#ifndef _ASM_POWERPC_PGTABLE_RADIX_H #define _ASM_POWERPC_PGTABLE_RADIX_H #ifndef __ASSEMBLY__ #include <asm/cmpxchg.h> #endif #ifdef CONFIG_PPC_64K_PAGES #include <asm/book3s/64/radix-64k.h> #else #include <asm/book3s/64/radix-4k.h> #endif #ifndef __ASSEMBLY__ #include <asm/book3s/64/tlbflush-radix.h> #include <asm/cpu_has_feature.h> #endif /* An empty PTE can still have a R or C writeback */ #define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED) /* Bits to set in a RPMD/RPUD/RPGD */ #define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE) #define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE) #define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE) /* Don't have anything in the reserved bits and leaf bits */ #define RADIX_PMD_BAD_BITS 0x60000000000000e0UL #define RADIX_PUD_BAD_BITS 0x60000000000000e0UL #define RADIX_PGD_BAD_BITS 0x60000000000000e0UL /* * Size of EA range mapped by our pagetables. */ #define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \ RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT) #define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE) /* * We support 52 bit address space, Use top bit for kernel * virtual mapping. Also make sure kernel fit in the top * quadrant. * * +------------------+ * +------------------+ Kernel virtual map (0xc008000000000000) * | | * | | * | | * 0b11......+------------------+ Kernel linear map (0xc....) * | | * | 2 quadrant | * | | * 0b10......+------------------+ * | | * | 1 quadrant | * | | * 0b01......+------------------+ * | | * | 0 quadrant | * | | * 0b00......+------------------+ * * * 3rd quadrant expanded: * +------------------------------+ * | | * | | * | | * +------------------------------+ Kernel IO map end (0xc010000000000000) * | | * | | * | 1/2 of virtual map | * | | * | | * +------------------------------+ Kernel IO map start * | | * | 1/4 of virtual map | * | | * +------------------------------+ Kernel vmemap start * | | * | 1/4 of virtual map | * | | * +------------------------------+ Kernel virt start (0xc008000000000000) * | | * | | * | | * +------------------------------+ Kernel linear (0xc.....) */ #define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000) #define RADIX_KERN_VIRT_SIZE ASM_CONST(0x0008000000000000) /* * The vmalloc space starts at the beginning of that region, and * occupies a quarter of it on radix config. * (we keep a quarter for the virtual memmap) */ #define RADIX_VMALLOC_START RADIX_KERN_VIRT_START #define RADIX_VMALLOC_SIZE (RADIX_KERN_VIRT_SIZE >> 2) #define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE) /* * Defines the address of the vmemap area, in its own region on * hash table CPUs. */ #define RADIX_VMEMMAP_BASE (RADIX_VMALLOC_END) #ifndef __ASSEMBLY__ #define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE) #define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE) #define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE) #define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE) static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr, unsigned long set) { pte_t pte; unsigned long old_pte, new_pte; do { pte = READ_ONCE(*ptep); old_pte = pte_val(pte); new_pte = (old_pte | set) & ~clr; } while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte))); return old_pte; } static inline unsigned long radix__pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long clr, unsigned long set, int huge) { unsigned long old_pte; if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { unsigned long new_pte; old_pte = __radix_pte_update(ptep, ~0, 0); asm volatile("ptesync" : : : "memory"); /* * new value of pte */ new_pte = (old_pte | set) & ~clr; /* * For now let's do heavy pid flush * radix__flush_tlb_page_psize(mm, addr, mmu_virtual_psize); */ radix__flush_tlb_mm(mm); __radix_pte_update(ptep, 0, new_pte); } else old_pte = __radix_pte_update(ptep, clr, set); asm volatile("ptesync" : : : "memory"); if (!huge) assert_pte_locked(mm, addr); return old_pte; } /* * Set the dirty and/or accessed bits atomically in a linux PTE, this * function doesn't need to invalidate tlb. */ static inline void radix__ptep_set_access_flags(struct mm_struct *mm, pte_t *ptep, pte_t entry) { unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { unsigned long old_pte, new_pte; old_pte = __radix_pte_update(ptep, ~0, 0); asm volatile("ptesync" : : : "memory"); /* * new value of pte */ new_pte = old_pte | set; /* * For now let's do heavy pid flush * radix__flush_tlb_page_psize(mm, addr, mmu_virtual_psize); */ radix__flush_tlb_mm(mm); __radix_pte_update(ptep, 0, new_pte); } else __radix_pte_update(ptep, 0, set); asm volatile("ptesync" : : : "memory"); } static inline int radix__pte_same(pte_t pte_a, pte_t pte_b) { return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0); } static inline int radix__pte_none(pte_t pte) { return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0; } static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, int percpu) { *ptep = pte; asm volatile("ptesync" : : : "memory"); } static inline int radix__pmd_bad(pmd_t pmd) { return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS); } static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0); } static inline int radix__pud_bad(pud_t pud) { return !!(pud_val(pud) & RADIX_PUD_BAD_BITS); } static inline int radix__pgd_bad(pgd_t pgd) { return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int radix__pmd_trans_huge(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_PTE); } static inline pmd_t radix__pmd_mkhuge(pmd_t pmd) { return __pmd(pmd_val(pmd) | _PAGE_PTE); } static inline void radix__pmdp_huge_split_prepare(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { /* Nothing to do for radix. */ return; } extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, unsigned long clr, unsigned long set); extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp); extern int radix__has_transparent_hugepage(void); #endif extern int __meminit radix__vmemmap_create_mapping(unsigned long start, unsigned long page_size, unsigned long phys); extern void radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size); extern int radix__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t flags, unsigned int psz); static inline unsigned long radix__get_tree_size(void) { unsigned long rts_field; /* * We support 52 bits, hence: * DD1 52-28 = 24, 0b11000 * Others 52-31 = 21, 0b10101 * RTS encoding details * bits 0 - 3 of rts -> bits 6 - 8 unsigned long * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long */ if (cpu_has_feature(CPU_FTR_POWER9_DD1)) rts_field = (0x3UL << 61); else { rts_field = (0x5UL << 5); /* 6 - 8 bits */ rts_field |= (0x2UL << 61); } return rts_field; } #endif /* __ASSEMBLY__ */ #endif