/* * Record and handle CPU attributes. * * Copyright (C) 2014 ARM Ltd. * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * In case the boot CPU is hotpluggable, we record its initial state and * current state separately. Certain system registers may contain different * values depending on configuration at or after reset. */ DEFINE_PER_CPU(struct cpuinfo_arm64, cpu_data); static struct cpuinfo_arm64 boot_cpu_data; static char *icache_policy_str[] = { [ICACHE_POLICY_RESERVED] = "RESERVED/UNKNOWN", [ICACHE_POLICY_AIVIVT] = "AIVIVT", [ICACHE_POLICY_VIPT] = "VIPT", [ICACHE_POLICY_PIPT] = "PIPT", }; unsigned long __icache_flags; static const char *const hwcap_str[] = { "fp", "asimd", "evtstrm", "aes", "pmull", "sha1", "sha2", "crc32", "atomics", "fphp", "asimdhp", NULL }; #ifdef CONFIG_COMPAT static const char *const compat_hwcap_str[] = { "swp", "half", "thumb", "26bit", "fastmult", "fpa", "vfp", "edsp", "java", "iwmmxt", "crunch", "thumbee", "neon", "vfpv3", "vfpv3d16", "tls", "vfpv4", "idiva", "idivt", "vfpd32", "lpae", "evtstrm", NULL }; static const char *const compat_hwcap2_str[] = { "aes", "pmull", "sha1", "sha2", "crc32", NULL }; #endif /* CONFIG_COMPAT */ static int c_show(struct seq_file *m, void *v) { int i, j; bool compat = personality(current->personality) == PER_LINUX32; for_each_online_cpu(i) { struct cpuinfo_arm64 *cpuinfo = &per_cpu(cpu_data, i); u32 midr = cpuinfo->reg_midr; /* * glibc reads /proc/cpuinfo to determine the number of * online processors, looking for lines beginning with * "processor". Give glibc what it expects. */ seq_printf(m, "processor\t: %d\n", i); if (compat) seq_printf(m, "model name\t: ARMv8 Processor rev %d (%s)\n", MIDR_REVISION(midr), COMPAT_ELF_PLATFORM); seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", loops_per_jiffy / (500000UL/HZ), loops_per_jiffy / (5000UL/HZ) % 100); /* * Dump out the common processor features in a single line. * Userspace should read the hwcaps with getauxval(AT_HWCAP) * rather than attempting to parse this, but there's a body of * software which does already (at least for 32-bit). */ seq_puts(m, "Features\t:"); if (compat) { #ifdef CONFIG_COMPAT for (j = 0; compat_hwcap_str[j]; j++) if (compat_elf_hwcap & (1 << j)) seq_printf(m, " %s", compat_hwcap_str[j]); for (j = 0; compat_hwcap2_str[j]; j++) if (compat_elf_hwcap2 & (1 << j)) seq_printf(m, " %s", compat_hwcap2_str[j]); #endif /* CONFIG_COMPAT */ } else { for (j = 0; hwcap_str[j]; j++) if (elf_hwcap & (1 << j)) seq_printf(m, " %s", hwcap_str[j]); } seq_puts(m, "\n"); seq_printf(m, "CPU implementer\t: 0x%02x\n", MIDR_IMPLEMENTOR(midr)); seq_printf(m, "CPU architecture: 8\n"); seq_printf(m, "CPU variant\t: 0x%x\n", MIDR_VARIANT(midr)); seq_printf(m, "CPU part\t: 0x%03x\n", MIDR_PARTNUM(midr)); seq_printf(m, "CPU revision\t: %d\n\n", MIDR_REVISION(midr)); } return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < 1 ? (void *)1 : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return NULL; } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = c_show }; static struct kobj_type cpuregs_kobj_type = { .sysfs_ops = &kobj_sysfs_ops, }; /* * The ARM ARM uses the phrase "32-bit register" to describe a register * whose upper 32 bits are RES0 (per C5.1.1, ARM DDI 0487A.i), however * no statement is made as to whether the upper 32 bits will or will not * be made use of in future, and between ARM DDI 0487A.c and ARM DDI * 0487A.d CLIDR_EL1 was expanded from 32-bit to 64-bit. * * Thus, while both MIDR_EL1 and REVIDR_EL1 are described as 32-bit * registers, we expose them both as 64 bit values to cater for possible * future expansion without an ABI break. */ #define kobj_to_cpuinfo(kobj) container_of(kobj, struct cpuinfo_arm64, kobj) #define CPUREGS_ATTR_RO(_name, _field) \ static ssize_t _name##_show(struct kobject *kobj, \ struct kobj_attribute *attr, char *buf) \ { \ struct cpuinfo_arm64 *info = kobj_to_cpuinfo(kobj); \ \ if (info->reg_midr) \ return sprintf(buf, "0x%016x\n", info->reg_##_field); \ else \ return 0; \ } \ static struct kobj_attribute cpuregs_attr_##_name = __ATTR_RO(_name) CPUREGS_ATTR_RO(midr_el1, midr); CPUREGS_ATTR_RO(revidr_el1, revidr); static struct attribute *cpuregs_id_attrs[] = { &cpuregs_attr_midr_el1.attr, &cpuregs_attr_revidr_el1.attr, NULL }; static struct attribute_group cpuregs_attr_group = { .attrs = cpuregs_id_attrs, .name = "identification" }; static int cpuid_add_regs(int cpu) { int rc; struct device *dev; struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu); dev = get_cpu_device(cpu); if (!dev) { rc = -ENODEV; goto out; } rc = kobject_add(&info->kobj, &dev->kobj, "regs"); if (rc) goto out; rc = sysfs_create_group(&info->kobj, &cpuregs_attr_group); if (rc) kobject_del(&info->kobj); out: return rc; } static int cpuid_remove_regs(int cpu) { struct device *dev; struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu); dev = get_cpu_device(cpu); if (!dev) return -ENODEV; if (info->kobj.parent) { sysfs_remove_group(&info->kobj, &cpuregs_attr_group); kobject_del(&info->kobj); } return 0; } static int cpuid_callback(struct notifier_block *nb, unsigned long action, void *hcpu) { int rc = 0; unsigned long cpu = (unsigned long)hcpu; switch (action & ~CPU_TASKS_FROZEN) { case CPU_ONLINE: rc = cpuid_add_regs(cpu); break; case CPU_DEAD: rc = cpuid_remove_regs(cpu); break; } return notifier_from_errno(rc); } static int __init cpuinfo_regs_init(void) { int cpu; cpu_notifier_register_begin(); for_each_possible_cpu(cpu) { struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu); kobject_init(&info->kobj, &cpuregs_kobj_type); if (cpu_online(cpu)) cpuid_add_regs(cpu); } __hotcpu_notifier(cpuid_callback, 0); cpu_notifier_register_done(); return 0; } static void cpuinfo_detect_icache_policy(struct cpuinfo_arm64 *info) { unsigned int cpu = smp_processor_id(); u32 l1ip = CTR_L1IP(info->reg_ctr); if (l1ip != ICACHE_POLICY_PIPT) { /* * VIPT caches are non-aliasing if the VA always equals the PA * in all bit positions that are covered by the index. This is * the case if the size of a way (# of sets * line size) does * not exceed PAGE_SIZE. */ u32 waysize = icache_get_numsets() * icache_get_linesize(); if (l1ip != ICACHE_POLICY_VIPT || waysize > PAGE_SIZE) set_bit(ICACHEF_ALIASING, &__icache_flags); } if (l1ip == ICACHE_POLICY_AIVIVT) set_bit(ICACHEF_AIVIVT, &__icache_flags); pr_info("Detected %s I-cache on CPU%d\n", icache_policy_str[l1ip], cpu); } static void __cpuinfo_store_cpu(struct cpuinfo_arm64 *info) { info->reg_cntfrq = arch_timer_get_cntfrq(); info->reg_ctr = read_cpuid_cachetype(); info->reg_dczid = read_cpuid(DCZID_EL0); info->reg_midr = read_cpuid_id(); info->reg_revidr = read_cpuid(REVIDR_EL1); info->reg_id_aa64dfr0 = read_cpuid(ID_AA64DFR0_EL1); info->reg_id_aa64dfr1 = read_cpuid(ID_AA64DFR1_EL1); info->reg_id_aa64isar0 = read_cpuid(ID_AA64ISAR0_EL1); info->reg_id_aa64isar1 = read_cpuid(ID_AA64ISAR1_EL1); info->reg_id_aa64isar2 = read_cpuid(ID_AA64ISAR2_EL1); info->reg_id_aa64mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); info->reg_id_aa64mmfr1 = read_cpuid(ID_AA64MMFR1_EL1); info->reg_id_aa64mmfr2 = read_cpuid(ID_AA64MMFR2_EL1); info->reg_id_aa64pfr0 = read_cpuid(ID_AA64PFR0_EL1); info->reg_id_aa64pfr1 = read_cpuid(ID_AA64PFR1_EL1); /* Update the 32bit ID registers only if AArch32 is implemented */ if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) { info->reg_id_dfr0 = read_cpuid(ID_DFR0_EL1); info->reg_id_isar0 = read_cpuid(ID_ISAR0_EL1); info->reg_id_isar1 = read_cpuid(ID_ISAR1_EL1); info->reg_id_isar2 = read_cpuid(ID_ISAR2_EL1); info->reg_id_isar3 = read_cpuid(ID_ISAR3_EL1); info->reg_id_isar4 = read_cpuid(ID_ISAR4_EL1); info->reg_id_isar5 = read_cpuid(ID_ISAR5_EL1); info->reg_id_mmfr0 = read_cpuid(ID_MMFR0_EL1); info->reg_id_mmfr1 = read_cpuid(ID_MMFR1_EL1); info->reg_id_mmfr2 = read_cpuid(ID_MMFR2_EL1); info->reg_id_mmfr3 = read_cpuid(ID_MMFR3_EL1); info->reg_id_pfr0 = read_cpuid(ID_PFR0_EL1); info->reg_id_pfr1 = read_cpuid(ID_PFR1_EL1); info->reg_mvfr0 = read_cpuid(MVFR0_EL1); info->reg_mvfr1 = read_cpuid(MVFR1_EL1); info->reg_mvfr2 = read_cpuid(MVFR2_EL1); } cpuinfo_detect_icache_policy(info); } void cpuinfo_store_cpu(void) { struct cpuinfo_arm64 *info = this_cpu_ptr(&cpu_data); __cpuinfo_store_cpu(info); update_cpu_features(smp_processor_id(), info, &boot_cpu_data); } void __init cpuinfo_store_boot_cpu(void) { struct cpuinfo_arm64 *info = &per_cpu(cpu_data, 0); __cpuinfo_store_cpu(info); boot_cpu_data = *info; init_cpu_features(&boot_cpu_data); } device_initcall(cpuinfo_regs_init);