/* * Lockless get_user_pages_fast for x86 * * Copyright (C) 2008 Nick Piggin * Copyright (C) 2008 Novell Inc. */ #include #include #include #include #include #include #include #include static inline pte_t gup_get_pte(pte_t *ptep) { #ifndef CONFIG_X86_PAE return READ_ONCE(*ptep); #else /* * With get_user_pages_fast, we walk down the pagetables without taking * any locks. For this we would like to load the pointers atomically, * but that is not possible (without expensive cmpxchg8b) on PAE. What * we do have is the guarantee that a pte will only either go from not * present to present, or present to not present or both -- it will not * switch to a completely different present page without a TLB flush in * between; something that we are blocking by holding interrupts off. * * Setting ptes from not present to present goes: * ptep->pte_high = h; * smp_wmb(); * ptep->pte_low = l; * * And present to not present goes: * ptep->pte_low = 0; * smp_wmb(); * ptep->pte_high = 0; * * We must ensure here that the load of pte_low sees l iff pte_high * sees h. We load pte_high *after* loading pte_low, which ensures we * don't see an older value of pte_high. *Then* we recheck pte_low, * which ensures that we haven't picked up a changed pte high. We might * have got rubbish values from pte_low and pte_high, but we are * guaranteed that pte_low will not have the present bit set *unless* * it is 'l'. And get_user_pages_fast only operates on present ptes, so * we're safe. * * gup_get_pte should not be used or copied outside gup.c without being * very careful -- it does not atomically load the pte or anything that * is likely to be useful for you. */ pte_t pte; retry: pte.pte_low = ptep->pte_low; smp_rmb(); pte.pte_high = ptep->pte_high; smp_rmb(); if (unlikely(pte.pte_low != ptep->pte_low)) goto retry; return pte; #endif } static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) { while ((*nr) - nr_start) { struct page *page = pages[--(*nr)]; ClearPageReferenced(page); put_page(page); } } /* * 'pteval' can come from a pte, pmd or pud. We only check * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the * same value on all 3 types. */ static inline int pte_allows_gup(unsigned long pteval, int write) { unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER; if (write) need_pte_bits |= _PAGE_RW; if ((pteval & need_pte_bits) != need_pte_bits) return 0; /* Check memory protection keys permissions. */ if (!__pkru_allows_pkey(pte_flags_pkey(pteval), write)) return 0; return 1; } /* * Return the compund head page with ref appropriately incremented, * or NULL if that failed. */ static inline struct page *try_get_compound_head(struct page *page, int refs) { struct page *head = compound_head(page); if (WARN_ON_ONCE(page_ref_count(head) < 0)) return NULL; if (unlikely(!page_cache_add_speculative(head, refs))) return NULL; return head; } /* * The performance critical leaf functions are made noinline otherwise gcc * inlines everything into a single function which results in too much * register pressure. */ static noinline int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { struct dev_pagemap *pgmap = NULL; int nr_start = *nr; pte_t *ptep; ptep = pte_offset_map(&pmd, addr); do { pte_t pte = gup_get_pte(ptep); struct page *head, *page; /* Similar to the PMD case, NUMA hinting must take slow path */ if (pte_protnone(pte)) { pte_unmap(ptep); return 0; } if (!pte_allows_gup(pte_val(pte), write)) { pte_unmap(ptep); return 0; } if (pte_devmap(pte)) { pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); if (unlikely(!pgmap)) { undo_dev_pagemap(nr, nr_start, pages); pte_unmap(ptep); return 0; } } else if (pte_special(pte)) { pte_unmap(ptep); return 0; } VM_BUG_ON(!pfn_valid(pte_pfn(pte))); page = pte_page(pte); head = try_get_compound_head(page, 1); if (!head) { put_dev_pagemap(pgmap); pte_unmap(ptep); return 0; } if (unlikely(pte_val(pte) != pte_val(*ptep))) { put_page(head); put_dev_pagemap(pgmap); pte_unmap(ptep); return 0; } put_dev_pagemap(pgmap); SetPageReferenced(page); pages[*nr] = page; (*nr)++; } while (ptep++, addr += PAGE_SIZE, addr != end); pte_unmap(ptep - 1); return 1; } static inline void get_head_page_multiple(struct page *page, int nr) { VM_BUG_ON_PAGE(page != compound_head(page), page); VM_BUG_ON_PAGE(page_count(page) == 0, page); page_ref_add(page, nr); SetPageReferenced(page); } static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr, unsigned long end, struct page **pages, int *nr) { int nr_start = *nr; unsigned long pfn = pmd_pfn(pmd); struct dev_pagemap *pgmap = NULL; pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; do { struct page *page = pfn_to_page(pfn); pgmap = get_dev_pagemap(pfn, pgmap); if (unlikely(!pgmap)) { undo_dev_pagemap(nr, nr_start, pages); return 0; } if (unlikely(!try_get_page(page))) { put_dev_pagemap(pgmap); return 0; } SetPageReferenced(page); pages[*nr] = page; put_dev_pagemap(pgmap); (*nr)++; pfn++; } while (addr += PAGE_SIZE, addr != end); return 1; } static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { struct page *head, *page; int refs; if (!pte_allows_gup(pmd_val(pmd), write)) return 0; VM_BUG_ON(!pfn_valid(pmd_pfn(pmd))); if (pmd_devmap(pmd)) return __gup_device_huge_pmd(pmd, addr, end, pages, nr); /* hugepages are never "special" */ VM_BUG_ON(pmd_flags(pmd) & _PAGE_SPECIAL); refs = 0; head = pmd_page(pmd); if (WARN_ON_ONCE(page_ref_count(head) <= 0)) return 0; page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); do { VM_BUG_ON_PAGE(compound_head(page) != head, page); pages[*nr] = page; (*nr)++; page++; refs++; } while (addr += PAGE_SIZE, addr != end); get_head_page_multiple(head, refs); return 1; } static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { unsigned long next; pmd_t *pmdp; pmdp = pmd_offset(&pud, addr); do { pmd_t pmd = *pmdp; next = pmd_addr_end(addr, end); if (pmd_none(pmd)) return 0; if (unlikely(pmd_large(pmd) || !pmd_present(pmd))) { /* * NUMA hinting faults need to be handled in the GUP * slowpath for accounting purposes and so that they * can be serialised against THP migration. */ if (pmd_protnone(pmd)) return 0; if (!gup_huge_pmd(pmd, addr, next, write, pages, nr)) return 0; } else { if (!gup_pte_range(pmd, addr, next, write, pages, nr)) return 0; } } while (pmdp++, addr = next, addr != end); return 1; } static noinline int gup_huge_pud(pud_t pud, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { struct page *head, *page; int refs; if (!pte_allows_gup(pud_val(pud), write)) return 0; /* hugepages are never "special" */ VM_BUG_ON(pud_flags(pud) & _PAGE_SPECIAL); VM_BUG_ON(!pfn_valid(pud_pfn(pud))); refs = 0; head = pud_page(pud); if (WARN_ON_ONCE(page_ref_count(head) <= 0)) return 0; page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); do { VM_BUG_ON_PAGE(compound_head(page) != head, page); pages[*nr] = page; (*nr)++; page++; refs++; } while (addr += PAGE_SIZE, addr != end); get_head_page_multiple(head, refs); return 1; } static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { unsigned long next; pud_t *pudp; pudp = pud_offset(&pgd, addr); do { pud_t pud = *pudp; next = pud_addr_end(addr, end); if (pud_none(pud)) return 0; if (unlikely(pud_large(pud))) { if (!gup_huge_pud(pud, addr, next, write, pages, nr)) return 0; } else { if (!gup_pmd_range(pud, addr, next, write, pages, nr)) return 0; } } while (pudp++, addr = next, addr != end); return 1; } /* * Like get_user_pages_fast() except its IRQ-safe in that it won't fall * back to the regular GUP. */ int __get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages) { struct mm_struct *mm = current->mm; unsigned long addr, len, end; unsigned long next; unsigned long flags; pgd_t *pgdp; int nr = 0; start &= PAGE_MASK; addr = start; len = (unsigned long) nr_pages << PAGE_SHIFT; end = start + len; if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, (void __user *)start, len))) return 0; /* * XXX: batch / limit 'nr', to avoid large irq off latency * needs some instrumenting to determine the common sizes used by * important workloads (eg. DB2), and whether limiting the batch size * will decrease performance. * * It seems like we're in the clear for the moment. Direct-IO is * the main guy that batches up lots of get_user_pages, and even * they are limited to 64-at-a-time which is not so many. */ /* * This doesn't prevent pagetable teardown, but does prevent * the pagetables and pages from being freed on x86. * * So long as we atomically load page table pointers versus teardown * (which we do on x86, with the above PAE exception), we can follow the * address down to the the page and take a ref on it. */ local_irq_save(flags); pgdp = pgd_offset(mm, addr); do { pgd_t pgd = *pgdp; next = pgd_addr_end(addr, end); if (pgd_none(pgd)) break; if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) break; } while (pgdp++, addr = next, addr != end); local_irq_restore(flags); return nr; } /** * get_user_pages_fast() - pin user pages in memory * @start: starting user address * @nr_pages: number of pages from start to pin * @write: whether pages will be written to * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Attempt to pin user pages in memory without taking mm->mmap_sem. * If not successful, it will fall back to taking the lock and * calling get_user_pages(). * * Returns number of pages pinned. This may be fewer than the number * requested. If nr_pages is 0 or negative, returns 0. If no pages * were pinned, returns -errno. */ int get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages) { struct mm_struct *mm = current->mm; unsigned long addr, len, end; unsigned long next; pgd_t *pgdp; int nr = 0; start &= PAGE_MASK; addr = start; len = (unsigned long) nr_pages << PAGE_SHIFT; end = start + len; if (end < start) goto slow_irqon; #ifdef CONFIG_X86_64 if (end >> __VIRTUAL_MASK_SHIFT) goto slow_irqon; #endif /* * XXX: batch / limit 'nr', to avoid large irq off latency * needs some instrumenting to determine the common sizes used by * important workloads (eg. DB2), and whether limiting the batch size * will decrease performance. * * It seems like we're in the clear for the moment. Direct-IO is * the main guy that batches up lots of get_user_pages, and even * they are limited to 64-at-a-time which is not so many. */ /* * This doesn't prevent pagetable teardown, but does prevent * the pagetables and pages from being freed on x86. * * So long as we atomically load page table pointers versus teardown * (which we do on x86, with the above PAE exception), we can follow the * address down to the the page and take a ref on it. */ local_irq_disable(); pgdp = pgd_offset(mm, addr); do { pgd_t pgd = *pgdp; next = pgd_addr_end(addr, end); if (pgd_none(pgd)) goto slow; /* * The FAST_GUP case requires FOLL_WRITE even for pure reads, * because get_user_pages() may need to cause an early COW in * order to avoid confusing the normal COW routines. So only * targets that are already writable are safe to do by just * looking at the page tables. */ if (!gup_pud_range(pgd, addr, next, 1, pages, &nr)) goto slow; } while (pgdp++, addr = next, addr != end); local_irq_enable(); VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT); return nr; { int ret; slow: local_irq_enable(); slow_irqon: /* Try to get the remaining pages with get_user_pages */ start += nr << PAGE_SHIFT; pages += nr; ret = get_user_pages_unlocked(start, (end - start) >> PAGE_SHIFT, pages, write ? FOLL_WRITE : 0); /* Have to be a bit careful with return values */ if (nr > 0) { if (ret < 0) ret = nr; else ret += nr; } return ret; } }