the parent's dentry */ - dget(parent->dentry); - - /* creation succeeded, notify subsystems */ - for_each_subsys(root, ss) { - err = online_css(ss, cgrp); + if (visible) { + err = css_populate_dir(css, NULL); if (err) - goto err_destroy; - - if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && - parent->parent) { - pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", - current->comm, current->pid, ss->name); - if (!strcmp(ss->name, "memory")) - pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n"); - ss->warned_broken_hierarchy = true; - } + goto err_free_id; } - err = cgroup_populate_dir(cgrp, true, root->subsys_mask); + /* @css is ready to be brought online now, make it visible */ + list_add_tail_rcu(&css->sibling, &parent_css->children); + cgroup_idr_replace(&ss->css_idr, css, css->id); + + err = online_css(css); if (err) - goto err_destroy; + goto err_list_del; - mutex_unlock(&cgroup_mutex); - mutex_unlock(&cgrp->dentry->d_inode->i_mutex); + if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && + cgroup_parent(parent)) { + pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", + current->comm, current->pid, ss->name); + if (!strcmp(ss->name, "memory")) + pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); + ss->warned_broken_hierarchy = true; + } return 0; -err_free_all: - for_each_subsys(root, ss) { - if (cgrp->subsys[ss->subsys_id]) - ss->css_free(cgrp); - } - mutex_unlock(&cgroup_mutex); - /* Release the reference count that we took on the superblock */ - deactivate_super(sb); +err_list_del: + list_del_rcu(&css->sibling); + css_clear_dir(css, NULL); err_free_id: - ida_simple_remove(&root->cgroup_ida, cgrp->id); -err_free_name: - kfree(rcu_dereference_raw(cgrp->name)); -err_free_cgrp: - kfree(cgrp); + cgroup_idr_remove(&ss->css_idr, css->id); +err_free_percpu_ref: + percpu_ref_exit(&css->refcnt); +err_free_css: + call_rcu(&css->rcu_head, css_free_rcu_fn); return err; - -err_destroy: - cgroup_destroy_locked(cgrp); - mutex_unlock(&cgroup_mutex); - mutex_unlock(&dentry->d_inode->i_mutex); - return err; -} - -static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) -{ - struct cgroup *c_parent = dentry->d_parent->d_fsdata; - - /* the vfs holds inode->i_mutex already */ - return cgroup_create(c_parent, dentry, mode | S_IFDIR); } -static int cgroup_destroy_locked(struct cgroup *cgrp) - __releases(&cgroup_mutex) __acquires(&cgroup_mutex) +static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, + umode_t mode) { - struct dentry *d = cgrp->dentry; - struct cgroup *parent = cgrp->parent; - struct cgroup_event *event, *tmp; + struct cgroup *parent, *cgrp; + struct cgroup_root *root; struct cgroup_subsys *ss; + struct kernfs_node *kn; + int ssid, ret; - lockdep_assert_held(&d->d_inode->i_mutex); - lockdep_assert_held(&cgroup_mutex); - - if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) - return -EBUSY; - - /* - * Block new css_tryget() by deactivating refcnt and mark @cgrp - * removed. This makes future css_tryget() and child creation - * attempts fail thus maintaining the removal conditions verified - * above. + /* Do not accept '\n' to prevent making /proc//cgroup unparsable. */ - for_each_subsys(cgrp->root, ss) { - struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; + if (strchr(name, '\n')) + return -EINVAL; + + parent = cgroup_kn_lock_live(parent_kn); + if (!parent) + return -ENODEV; + root = parent->root; - WARN_ON(atomic_read(&css->refcnt) < 0); - atomic_add(CSS_DEACT_BIAS, &css->refcnt); + /* allocate the cgroup and its ID, 0 is reserved for the root */ + cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); + if (!cgrp) { + ret = -ENOMEM; + goto out_unlock; } - set_bit(CGRP_REMOVED, &cgrp->flags); - /* tell subsystems to initate destruction */ - for_each_subsys(cgrp->root, ss) - offline_css(ss, cgrp); + ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); + if (ret) + goto out_free_cgrp; /* - * Put all the base refs. Each css holds an extra reference to the - * cgroup's dentry and cgroup removal proceeds regardless of css - * refs. On the last put of each css, whenever that may be, the - * extra dentry ref is put so that dentry destruction happens only - * after all css's are released. + * Temporarily set the pointer to NULL, so idr_find() won't return + * a half-baked cgroup. */ - for_each_subsys(cgrp->root, ss) - css_put(cgrp->subsys[ss->subsys_id]); + cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); + if (cgrp->id < 0) { + ret = -ENOMEM; + goto out_cancel_ref; + } - raw_spin_lock(&release_list_lock); - if (!list_empty(&cgrp->release_list)) - list_del_init(&cgrp->release_list); - raw_spin_unlock(&release_list_lock); + init_cgroup_housekeeping(cgrp); - /* delete this cgroup from parent->children */ - list_del_rcu(&cgrp->sibling); - list_del_init(&cgrp->allcg_node); + cgrp->self.parent = &parent->self; + cgrp->root = root; + + if (notify_on_release(parent)) + set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); - dget(d); - cgroup_d_remove_dir(d); - dput(d); + if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); - set_bit(CGRP_RELEASABLE, &parent->flags); - check_for_release(parent); + /* create the directory */ + kn = kernfs_create_dir(parent->kn, name, mode, cgrp); + if (IS_ERR(kn)) { + ret = PTR_ERR(kn); + goto out_free_id; + } + cgrp->kn = kn; /* - * Unregister events and notify userspace. - * Notify userspace about cgroup removing only after rmdir of cgroup - * directory to avoid race between userspace and kernelspace. + * This extra ref will be put in cgroup_free_fn() and guarantees + * that @cgrp->kn is always accessible. */ - spin_lock(&cgrp->event_list_lock); - list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) { - list_del_init(&event->list); - schedule_work(&event->remove); - } - spin_unlock(&cgrp->event_list_lock); + kernfs_get(kn); - return 0; -} + cgrp->self.serial_nr = css_serial_nr_next++; -static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) -{ - int ret; + /* allocation complete, commit to creation */ + list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); + atomic_inc(&root->nr_cgrps); + cgroup_get(parent); - mutex_lock(&cgroup_mutex); - ret = cgroup_destroy_locked(dentry->d_fsdata); - mutex_unlock(&cgroup_mutex); + /* + * @cgrp is now fully operational. If something fails after this + * point, it'll be released via the normal destruction path. + */ + cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); - return ret; -} + ret = cgroup_kn_set_ugid(kn); + if (ret) + goto out_destroy; -static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss) -{ - INIT_LIST_HEAD(&ss->cftsets); + ret = css_populate_dir(&cgrp->self, NULL); + if (ret) + goto out_destroy; + + /* let's create and online css's */ + for_each_subsys(ss, ssid) { + if (parent->child_subsys_mask & (1 << ssid)) { + ret = create_css(cgrp, ss, + parent->subtree_control & (1 << ssid)); + if (ret) + goto out_destroy; + } + } /* - * base_cftset is embedded in subsys itself, no need to worry about - * deregistration. + * On the default hierarchy, a child doesn't automatically inherit + * subtree_control from the parent. Each is configured manually. */ - if (ss->base_cftypes) { - ss->base_cftset.cfts = ss->base_cftypes; - list_add_tail(&ss->base_cftset.node, &ss->cftsets); + if (!cgroup_on_dfl(cgrp)) { + cgrp->subtree_control = parent->subtree_control; + cgroup_refresh_child_subsys_mask(cgrp); } + + kernfs_activate(kn); + + ret = 0; + goto out_unlock; + +out_free_id: + cgroup_idr_remove(&root->cgroup_idr, cgrp->id); +out_cancel_ref: + percpu_ref_exit(&cgrp->self.refcnt); +out_free_cgrp: + kfree(cgrp); +out_unlock: + cgroup_kn_unlock(parent_kn); + return ret; + +out_destroy: + cgroup_destroy_locked(cgrp); + goto out_unlock; } -static void __init cgroup_init_subsys(struct cgroup_subsys *ss) +/* + * This is called when the refcnt of a css is confirmed to be killed. + * css_tryget_online() is now guaranteed to fail. Tell the subsystem to + * initate destruction and put the css ref from kill_css(). + */ +static void css_killed_work_fn(struct work_struct *work) { - struct cgroup_subsys_state *css; - - printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); mutex_lock(&cgroup_mutex); - /* init base cftset */ - cgroup_init_cftsets(ss); + do { + offline_css(css); + css_put(css); + /* @css can't go away while we're holding cgroup_mutex */ + css = css->parent; + } while (css && atomic_dec_and_test(&css->online_cnt)); - /* Create the top cgroup state for this subsystem */ - list_add(&ss->sibling, &rootnode.subsys_list); - ss->root = &rootnode; - css = ss->css_alloc(dummytop); - /* We don't handle early failures gracefully */ - BUG_ON(IS_ERR(css)); - init_cgroup_css(css, ss, dummytop); + mutex_unlock(&cgroup_mutex); +} - /* Update the init_css_set to contain a subsys - * pointer to this state - since the subsystem is - * newly registered, all tasks and hence the - * init_css_set is in the subsystem's top cgroup. */ - init_css_set.subsys[ss->subsys_id] = css; +/* css kill confirmation processing requires process context, bounce */ +static void css_killed_ref_fn(struct percpu_ref *ref) +{ + struct cgroup_subsys_state *css = + container_of(ref, struct cgroup_subsys_state, refcnt); - need_forkexit_callback |= ss->fork || ss->exit; + if (atomic_dec_and_test(&css->online_cnt)) { + INIT_WORK(&css->destroy_work, css_killed_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); + } +} - /* At system boot, before all subsystems have been - * registered, no tasks have been forked, so we don't - * need to invoke fork callbacks here. */ - BUG_ON(!list_empty(&init_task.tasks)); +/** + * kill_css - destroy a css + * @css: css to destroy + * + * This function initiates destruction of @css by removing cgroup interface + * files and putting its base reference. ->css_offline() will be invoked + * asynchronously once css_tryget_online() is guaranteed to fail and when + * the reference count reaches zero, @css will be released. + */ +static void kill_css(struct cgroup_subsys_state *css) +{ + lockdep_assert_held(&cgroup_mutex); - BUG_ON(online_css(ss, dummytop)); + /* + * This must happen before css is disassociated with its cgroup. + * See seq_css() for details. + */ + css_clear_dir(css, NULL); - mutex_unlock(&cgroup_mutex); + /* + * Killing would put the base ref, but we need to keep it alive + * until after ->css_offline(). + */ + css_get(css); - /* this function shouldn't be used with modular subsystems, since they - * need to register a subsys_id, among other things */ - BUG_ON(ss->module); + /* + * cgroup core guarantees that, by the time ->css_offline() is + * invoked, no new css reference will be given out via + * css_tryget_online(). We can't simply call percpu_ref_kill() and + * proceed to offlining css's because percpu_ref_kill() doesn't + * guarantee that the ref is seen as killed on all CPUs on return. + * + * Use percpu_ref_kill_and_confirm() to get notifications as each + * css is confirmed to be seen as killed on all CPUs. + */ + percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); } /** - * cgroup_load_subsys: load and register a modular subsystem at runtime - * @ss: the subsystem to load + * cgroup_destroy_locked - the first stage of cgroup destruction + * @cgrp: cgroup to be destroyed * - * This function should be called in a modular subsystem's initcall. If the - * subsystem is built as a module, it will be assigned a new subsys_id and set - * up for use. If the subsystem is built-in anyway, work is delegated to the - * simpler cgroup_init_subsys. + * css's make use of percpu refcnts whose killing latency shouldn't be + * exposed to userland and are RCU protected. Also, cgroup core needs to + * guarantee that css_tryget_online() won't succeed by the time + * ->css_offline() is invoked. To satisfy all the requirements, + * destruction is implemented in the following two steps. + * + * s1. Verify @cgrp can be destroyed and mark it dying. Remove all + * userland visible parts and start killing the percpu refcnts of + * css's. Set up so that the next stage will be kicked off once all + * the percpu refcnts are confirmed to be killed. + * + * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the + * rest of destruction. Once all cgroup references are gone, the + * cgroup is RCU-freed. + * + * This function implements s1. After this step, @cgrp is gone as far as + * the userland is concerned and a new cgroup with the same name may be + * created. As cgroup doesn't care about the names internally, this + * doesn't cause any problem. */ -int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss) +static int cgroup_destroy_locked(struct cgroup *cgrp) + __releases(&cgroup_mutex) __acquires(&cgroup_mutex) { struct cgroup_subsys_state *css; - int i, ret; - struct hlist_node *tmp; - struct css_set *cg; - unsigned long key; + struct cgrp_cset_link *link; + int ssid; - /* check name and function validity */ - if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN || - ss->css_alloc == NULL || ss->css_free == NULL) - return -EINVAL; + lockdep_assert_held(&cgroup_mutex); /* - * we don't support callbacks in modular subsystems. this check is - * before the ss->module check for consistency; a subsystem that could - * be a module should still have no callbacks even if the user isn't - * compiling it as one. + * Only migration can raise populated from zero and we're already + * holding cgroup_mutex. */ - if (ss->fork || ss->exit) - return -EINVAL; + if (cgroup_is_populated(cgrp)) + return -EBUSY; /* - * an optionally modular subsystem is built-in: we want to do nothing, - * since cgroup_init_subsys will have already taken care of it. + * Make sure there's no live children. We can't test emptiness of + * ->self.children as dead children linger on it while being + * drained; otherwise, "rmdir parent/child parent" may fail. */ - if (ss->module == NULL) { - /* a sanity check */ - BUG_ON(subsys[ss->subsys_id] != ss); - return 0; - } - - /* init base cftset */ - cgroup_init_cftsets(ss); - - mutex_lock(&cgroup_mutex); - subsys[ss->subsys_id] = ss; + if (css_has_online_children(&cgrp->self)) + return -EBUSY; /* - * no ss->css_alloc seems to need anything important in the ss - * struct, so this can happen first (i.e. before the rootnode - * attachment). + * Mark @cgrp and the associated csets dead. The former prevents + * further task migration and child creation by disabling + * cgroup_lock_live_group(). The latter makes the csets ignored by + * the migration path. */ - css = ss->css_alloc(dummytop); - if (IS_ERR(css)) { - /* failure case - need to deassign the subsys[] slot. */ - subsys[ss->subsys_id] = NULL; - mutex_unlock(&cgroup_mutex); - return PTR_ERR(css); - } + cgrp->self.flags &= ~CSS_ONLINE; - list_add(&ss->sibling, &rootnode.subsys_list); - ss->root = &rootnode; + spin_lock_bh(&css_set_lock); + list_for_each_entry(link, &cgrp->cset_links, cset_link) + link->cset->dead = true; + spin_unlock_bh(&css_set_lock); - /* our new subsystem will be attached to the dummy hierarchy. */ - init_cgroup_css(css, ss, dummytop); - /* init_idr must be after init_cgroup_css because it sets css->id. */ - if (ss->use_id) { - ret = cgroup_init_idr(ss, css); - if (ret) - goto err_unload; - } + /* initiate massacre of all css's */ + for_each_css(css, ssid, cgrp) + kill_css(css); /* - * Now we need to entangle the css into the existing css_sets. unlike - * in cgroup_init_subsys, there are now multiple css_sets, so each one - * will need a new pointer to it; done by iterating the css_set_table. - * furthermore, modifying the existing css_sets will corrupt the hash - * table state, so each changed css_set will need its hash recomputed. - * this is all done under the css_set_lock. + * Remove @cgrp directory along with the base files. @cgrp has an + * extra ref on its kn. */ - write_lock(&css_set_lock); - hash_for_each_safe(css_set_table, i, tmp, cg, hlist) { - /* skip entries that we already rehashed */ - if (cg->subsys[ss->subsys_id]) - continue; - /* remove existing entry */ - hash_del(&cg->hlist); - /* set new value */ - cg->subsys[ss->subsys_id] = css; - /* recompute hash and restore entry */ - key = css_set_hash(cg->subsys); - hash_add(css_set_table, &cg->hlist, key); - } - write_unlock(&css_set_lock); + kernfs_remove(cgrp->kn); - ret = online_css(ss, dummytop); - if (ret) - goto err_unload; + check_for_release(cgroup_parent(cgrp)); + + /* put the base reference */ + percpu_ref_kill(&cgrp->self.refcnt); - /* success! */ - mutex_unlock(&cgroup_mutex); return 0; +}; -err_unload: - mutex_unlock(&cgroup_mutex); - /* @ss can't be mounted here as try_module_get() would fail */ - cgroup_unload_subsys(ss); +static int cgroup_rmdir(struct kernfs_node *kn) +{ + struct cgroup *cgrp; + int ret = 0; + + cgrp = cgroup_kn_lock_live(kn); + if (!cgrp) + return 0; + + ret = cgroup_destroy_locked(cgrp); + + cgroup_kn_unlock(kn); return ret; } -EXPORT_SYMBOL_GPL(cgroup_load_subsys); -/** - * cgroup_unload_subsys: unload a modular subsystem - * @ss: the subsystem to unload - * - * This function should be called in a modular subsystem's exitcall. When this - * function is invoked, the refcount on the subsystem's module will be 0, so - * the subsystem will not be attached to any hierarchy. - */ -void cgroup_unload_subsys(struct cgroup_subsys *ss) -{ - struct cg_cgroup_link *link; +static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { + .remount_fs = cgroup_remount, + .show_options = cgroup_show_options, + .mkdir = cgroup_mkdir, + .rmdir = cgroup_rmdir, + .rename = cgroup_rename, +}; - BUG_ON(ss->module == NULL); +static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) +{ + struct cgroup_subsys_state *css; - /* - * we shouldn't be called if the subsystem is in use, and the use of - * try_module_get in parse_cgroupfs_options should ensure that it - * doesn't start being used while we're killing it off. - */ - BUG_ON(ss->root != &rootnode); + printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); mutex_lock(&cgroup_mutex); - offline_css(ss, dummytop); - - if (ss->use_id) - idr_destroy(&ss->idr); + idr_init(&ss->css_idr); + INIT_LIST_HEAD(&ss->cfts); - /* deassign the subsys_id */ - subsys[ss->subsys_id] = NULL; - - /* remove subsystem from rootnode's list of subsystems */ - list_del_init(&ss->sibling); + /* Create the root cgroup state for this subsystem */ + ss->root = &cgrp_dfl_root; + css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); + /* We don't handle early failures gracefully */ + BUG_ON(IS_ERR(css)); + init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); /* - * disentangle the css from all css_sets attached to the dummytop. as - * in loading, we need to pay our respects to the hashtable gods. + * Root csses are never destroyed and we can't initialize + * percpu_ref during early init. Disable refcnting. */ - write_lock(&css_set_lock); - list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) { - struct css_set *cg = link->cg; - unsigned long key; + css->flags |= CSS_NO_REF; - hash_del(&cg->hlist); - cg->subsys[ss->subsys_id] = NULL; - key = css_set_hash(cg->subsys); - hash_add(css_set_table, &cg->hlist, key); + if (early) { + /* allocation can't be done safely during early init */ + css->id = 1; + } else { + css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); + BUG_ON(css->id < 0); } - write_unlock(&css_set_lock); - /* - * remove subsystem's css from the dummytop and free it - need to - * free before marking as null because ss->css_free needs the - * cgrp->subsys pointer to find their state. note that this also - * takes care of freeing the css_id. - */ - ss->css_free(dummytop); - dummytop->subsys[ss->subsys_id] = NULL; + /* Update the init_css_set to contain a subsys + * pointer to this state - since the subsystem is + * newly registered, all tasks and hence the + * init_css_set is in the subsystem's root cgroup. */ + init_css_set.subsys[ss->id] = css; + + have_fork_callback |= (bool)ss->fork << ss->id; + have_exit_callback |= (bool)ss->exit << ss->id; + have_free_callback |= (bool)ss->free << ss->id; + have_canfork_callback |= (bool)ss->can_fork << ss->id; + + /* At system boot, before all subsystems have been + * registered, no tasks have been forked, so we don't + * need to invoke fork callbacks here. */ + BUG_ON(!list_empty(&init_task.tasks)); + + BUG_ON(online_css(css)); mutex_unlock(&cgroup_mutex); } -EXPORT_SYMBOL_GPL(cgroup_unload_subsys); /** * cgroup_init_early - cgroup initialization at system boot @@ -4600,46 +5282,36 @@ */ int __init cgroup_init_early(void) { + static struct cgroup_sb_opts __initdata opts; + struct cgroup_subsys *ss; int i; - atomic_set(&init_css_set.refcount, 1); - INIT_LIST_HEAD(&init_css_set.cg_links); - INIT_LIST_HEAD(&init_css_set.tasks); - INIT_HLIST_NODE(&init_css_set.hlist); - css_set_count = 1; - init_cgroup_root(&rootnode); - root_count = 1; - init_task.cgroups = &init_css_set; - - init_css_set_link.cg = &init_css_set; - init_css_set_link.cgrp = dummytop; - list_add(&init_css_set_link.cgrp_link_list, - &rootnode.top_cgroup.css_sets); - list_add(&init_css_set_link.cg_link_list, - &init_css_set.cg_links); - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; + init_cgroup_root(&cgrp_dfl_root, &opts); + cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; - /* at bootup time, we don't worry about modular subsystems */ - if (!ss || ss->module) - continue; + RCU_INIT_POINTER(init_task.cgroups, &init_css_set); - BUG_ON(!ss->name); - BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); - BUG_ON(!ss->css_alloc); - BUG_ON(!ss->css_free); - if (ss->subsys_id != i) { - printk(KERN_ERR "cgroup: Subsys %s id == %d\n", - ss->name, ss->subsys_id); - BUG(); - } + for_each_subsys(ss, i) { + WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, + "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n", + i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, + ss->id, ss->name); + WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, + "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); + + ss->id = i; + ss->name = cgroup_subsys_name[i]; + if (!ss->legacy_name) + ss->legacy_name = cgroup_subsys_name[i]; if (ss->early_init) - cgroup_init_subsys(ss); + cgroup_init_subsys(ss, true); } return 0; } +static unsigned long cgroup_disable_mask __initdata; + /** * cgroup_init - cgroup initialization * @@ -4648,50 +5320,72 @@ */ int __init cgroup_init(void) { - int err; - int i; + struct cgroup_subsys *ss; unsigned long key; + int ssid; - err = bdi_init(&cgroup_backing_dev_info); - if (err) - return err; + BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); + BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files)); + BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files)); - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - - /* at bootup time, we don't worry about modular subsystems */ - if (!ss || ss->module) - continue; - if (!ss->early_init) - cgroup_init_subsys(ss); - if (ss->use_id) - cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]); - } + mutex_lock(&cgroup_mutex); /* Add init_css_set to the hash table */ key = css_set_hash(init_css_set.subsys); hash_add(css_set_table, &init_css_set.hlist, key); - BUG_ON(!init_root_id(&rootnode)); - cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); - if (!cgroup_kobj) { - err = -ENOMEM; - goto out; - } + BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); - err = register_filesystem(&cgroup_fs_type); - if (err < 0) { - kobject_put(cgroup_kobj); - goto out; - } + mutex_unlock(&cgroup_mutex); - proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); + for_each_subsys(ss, ssid) { + if (ss->early_init) { + struct cgroup_subsys_state *css = + init_css_set.subsys[ss->id]; + + css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, + GFP_KERNEL); + BUG_ON(css->id < 0); + } else { + cgroup_init_subsys(ss, false); + } -out: - if (err) - bdi_destroy(&cgroup_backing_dev_info); + list_add_tail(&init_css_set.e_cset_node[ssid], + &cgrp_dfl_root.cgrp.e_csets[ssid]); - return err; + /* + * Setting dfl_root subsys_mask needs to consider the + * disabled flag and cftype registration needs kmalloc, + * both of which aren't available during early_init. + */ + if (cgroup_disable_mask & (1 << ssid)) { + static_branch_disable(cgroup_subsys_enabled_key[ssid]); + printk(KERN_INFO "Disabling %s control group subsystem\n", + ss->name); + continue; + } + + cgrp_dfl_root.subsys_mask |= 1 << ss->id; + + if (!ss->dfl_cftypes) + cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id; + + if (ss->dfl_cftypes == ss->legacy_cftypes) { + WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); + } else { + WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); + WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); + } + + if (ss->bind) + ss->bind(init_css_set.subsys[ssid]); + } + + WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); + WARN_ON(register_filesystem(&cgroup_fs_type)); + WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); + + return 0; } static int __init cgroup_wq_init(void) @@ -4706,6 +5400,15 @@ */ cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); BUG_ON(!cgroup_destroy_wq); + + /* + * Used to destroy pidlists and separate to serve as flush domain. + * Cap @max_active to 1 too. + */ + cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", + 0, 1); + BUG_ON(!cgroup_pidlist_destroy_wq); + return 0; } core_initcall(cgroup_wq_init); @@ -4714,62 +5417,74 @@ * proc_cgroup_show() * - Print task's cgroup paths into seq_file, one line for each hierarchy * - Used for /proc//cgroup. - * - No need to task_lock(tsk) on this tsk->cgroup reference, as it - * doesn't really matter if tsk->cgroup changes after we read it, - * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it - * anyway. No need to check that tsk->cgroup != NULL, thanks to - * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks - * cgroup to top_cgroup. */ - -/* TODO: Use a proper seq_file iterator */ -int proc_cgroup_show(struct seq_file *m, void *v) +int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, + struct pid *pid, struct task_struct *tsk) { - struct pid *pid; - struct task_struct *tsk; - char *buf; + char *buf, *path; int retval; - struct cgroupfs_root *root; + struct cgroup_root *root; retval = -ENOMEM; - buf = kmalloc(PAGE_SIZE, GFP_KERNEL); + buf = kmalloc(PATH_MAX, GFP_KERNEL); if (!buf) goto out; - retval = -ESRCH; - pid = m->private; - tsk = get_pid_task(pid, PIDTYPE_PID); - if (!tsk) - goto out_free; - - retval = 0; - mutex_lock(&cgroup_mutex); + spin_lock_bh(&css_set_lock); - for_each_active_root(root) { + for_each_root(root) { struct cgroup_subsys *ss; struct cgroup *cgrp; - int count = 0; + int ssid, count = 0; + + if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible) + continue; seq_printf(m, "%d:", root->hierarchy_id); - for_each_subsys(root, ss) - seq_printf(m, "%s%s", count++ ? "," : "", ss->name); + if (root != &cgrp_dfl_root) + for_each_subsys(ss, ssid) + if (root->subsys_mask & (1 << ssid)) + seq_printf(m, "%s%s", count++ ? "," : "", + ss->legacy_name); if (strlen(root->name)) seq_printf(m, "%sname=%s", count ? "," : "", root->name); seq_putc(m, ':'); + cgrp = task_cgroup_from_root(tsk, root); - retval = cgroup_path(cgrp, buf, PAGE_SIZE); - if (retval < 0) - goto out_unlock; - seq_puts(m, buf); - seq_putc(m, '\n'); + + /* + * On traditional hierarchies, all zombie tasks show up as + * belonging to the root cgroup. On the default hierarchy, + * while a zombie doesn't show up in "cgroup.procs" and + * thus can't be migrated, its /proc/PID/cgroup keeps + * reporting the cgroup it belonged to before exiting. If + * the cgroup is removed before the zombie is reaped, + * " (deleted)" is appended to the cgroup path. + */ + if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { + path = cgroup_path(cgrp, buf, PATH_MAX); + if (!path) { + retval = -ENAMETOOLONG; + goto out_unlock; + } + } else { + path = "/"; + } + + seq_puts(m, path); + + if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) + seq_puts(m, " (deleted)\n"); + else + seq_putc(m, '\n'); } + retval = 0; out_unlock: + spin_unlock_bh(&css_set_lock); mutex_unlock(&cgroup_mutex); - put_task_struct(tsk); -out_free: kfree(buf); out: return retval; @@ -4778,6 +5493,7 @@ /* Display information about each subsystem and each hierarchy */ static int proc_cgroupstats_show(struct seq_file *m, void *v) { + struct cgroup_subsys *ss; int i; seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); @@ -4787,14 +5503,13 @@ * subsys/hierarchy state. */ mutex_lock(&cgroup_mutex); - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - if (ss == NULL) - continue; + + for_each_subsys(ss, i) seq_printf(m, "%s\t%d\t%d\t%d\n", - ss->name, ss->root->hierarchy_id, - ss->root->number_of_cgroups, !ss->disabled); - } + ss->legacy_name, ss->root->hierarchy_id, + atomic_read(&ss->root->nr_cgrps), + cgroup_ssid_enabled(i)); + mutex_unlock(&cgroup_mutex); return 0; } @@ -4811,63 +5526,131 @@ .release = single_release, }; +static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i) +{ + if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END) + return &ss_priv[i - CGROUP_CANFORK_START]; + return NULL; +} + +static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i) +{ + void **private = subsys_canfork_priv_p(ss_priv, i); + return private ? *private : NULL; +} + /** - * cgroup_fork - attach newly forked task to its parents cgroup. + * cgroup_fork - initialize cgroup related fields during copy_process() * @child: pointer to task_struct of forking parent process. * - * Description: A task inherits its parent's cgroup at fork(). - * - * A pointer to the shared css_set was automatically copied in - * fork.c by dup_task_struct(). However, we ignore that copy, since - * it was not made under the protection of RCU or cgroup_mutex, so - * might no longer be a valid cgroup pointer. cgroup_attach_task() might - * have already changed current->cgroups, allowing the previously - * referenced cgroup group to be removed and freed. - * - * At the point that cgroup_fork() is called, 'current' is the parent - * task, and the passed argument 'child' points to the child task. + * A task is associated with the init_css_set until cgroup_post_fork() + * attaches it to the parent's css_set. Empty cg_list indicates that + * @child isn't holding reference to its css_set. */ void cgroup_fork(struct task_struct *child) { - task_lock(current); - child->cgroups = current->cgroups; - get_css_set(child->cgroups); - task_unlock(current); + RCU_INIT_POINTER(child->cgroups, &init_css_set); INIT_LIST_HEAD(&child->cg_list); } /** + * cgroup_can_fork - called on a new task before the process is exposed + * @child: the task in question. + * + * This calls the subsystem can_fork() callbacks. If the can_fork() callback + * returns an error, the fork aborts with that error code. This allows for + * a cgroup subsystem to conditionally allow or deny new forks. + */ +int cgroup_can_fork(struct task_struct *child, + void *ss_priv[CGROUP_CANFORK_COUNT]) +{ + struct cgroup_subsys *ss; + int i, j, ret; + + for_each_subsys_which(ss, i, &have_canfork_callback) { + ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i)); + if (ret) + goto out_revert; + } + + return 0; + +out_revert: + for_each_subsys(ss, j) { + if (j >= i) + break; + if (ss->cancel_fork) + ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j)); + } + + return ret; +} + +/** + * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() + * @child: the task in question + * + * This calls the cancel_fork() callbacks if a fork failed *after* + * cgroup_can_fork() succeded. + */ +void cgroup_cancel_fork(struct task_struct *child, + void *ss_priv[CGROUP_CANFORK_COUNT]) +{ + struct cgroup_subsys *ss; + int i; + + for_each_subsys(ss, i) + if (ss->cancel_fork) + ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i)); +} + +/** * cgroup_post_fork - called on a new task after adding it to the task list * @child: the task in question * * Adds the task to the list running through its css_set if necessary and * call the subsystem fork() callbacks. Has to be after the task is * visible on the task list in case we race with the first call to - * cgroup_iter_start() - to guarantee that the new task ends up on its + * cgroup_task_iter_start() - to guarantee that the new task ends up on its * list. */ -void cgroup_post_fork(struct task_struct *child) +void cgroup_post_fork(struct task_struct *child, + void *old_ss_priv[CGROUP_CANFORK_COUNT]) { + struct cgroup_subsys *ss; int i; /* - * use_task_css_set_links is set to 1 before we walk the tasklist - * under the tasklist_lock and we read it here after we added the child - * to the tasklist under the tasklist_lock as well. If the child wasn't - * yet in the tasklist when we walked through it from - * cgroup_enable_task_cg_lists(), then use_task_css_set_links value - * should be visible now due to the paired locking and barriers implied - * by LOCK/UNLOCK: it is written before the tasklist_lock unlock - * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock - * lock on fork. + * This may race against cgroup_enable_task_cg_lists(). As that + * function sets use_task_css_set_links before grabbing + * tasklist_lock and we just went through tasklist_lock to add + * @child, it's guaranteed that either we see the set + * use_task_css_set_links or cgroup_enable_task_cg_lists() sees + * @child during its iteration. + * + * If we won the race, @child is associated with %current's + * css_set. Grabbing css_set_lock guarantees both that the + * association is stable, and, on completion of the parent's + * migration, @child is visible in the source of migration or + * already in the destination cgroup. This guarantee is necessary + * when implementing operations which need to migrate all tasks of + * a cgroup to another. + * + * Note that if we lose to cgroup_enable_task_cg_lists(), @child + * will remain in init_css_set. This is safe because all tasks are + * in the init_css_set before cg_links is enabled and there's no + * operation which transfers all tasks out of init_css_set. */ if (use_task_css_set_links) { - write_lock(&css_set_lock); - task_lock(child); - if (list_empty(&child->cg_list)) - list_add(&child->cg_list, &child->cgroups->tasks); - task_unlock(child); - write_unlock(&css_set_lock); + struct css_set *cset; + + spin_lock_bh(&css_set_lock); + cset = task_css_set(current); + if (list_empty(&child->cg_list)) { + get_css_set(cset); + css_set_move_task(child, NULL, cset, false); + } + spin_unlock_bh(&css_set_lock); } /* @@ -4875,28 +5658,13 @@ * css_set; otherwise, @child might change state between ->fork() * and addition to css_set. */ - if (need_forkexit_callback) { - /* - * fork/exit callbacks are supported only for builtin - * subsystems, and the builtin section of the subsys - * array is immutable, so we don't need to lock the - * subsys array here. On the other hand, modular section - * of the array can be freed at module unload, so we - * can't touch that. - */ - for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - - if (ss->fork) - ss->fork(child); - } - } + for_each_subsys_which(ss, i, &have_fork_callback) + ss->fork(child, subsys_canfork_priv(old_ss_priv, i)); } /** * cgroup_exit - detach cgroup from exiting task * @tsk: pointer to task_struct of exiting process - * @run_callback: run exit callbacks? * * Description: Detach cgroup from @tsk and release it. * @@ -4906,123 +5674,56 @@ * use notify_on_release cgroups where very high task exit scaling * is required on large systems. * - * the_top_cgroup_hack: - * - * Set the exiting tasks cgroup to the root cgroup (top_cgroup). - * - * We call cgroup_exit() while the task is still competent to - * handle notify_on_release(), then leave the task attached to the - * root cgroup in each hierarchy for the remainder of its exit. - * - * To do this properly, we would increment the reference count on - * top_cgroup, and near the very end of the kernel/exit.c do_exit() - * code we would add a second cgroup function call, to drop that - * reference. This would just create an unnecessary hot spot on - * the top_cgroup reference count, to no avail. - * - * Normally, holding a reference to a cgroup without bumping its - * count is unsafe. The cgroup could go away, or someone could - * attach us to a different cgroup, decrementing the count on - * the first cgroup that we never incremented. But in this case, - * top_cgroup isn't going away, and either task has PF_EXITING set, - * which wards off any cgroup_attach_task() attempts, or task is a failed - * fork, never visible to cgroup_attach_task. + * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We + * call cgroup_exit() while the task is still competent to handle + * notify_on_release(), then leave the task attached to the root cgroup in + * each hierarchy for the remainder of its exit. No need to bother with + * init_css_set refcnting. init_css_set never goes away and we can't race + * with migration path - PF_EXITING is visible to migration path. */ -void cgroup_exit(struct task_struct *tsk, int run_callbacks) +void cgroup_exit(struct task_struct *tsk) { - struct css_set *cg; + struct cgroup_subsys *ss; + struct css_set *cset; int i; /* - * Unlink from the css_set task list if necessary. - * Optimistically check cg_list before taking - * css_set_lock + * Unlink from @tsk from its css_set. As migration path can't race + * with us, we can check css_set and cg_list without synchronization. */ - if (!list_empty(&tsk->cg_list)) { - write_lock(&css_set_lock); - if (!list_empty(&tsk->cg_list)) - list_del_init(&tsk->cg_list); - write_unlock(&css_set_lock); - } - - /* Reassign the task to the init_css_set. */ - task_lock(tsk); - cg = tsk->cgroups; - tsk->cgroups = &init_css_set; + cset = task_css_set(tsk); - if (run_callbacks && need_forkexit_callback) { - /* - * fork/exit callbacks are supported only for builtin - * subsystems, see cgroup_post_fork() for details. - */ - for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - - if (ss->exit) { - struct cgroup *old_cgrp = - rcu_dereference_raw(cg->subsys[i])->cgroup; - struct cgroup *cgrp = task_cgroup(tsk, i); - ss->exit(cgrp, old_cgrp, tsk); - } - } + if (!list_empty(&tsk->cg_list)) { + spin_lock_bh(&css_set_lock); + css_set_move_task(tsk, cset, NULL, false); + spin_unlock_bh(&css_set_lock); + } else { + get_css_set(cset); } - task_unlock(tsk); - put_css_set_taskexit(cg); + /* see cgroup_post_fork() for details */ + for_each_subsys_which(ss, i, &have_exit_callback) + ss->exit(tsk); } -static void check_for_release(struct cgroup *cgrp) +void cgroup_free(struct task_struct *task) { - /* All of these checks rely on RCU to keep the cgroup - * structure alive */ - if (cgroup_is_releasable(cgrp) && - !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) { - /* - * Control Group is currently removeable. If it's not - * already queued for a userspace notification, queue - * it now - */ - int need_schedule_work = 0; - - raw_spin_lock(&release_list_lock); - if (!cgroup_is_removed(cgrp) && - list_empty(&cgrp->release_list)) { - list_add(&cgrp->release_list, &release_list); - need_schedule_work = 1; - } - raw_spin_unlock(&release_list_lock); - if (need_schedule_work) - schedule_work(&release_agent_work); - } -} + struct css_set *cset = task_css_set(task); + struct cgroup_subsys *ss; + int ssid; -/* Caller must verify that the css is not for root cgroup */ -bool __css_tryget(struct cgroup_subsys_state *css) -{ - while (true) { - int t, v; + for_each_subsys_which(ss, ssid, &have_free_callback) + ss->free(task); - v = css_refcnt(css); - t = atomic_cmpxchg(&css->refcnt, v, v + 1); - if (likely(t == v)) - return true; - else if (t < 0) - return false; - cpu_relax(); - } + put_css_set(cset); } -EXPORT_SYMBOL_GPL(__css_tryget); -/* Caller must verify that the css is not for root cgroup */ -void __css_put(struct cgroup_subsys_state *css) +static void check_for_release(struct cgroup *cgrp) { - int v; - - v = css_unbias_refcnt(atomic_dec_return(&css->refcnt)); - if (v == 0) - queue_work(cgroup_destroy_wq, &css->dput_work); + if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && + !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) + schedule_work(&cgrp->release_agent_work); } -EXPORT_SYMBOL_GPL(__css_put); /* * Notify userspace when a cgroup is released, by running the @@ -5049,301 +5750,118 @@ */ static void cgroup_release_agent(struct work_struct *work) { - BUG_ON(work != &release_agent_work); + struct cgroup *cgrp = + container_of(work, struct cgroup, release_agent_work); + char *pathbuf = NULL, *agentbuf = NULL, *path; + char *argv[3], *envp[3]; + mutex_lock(&cgroup_mutex); - raw_spin_lock(&release_list_lock); - while (!list_empty(&release_list)) { - char *argv[3], *envp[3]; - int i; - char *pathbuf = NULL, *agentbuf = NULL; - struct cgroup *cgrp = list_entry(release_list.next, - struct cgroup, - release_list); - list_del_init(&cgrp->release_list); - raw_spin_unlock(&release_list_lock); - pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); - if (!pathbuf) - goto continue_free; - if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) - goto continue_free; - agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); - if (!agentbuf) - goto continue_free; - - i = 0; - argv[i++] = agentbuf; - argv[i++] = pathbuf; - argv[i] = NULL; - - i = 0; - /* minimal command environment */ - envp[i++] = "HOME=/"; - envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; - envp[i] = NULL; - - /* Drop the lock while we invoke the usermode helper, - * since the exec could involve hitting disk and hence - * be a slow process */ - mutex_unlock(&cgroup_mutex); - call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); - mutex_lock(&cgroup_mutex); - continue_free: - kfree(pathbuf); - kfree(agentbuf); - raw_spin_lock(&release_list_lock); - } - raw_spin_unlock(&release_list_lock); + + pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); + agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); + if (!pathbuf || !agentbuf) + goto out; + + path = cgroup_path(cgrp, pathbuf, PATH_MAX); + if (!path) + goto out; + + argv[0] = agentbuf; + argv[1] = path; + argv[2] = NULL; + + /* minimal command environment */ + envp[0] = "HOME=/"; + envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; + envp[2] = NULL; + + mutex_unlock(&cgroup_mutex); + call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); + goto out_free; +out: mutex_unlock(&cgroup_mutex); +out_free: + kfree(agentbuf); + kfree(pathbuf); } static int __init cgroup_disable(char *str) { - int i; + struct cgroup_subsys *ss; char *token; + int i; while ((token = strsep(&str, ",")) != NULL) { if (!*token) continue; - for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { - struct cgroup_subsys *ss = subsys[i]; - /* - * cgroup_disable, being at boot time, can't - * know about module subsystems, so we don't - * worry about them. - */ - if (!ss || ss->module) + for_each_subsys(ss, i) { + if (strcmp(token, ss->name) && + strcmp(token, ss->legacy_name)) continue; - - if (!strcmp(token, ss->name)) { - ss->disabled = 1; - printk(KERN_INFO "Disabling %s control group" - " subsystem\n", ss->name); - break; - } + cgroup_disable_mask |= 1 << i; } } return 1; } __setup("cgroup_disable=", cgroup_disable); -/* - * Functons for CSS ID. - */ - -/* - *To get ID other than 0, this should be called when !cgroup_is_removed(). - */ -unsigned short css_id(struct cgroup_subsys_state *css) -{ - struct css_id *cssid; - - /* - * This css_id() can return correct value when somone has refcnt - * on this or this is under rcu_read_lock(). Once css->id is allocated, - * it's unchanged until freed. - */ - cssid = rcu_dereference_check(css->id, css_refcnt(css)); - - if (cssid) - return cssid->id; - return 0; -} -EXPORT_SYMBOL_GPL(css_id); - -unsigned short css_depth(struct cgroup_subsys_state *css) -{ - struct css_id *cssid; - - cssid = rcu_dereference_check(css->id, css_refcnt(css)); - - if (cssid) - return cssid->depth; - return 0; -} -EXPORT_SYMBOL_GPL(css_depth); - /** - * css_is_ancestor - test "root" css is an ancestor of "child" - * @child: the css to be tested. - * @root: the css supporsed to be an ancestor of the child. - * - * Returns true if "root" is an ancestor of "child" in its hierarchy. Because - * this function reads css->id, the caller must hold rcu_read_lock(). - * But, considering usual usage, the csses should be valid objects after test. - * Assuming that the caller will do some action to the child if this returns - * returns true, the caller must take "child";s reference count. - * If "child" is valid object and this returns true, "root" is valid, too. + * css_tryget_online_from_dir - get corresponding css from a cgroup dentry + * @dentry: directory dentry of interest + * @ss: subsystem of interest + * + * If @dentry is a directory for a cgroup which has @ss enabled on it, try + * to get the corresponding css and return it. If such css doesn't exist + * or can't be pinned, an ERR_PTR value is returned. */ - -bool css_is_ancestor(struct cgroup_subsys_state *child, - const struct cgroup_subsys_state *root) +struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, + struct cgroup_subsys *ss) { - struct css_id *child_id; - struct css_id *root_id; - - child_id = rcu_dereference(child->id); - if (!child_id) - return false; - root_id = rcu_dereference(root->id); - if (!root_id) - return false; - if (child_id->depth < root_id->depth) - return false; - if (child_id->stack[root_id->depth] != root_id->id) - return false; - return true; -} - -void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css) -{ - struct css_id *id = css->id; - /* When this is called before css_id initialization, id can be NULL */ - if (!id) - return; - - BUG_ON(!ss->use_id); - - rcu_assign_pointer(id->css, NULL); - rcu_assign_pointer(css->id, NULL); - spin_lock(&ss->id_lock); - idr_remove(&ss->idr, id->id); - spin_unlock(&ss->id_lock); - kfree_rcu(id, rcu_head); -} -EXPORT_SYMBOL_GPL(free_css_id); - -/* - * This is called by init or create(). Then, calls to this function are - * always serialized (By cgroup_mutex() at create()). - */ - -static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth) -{ - struct css_id *newid; - int ret, size; - - BUG_ON(!ss->use_id); - - size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1); - newid = kzalloc(size, GFP_KERNEL); - if (!newid) - return ERR_PTR(-ENOMEM); - - idr_preload(GFP_KERNEL); - spin_lock(&ss->id_lock); - /* Don't use 0. allocates an ID of 1-65535 */ - ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT); - spin_unlock(&ss->id_lock); - idr_preload_end(); - - /* Returns error when there are no free spaces for new ID.*/ - if (ret < 0) - goto err_out; - - newid->id = ret; - newid->depth = depth; - return newid; -err_out: - kfree(newid); - return ERR_PTR(ret); - -} - -static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss, - struct cgroup_subsys_state *rootcss) -{ - struct css_id *newid; - - spin_lock_init(&ss->id_lock); - idr_init(&ss->idr); + struct kernfs_node *kn = kernfs_node_from_dentry(dentry); + struct cgroup_subsys_state *css = NULL; + struct cgroup *cgrp; - newid = get_new_cssid(ss, 0); - if (IS_ERR(newid)) - return PTR_ERR(newid); + /* is @dentry a cgroup dir? */ + if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || + kernfs_type(kn) != KERNFS_DIR) + return ERR_PTR(-EBADF); - newid->stack[0] = newid->id; - newid->css = rootcss; - rootcss->id = newid; - return 0; -} + rcu_read_lock(); -static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent, - struct cgroup *child) -{ - int subsys_id, i, depth = 0; - struct cgroup_subsys_state *parent_css, *child_css; - struct css_id *child_id, *parent_id; - - subsys_id = ss->subsys_id; - parent_css = parent->subsys[subsys_id]; - child_css = child->subsys[subsys_id]; - parent_id = parent_css->id; - depth = parent_id->depth + 1; - - child_id = get_new_cssid(ss, depth); - if (IS_ERR(child_id)) - return PTR_ERR(child_id); - - for (i = 0; i < depth; i++) - child_id->stack[i] = parent_id->stack[i]; - child_id->stack[depth] = child_id->id; /* - * child_id->css pointer will be set after this cgroup is available - * see cgroup_populate_dir() - */ - rcu_assign_pointer(child_css->id, child_id); + * This path doesn't originate from kernfs and @kn could already + * have been or be removed at any point. @kn->priv is RCU + * protected for this access. See css_release_work_fn() for details. + */ + cgrp = rcu_dereference(kn->priv); + if (cgrp) + css = cgroup_css(cgrp, ss); - return 0; + if (!css || !css_tryget_online(css)) + css = ERR_PTR(-ENOENT); + + rcu_read_unlock(); + return css; } /** - * css_lookup - lookup css by id - * @ss: cgroup subsys to be looked into. - * @id: the id + * css_from_id - lookup css by id + * @id: the cgroup id + * @ss: cgroup subsys to be looked into * - * Returns pointer to cgroup_subsys_state if there is valid one with id. - * NULL if not. Should be called under rcu_read_lock() + * Returns the css if there's valid one with @id, otherwise returns NULL. + * Should be called under rcu_read_lock(). */ -struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id) +struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) { - struct css_id *cssid = NULL; - - BUG_ON(!ss->use_id); - cssid = idr_find(&ss->idr, id); - - if (unlikely(!cssid)) - return NULL; - - return rcu_dereference(cssid->css); -} -EXPORT_SYMBOL_GPL(css_lookup); - -/* - * get corresponding css from file open on cgroupfs directory - */ -struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id) -{ - struct cgroup *cgrp; - struct inode *inode; - struct cgroup_subsys_state *css; - - inode = file_inode(f); - /* check in cgroup filesystem dir */ - if (inode->i_op != &cgroup_dir_inode_operations) - return ERR_PTR(-EBADF); - - if (id < 0 || id >= CGROUP_SUBSYS_COUNT) - return ERR_PTR(-EINVAL); - - /* get cgroup */ - cgrp = __d_cgrp(f->f_dentry); - css = cgrp->subsys[id]; - return css ? css : ERR_PTR(-ENOENT); + WARN_ON_ONCE(!rcu_read_lock_held()); + return id > 0 ? idr_find(&ss->css_idr, id) : NULL; } #ifdef CONFIG_CGROUP_DEBUG -static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont) +static struct cgroup_subsys_state * +debug_css_alloc(struct cgroup_subsys_state *parent_css) { struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); @@ -5353,101 +5871,101 @@ return css; } -static void debug_css_free(struct cgroup *cont) +static void debug_css_free(struct cgroup_subsys_state *css) { - kfree(cont->subsys[debug_subsys_id]); + kfree(css); } -static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) +static u64 debug_taskcount_read(struct cgroup_subsys_state *css, + struct cftype *cft) { - return atomic_read(&cont->count); + return cgroup_task_count(css->cgroup); } -static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) -{ - return cgroup_task_count(cont); -} - -static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) +static u64 current_css_set_read(struct cgroup_subsys_state *css, + struct cftype *cft) { return (u64)(unsigned long)current->cgroups; } -static u64 current_css_set_refcount_read(struct cgroup *cont, - struct cftype *cft) +static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, + struct cftype *cft) { u64 count; rcu_read_lock(); - count = atomic_read(¤t->cgroups->refcount); + count = atomic_read(&task_css_set(current)->refcount); rcu_read_unlock(); return count; } -static int current_css_set_cg_links_read(struct cgroup *cont, - struct cftype *cft, - struct seq_file *seq) +static int current_css_set_cg_links_read(struct seq_file *seq, void *v) { - struct cg_cgroup_link *link; - struct css_set *cg; + struct cgrp_cset_link *link; + struct css_set *cset; + char *name_buf; + + name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); + if (!name_buf) + return -ENOMEM; - read_lock(&css_set_lock); + spin_lock_bh(&css_set_lock); rcu_read_lock(); - cg = rcu_dereference(current->cgroups); - list_for_each_entry(link, &cg->cg_links, cg_link_list) { + cset = rcu_dereference(current->cgroups); + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { struct cgroup *c = link->cgrp; - const char *name; - if (c->dentry) - name = c->dentry->d_name.name; - else - name = "?"; + cgroup_name(c, name_buf, NAME_MAX + 1); seq_printf(seq, "Root %d group %s\n", - c->root->hierarchy_id, name); + c->root->hierarchy_id, name_buf); } rcu_read_unlock(); - read_unlock(&css_set_lock); + spin_unlock_bh(&css_set_lock); + kfree(name_buf); return 0; } #define MAX_TASKS_SHOWN_PER_CSS 25 -static int cgroup_css_links_read(struct cgroup *cont, - struct cftype *cft, - struct seq_file *seq) -{ - struct cg_cgroup_link *link; - - read_lock(&css_set_lock); - list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { - struct css_set *cg = link->cg; +static int cgroup_css_links_read(struct seq_file *seq, void *v) +{ + struct cgroup_subsys_state *css = seq_css(seq); + struct cgrp_cset_link *link; + + spin_lock_bh(&css_set_lock); + list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { + struct css_set *cset = link->cset; struct task_struct *task; int count = 0; - seq_printf(seq, "css_set %p\n", cg); - list_for_each_entry(task, &cg->tasks, cg_list) { - if (count++ > MAX_TASKS_SHOWN_PER_CSS) { - seq_puts(seq, " ...\n"); - break; - } else { - seq_printf(seq, " task %d\n", - task_pid_vnr(task)); - } + + seq_printf(seq, "css_set %pK\n", cset); + + list_for_each_entry(task, &cset->tasks, cg_list) { + if (count++ > MAX_TASKS_SHOWN_PER_CSS) + goto overflow; + seq_printf(seq, " task %d\n", task_pid_vnr(task)); } + + list_for_each_entry(task, &cset->mg_tasks, cg_list) { + if (count++ > MAX_TASKS_SHOWN_PER_CSS) + goto overflow; + seq_printf(seq, " task %d\n", task_pid_vnr(task)); + } + continue; + overflow: + seq_puts(seq, " ...\n"); } - read_unlock(&css_set_lock); + spin_unlock_bh(&css_set_lock); return 0; } -static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) +static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) { - return test_bit(CGRP_RELEASABLE, &cgrp->flags); + return (!cgroup_is_populated(css->cgroup) && + !css_has_online_children(&css->cgroup->self)); } static struct cftype debug_files[] = { { - .name = "cgroup_refcount", - .read_u64 = cgroup_refcount_read, - }, - { .name = "taskcount", .read_u64 = debug_taskcount_read, }, @@ -5464,12 +5982,12 @@ { .name = "current_css_set_cg_links", - .read_seq_string = current_css_set_cg_links_read, + .seq_show = current_css_set_cg_links_read, }, { .name = "cgroup_css_links", - .read_seq_string = cgroup_css_links_read, + .seq_show = cgroup_css_links_read, }, { @@ -5480,11 +5998,9 @@ { } /* terminate */ }; -struct cgroup_subsys debug_subsys = { - .name = "debug", +struct cgroup_subsys debug_cgrp_subsys = { .css_alloc = debug_css_alloc, .css_free = debug_css_free, - .subsys_id = debug_subsys_id, - .base_cftypes = debug_files, + .legacy_cftypes = debug_files, }; #endif /* CONFIG_CGROUP_DEBUG */