/* * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Copyright (C) 2011 Thomas Langer * Copyright (C) 2011 John Crispin */ #include #include #include #include #include #include #include "../clk.h" /* infrastructure control register */ #define SYS1_INFRAC 0x00bc /* Configuration fuses for drivers and pll */ #define STATUS_CONFIG 0x0040 /* GPE frequency selection */ #define GPPC_OFFSET 24 #define GPEFREQ_MASK 0x0000C00 #define GPEFREQ_OFFSET 10 /* Clock status register */ #define SYSCTL_CLKS 0x0000 /* Clock enable register */ #define SYSCTL_CLKEN 0x0004 /* Clock clear register */ #define SYSCTL_CLKCLR 0x0008 /* Activation Status Register */ #define SYSCTL_ACTS 0x0020 /* Activation Register */ #define SYSCTL_ACT 0x0024 /* Deactivation Register */ #define SYSCTL_DEACT 0x0028 /* reboot Register */ #define SYSCTL_RBT 0x002c /* CPU0 Clock Control Register */ #define SYS1_CPU0CC 0x0040 /* HRST_OUT_N Control Register */ #define SYS1_HRSTOUTC 0x00c0 /* clock divider bit */ #define CPU0CC_CPUDIV 0x0001 /* Activation Status Register */ #define ACTS_ASC0_ACT 0x00001000 #define ACTS_SSC0 0x00002000 #define ACTS_ASC1_ACT 0x00000800 #define ACTS_I2C_ACT 0x00004000 #define ACTS_P0 0x00010000 #define ACTS_P1 0x00010000 #define ACTS_P2 0x00020000 #define ACTS_P3 0x00020000 #define ACTS_P4 0x00040000 #define ACTS_PADCTRL0 0x00100000 #define ACTS_PADCTRL1 0x00100000 #define ACTS_PADCTRL2 0x00200000 #define ACTS_PADCTRL3 0x00200000 #define ACTS_PADCTRL4 0x00400000 #define sysctl_w32(m, x, y) ltq_w32((x), sysctl_membase[m] + (y)) #define sysctl_r32(m, x) ltq_r32(sysctl_membase[m] + (x)) #define sysctl_w32_mask(m, clear, set, reg) \ sysctl_w32(m, (sysctl_r32(m, reg) & ~(clear)) | (set), reg) #define status_w32(x, y) ltq_w32((x), status_membase + (y)) #define status_r32(x) ltq_r32(status_membase + (x)) static void __iomem *sysctl_membase[3], *status_membase; void __iomem *ltq_sys1_membase, *ltq_ebu_membase; void falcon_trigger_hrst(int level) { sysctl_w32(SYSCTL_SYS1, level & 1, SYS1_HRSTOUTC); } static inline void sysctl_wait(struct clk *clk, unsigned int test, unsigned int reg) { int err = 1000000; do {} while (--err && ((sysctl_r32(clk->module, reg) & clk->bits) != test)); if (!err) pr_err("module de/activation failed %d %08X %08X %08X\n", clk->module, clk->bits, test, sysctl_r32(clk->module, reg) & clk->bits); } static int sysctl_activate(struct clk *clk) { sysctl_w32(clk->module, clk->bits, SYSCTL_CLKEN); sysctl_w32(clk->module, clk->bits, SYSCTL_ACT); sysctl_wait(clk, clk->bits, SYSCTL_ACTS); return 0; } static void sysctl_deactivate(struct clk *clk) { sysctl_w32(clk->module, clk->bits, SYSCTL_CLKCLR); sysctl_w32(clk->module, clk->bits, SYSCTL_DEACT); sysctl_wait(clk, 0, SYSCTL_ACTS); } static int sysctl_clken(struct clk *clk) { sysctl_w32(clk->module, clk->bits, SYSCTL_CLKEN); sysctl_w32(clk->module, clk->bits, SYSCTL_ACT); sysctl_wait(clk, clk->bits, SYSCTL_CLKS); return 0; } static void sysctl_clkdis(struct clk *clk) { sysctl_w32(clk->module, clk->bits, SYSCTL_CLKCLR); sysctl_wait(clk, 0, SYSCTL_CLKS); } static void sysctl_reboot(struct clk *clk) { unsigned int act; unsigned int bits; act = sysctl_r32(clk->module, SYSCTL_ACT); bits = ~act & clk->bits; if (bits != 0) { sysctl_w32(clk->module, bits, SYSCTL_CLKEN); sysctl_w32(clk->module, bits, SYSCTL_ACT); sysctl_wait(clk, bits, SYSCTL_ACTS); } sysctl_w32(clk->module, act & clk->bits, SYSCTL_RBT); sysctl_wait(clk, clk->bits, SYSCTL_ACTS); } /* enable the ONU core */ static void falcon_gpe_enable(void) { unsigned int freq; unsigned int status; /* if if the clock is already enabled */ status = sysctl_r32(SYSCTL_SYS1, SYS1_INFRAC); if (status & (1 << (GPPC_OFFSET + 1))) return; freq = (status_r32(STATUS_CONFIG) & GPEFREQ_MASK) >> GPEFREQ_OFFSET; if (freq == 0) freq = 1; /* use 625MHz on unfused chip */ /* apply new frequency */ sysctl_w32_mask(SYSCTL_SYS1, 7 << (GPPC_OFFSET + 1), freq << (GPPC_OFFSET + 2) , SYS1_INFRAC); udelay(1); /* enable new frequency */ sysctl_w32_mask(SYSCTL_SYS1, 0, 1 << (GPPC_OFFSET + 1), SYS1_INFRAC); udelay(1); } static inline void clkdev_add_sys(const char *dev, unsigned int module, unsigned int bits) { struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL); if (!clk) return; clk->cl.dev_id = dev; clk->cl.con_id = NULL; clk->cl.clk = clk; clk->module = module; clk->bits = bits; clk->activate = sysctl_activate; clk->deactivate = sysctl_deactivate; clk->enable = sysctl_clken; clk->disable = sysctl_clkdis; clk->reboot = sysctl_reboot; clkdev_add(&clk->cl); } void __init ltq_soc_init(void) { struct device_node *np_status = of_find_compatible_node(NULL, NULL, "lantiq,status-falcon"); struct device_node *np_ebu = of_find_compatible_node(NULL, NULL, "lantiq,ebu-falcon"); struct device_node *np_sys1 = of_find_compatible_node(NULL, NULL, "lantiq,sys1-falcon"); struct device_node *np_syseth = of_find_compatible_node(NULL, NULL, "lantiq,syseth-falcon"); struct device_node *np_sysgpe = of_find_compatible_node(NULL, NULL, "lantiq,sysgpe-falcon"); struct resource res_status, res_ebu, res_sys[3]; int i; /* check if all the core register ranges are available */ if (!np_status || !np_ebu || !np_sys1 || !np_syseth || !np_sysgpe) panic("Failed to load core nodes from devicetree"); if (of_address_to_resource(np_status, 0, &res_status) || of_address_to_resource(np_ebu, 0, &res_ebu) || of_address_to_resource(np_sys1, 0, &res_sys[0]) || of_address_to_resource(np_syseth, 0, &res_sys[1]) || of_address_to_resource(np_sysgpe, 0, &res_sys[2])) panic("Failed to get core resources"); if ((request_mem_region(res_status.start, resource_size(&res_status), res_status.name) < 0) || (request_mem_region(res_ebu.start, resource_size(&res_ebu), res_ebu.name) < 0) || (request_mem_region(res_sys[0].start, resource_size(&res_sys[0]), res_sys[0].name) < 0) || (request_mem_region(res_sys[1].start, resource_size(&res_sys[1]), res_sys[1].name) < 0) || (request_mem_region(res_sys[2].start, resource_size(&res_sys[2]), res_sys[2].name) < 0)) pr_err("Failed to request core resources"); status_membase = ioremap_nocache(res_status.start, resource_size(&res_status)); ltq_ebu_membase = ioremap_nocache(res_ebu.start, resource_size(&res_ebu)); if (!status_membase || !ltq_ebu_membase) panic("Failed to remap core resources"); for (i = 0; i < 3; i++) { sysctl_membase[i] = ioremap_nocache(res_sys[i].start, resource_size(&res_sys[i])); if (!sysctl_membase[i]) panic("Failed to remap sysctrl resources"); } ltq_sys1_membase = sysctl_membase[0]; falcon_gpe_enable(); /* get our 3 static rates for cpu, fpi and io clocks */ if (ltq_sys1_r32(SYS1_CPU0CC) & CPU0CC_CPUDIV) clkdev_add_static(CLOCK_200M, CLOCK_100M, CLOCK_200M, 0); else clkdev_add_static(CLOCK_400M, CLOCK_100M, CLOCK_200M, 0); /* add our clock domains */ clkdev_add_sys("1d810000.gpio", SYSCTL_SYSETH, ACTS_P0); clkdev_add_sys("1d810100.gpio", SYSCTL_SYSETH, ACTS_P2); clkdev_add_sys("1e800100.gpio", SYSCTL_SYS1, ACTS_P1); clkdev_add_sys("1e800200.gpio", SYSCTL_SYS1, ACTS_P3); clkdev_add_sys("1e800300.gpio", SYSCTL_SYS1, ACTS_P4); clkdev_add_sys("1db01000.pad", SYSCTL_SYSETH, ACTS_PADCTRL0); clkdev_add_sys("1db02000.pad", SYSCTL_SYSETH, ACTS_PADCTRL2); clkdev_add_sys("1e800400.pad", SYSCTL_SYS1, ACTS_PADCTRL1); clkdev_add_sys("1e800500.pad", SYSCTL_SYS1, ACTS_PADCTRL3); clkdev_add_sys("1e800600.pad", SYSCTL_SYS1, ACTS_PADCTRL4); clkdev_add_sys("1e100b00.serial", SYSCTL_SYS1, ACTS_ASC1_ACT); clkdev_add_sys("1e100c00.serial", SYSCTL_SYS1, ACTS_ASC0_ACT); clkdev_add_sys("1e100d00.spi", SYSCTL_SYS1, ACTS_SSC0); clkdev_add_sys("1e200000.i2c", SYSCTL_SYS1, ACTS_I2C_ACT); }