/* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include extern struct exception_table_entry __start___kvm_ex_table; extern struct exception_table_entry __stop___kvm_ex_table; static bool __hyp_text __fpsimd_enabled_nvhe(void) { return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP); } static bool __hyp_text __fpsimd_enabled_vhe(void) { return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN); } static hyp_alternate_select(__fpsimd_is_enabled, __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe, ARM64_HAS_VIRT_HOST_EXTN); bool __hyp_text __fpsimd_enabled(void) { return __fpsimd_is_enabled()(); } static void __hyp_text __activate_traps_vhe(void) { u64 val; val = read_sysreg(cpacr_el1); val |= CPACR_EL1_TTA; val &= ~CPACR_EL1_FPEN; write_sysreg(val, cpacr_el1); write_sysreg(kvm_get_hyp_vector(), vbar_el1); } static void __hyp_text __activate_traps_nvhe(void) { u64 val; val = CPTR_EL2_DEFAULT; val |= CPTR_EL2_TTA | CPTR_EL2_TFP; write_sysreg(val, cptr_el2); } static hyp_alternate_select(__activate_traps_arch, __activate_traps_nvhe, __activate_traps_vhe, ARM64_HAS_VIRT_HOST_EXTN); static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu) { u64 val; /* * We are about to set CPTR_EL2.TFP to trap all floating point * register accesses to EL2, however, the ARM ARM clearly states that * traps are only taken to EL2 if the operation would not otherwise * trap to EL1. Therefore, always make sure that for 32-bit guests, * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. */ val = vcpu->arch.hcr_el2; if (!(val & HCR_RW)) { write_sysreg(1 << 30, fpexc32_el2); isb(); } write_sysreg(val, hcr_el2); /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */ write_sysreg(1 << 15, hstr_el2); /* * Make sure we trap PMU access from EL0 to EL2. Also sanitize * PMSELR_EL0 to make sure it never contains the cycle * counter, which could make a PMXEVCNTR_EL0 access UNDEF at * EL1 instead of being trapped to EL2. */ write_sysreg(0, pmselr_el0); write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); __activate_traps_arch()(); } static void __hyp_text __deactivate_traps_vhe(void) { const char *host_vectors = vectors; write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); write_sysreg(CPACR_EL1_FPEN, cpacr_el1); if (!arm64_kernel_unmapped_at_el0()) host_vectors = __this_cpu_read(this_cpu_vector); write_sysreg(host_vectors, vbar_el1); } static void __hyp_text __deactivate_traps_nvhe(void) { write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2); write_sysreg(CPTR_EL2_DEFAULT, cptr_el2); } static hyp_alternate_select(__deactivate_traps_arch, __deactivate_traps_nvhe, __deactivate_traps_vhe, ARM64_HAS_VIRT_HOST_EXTN); static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu) { /* * If we pended a virtual abort, preserve it until it gets * cleared. See D1.14.3 (Virtual Interrupts) for details, but * the crucial bit is "On taking a vSError interrupt, * HCR_EL2.VSE is cleared to 0." */ if (vcpu->arch.hcr_el2 & HCR_VSE) vcpu->arch.hcr_el2 = read_sysreg(hcr_el2); __deactivate_traps_arch()(); write_sysreg(0, hstr_el2); write_sysreg(read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK, mdcr_el2); write_sysreg(0, pmuserenr_el0); } static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu) { struct kvm *kvm = kern_hyp_va(vcpu->kvm); write_sysreg(kvm->arch.vttbr, vttbr_el2); } static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu) { write_sysreg(0, vttbr_el2); } static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu) { if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) __vgic_v3_save_state(vcpu); else __vgic_v2_save_state(vcpu); write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2); } static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu) { u64 val; val = read_sysreg(hcr_el2); val |= HCR_INT_OVERRIDE; val |= vcpu->arch.irq_lines; write_sysreg(val, hcr_el2); if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) __vgic_v3_restore_state(vcpu); else __vgic_v2_restore_state(vcpu); } static bool __hyp_text __true_value(void) { return true; } static bool __hyp_text __false_value(void) { return false; } static hyp_alternate_select(__check_arm_834220, __false_value, __true_value, ARM64_WORKAROUND_834220); static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar) { u64 par, tmp; /* * Resolve the IPA the hard way using the guest VA. * * Stage-1 translation already validated the memory access * rights. As such, we can use the EL1 translation regime, and * don't have to distinguish between EL0 and EL1 access. * * We do need to save/restore PAR_EL1 though, as we haven't * saved the guest context yet, and we may return early... */ par = read_sysreg(par_el1); if (!__kvm_at("s1e1r", far)) tmp = read_sysreg(par_el1); else tmp = 1; /* back to the guest */ write_sysreg(par, par_el1); if (unlikely(tmp & 1)) return false; /* Translation failed, back to guest */ /* Convert PAR to HPFAR format */ *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4; return true; } static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu) { u64 esr = read_sysreg_el2(esr); u8 ec = ESR_ELx_EC(esr); u64 hpfar, far; vcpu->arch.fault.esr_el2 = esr; if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW) return true; far = read_sysreg_el2(far); /* * The HPFAR can be invalid if the stage 2 fault did not * happen during a stage 1 page table walk (the ESR_EL2.S1PTW * bit is clear) and one of the two following cases are true: * 1. The fault was due to a permission fault * 2. The processor carries errata 834220 * * Therefore, for all non S1PTW faults where we either have a * permission fault or the errata workaround is enabled, we * resolve the IPA using the AT instruction. */ if (!(esr & ESR_ELx_S1PTW) && (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) { if (!__translate_far_to_hpfar(far, &hpfar)) return false; } else { hpfar = read_sysreg(hpfar_el2); } vcpu->arch.fault.far_el2 = far; vcpu->arch.fault.hpfar_el2 = hpfar; return true; } static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu) { *vcpu_pc(vcpu) = read_sysreg_el2(elr); if (vcpu_mode_is_32bit(vcpu)) { vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr); kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr); } else { *vcpu_pc(vcpu) += 4; } write_sysreg_el2(*vcpu_pc(vcpu), elr); } static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu) { if (!cpus_have_cap(ARM64_SSBD)) return false; return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG); } static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu) { #ifdef CONFIG_ARM64_SSBD /* * The host runs with the workaround always present. If the * guest wants it disabled, so be it... */ if (__needs_ssbd_off(vcpu) && __hyp_this_cpu_read(arm64_ssbd_callback_required)) arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL); #endif } static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu) { #ifdef CONFIG_ARM64_SSBD /* * If the guest has disabled the workaround, bring it back on. */ if (__needs_ssbd_off(vcpu) && __hyp_this_cpu_read(arm64_ssbd_callback_required)) arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL); #endif } int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu) { struct kvm_cpu_context *host_ctxt; struct kvm_cpu_context *guest_ctxt; bool fp_enabled; u64 exit_code; vcpu = kern_hyp_va(vcpu); host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context); host_ctxt->__hyp_running_vcpu = vcpu; guest_ctxt = &vcpu->arch.ctxt; __sysreg_save_host_state(host_ctxt); __debug_cond_save_host_state(vcpu); __activate_traps(vcpu); __activate_vm(vcpu); __vgic_restore_state(vcpu); __timer_restore_state(vcpu); /* * We must restore the 32-bit state before the sysregs, thanks * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72). */ __sysreg32_restore_state(vcpu); __sysreg_restore_guest_state(guest_ctxt); __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt); __set_guest_arch_workaround_state(vcpu); /* Jump in the fire! */ again: exit_code = __guest_enter(vcpu, host_ctxt); /* And we're baaack! */ /* * We're using the raw exception code in order to only process * the trap if no SError is pending. We will come back to the * same PC once the SError has been injected, and replay the * trapping instruction. */ if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu)) goto again; if (static_branch_unlikely(&vgic_v2_cpuif_trap) && exit_code == ARM_EXCEPTION_TRAP) { bool valid; valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW && kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT && kvm_vcpu_dabt_isvalid(vcpu) && !kvm_vcpu_dabt_isextabt(vcpu) && !kvm_vcpu_dabt_iss1tw(vcpu); if (valid) { int ret = __vgic_v2_perform_cpuif_access(vcpu); if (ret == 1) { __skip_instr(vcpu); goto again; } if (ret == -1) { /* Promote an illegal access to an SError */ __skip_instr(vcpu); exit_code = ARM_EXCEPTION_EL1_SERROR; } /* 0 falls through to be handler out of EL2 */ } } __set_host_arch_workaround_state(vcpu); fp_enabled = __fpsimd_enabled(); __sysreg_save_guest_state(guest_ctxt); __sysreg32_save_state(vcpu); __timer_save_state(vcpu); __vgic_save_state(vcpu); __deactivate_traps(vcpu); __deactivate_vm(vcpu); __sysreg_restore_host_state(host_ctxt); if (fp_enabled) { __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs); __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs); } __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt); __debug_cond_restore_host_state(vcpu); return exit_code; } static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n"; static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par, struct kvm_vcpu *vcpu) { unsigned long str_va; /* * Force the panic string to be loaded from the literal pool, * making sure it is a kernel address and not a PC-relative * reference. */ asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string)); __hyp_do_panic(str_va, spsr, elr, read_sysreg(esr_el2), read_sysreg_el2(far), read_sysreg(hpfar_el2), par, vcpu); } static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par, struct kvm_vcpu *vcpu) { panic(__hyp_panic_string, spsr, elr, read_sysreg_el2(esr), read_sysreg_el2(far), read_sysreg(hpfar_el2), par, vcpu); } static hyp_alternate_select(__hyp_call_panic, __hyp_call_panic_nvhe, __hyp_call_panic_vhe, ARM64_HAS_VIRT_HOST_EXTN); void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt) { struct kvm_vcpu *vcpu = NULL; u64 spsr = read_sysreg_el2(spsr); u64 elr = read_sysreg_el2(elr); u64 par = read_sysreg(par_el1); if (read_sysreg(vttbr_el2)) { vcpu = host_ctxt->__hyp_running_vcpu; __timer_save_state(vcpu); __deactivate_traps(vcpu); __deactivate_vm(vcpu); __sysreg_restore_host_state(host_ctxt); } /* Call panic for real */ __hyp_call_panic()(spsr, elr, par, vcpu); unreachable(); } asmlinkage void __hyp_text kvm_unexpected_el2_exception(void) { unsigned long addr, fixup; struct kvm_cpu_context *host_ctxt; struct exception_table_entry *entry, *end; unsigned long elr_el2 = read_sysreg(elr_el2); entry = hyp_symbol_addr(__start___kvm_ex_table); end = hyp_symbol_addr(__stop___kvm_ex_table); host_ctxt = __hyp_this_cpu_ptr(kvm_host_cpu_state); while (entry < end) { addr = (unsigned long)&entry->insn + entry->insn; fixup = (unsigned long)&entry->fixup + entry->fixup; if (addr != elr_el2) { entry++; continue; } write_sysreg(fixup, elr_el2); return; } hyp_panic(host_ctxt); }