/* * linux/drivers/block/loop.c * * Written by Theodore Ts'o, 3/29/93 * * Copyright 1993 by Theodore Ts'o. Redistribution of this file is * permitted under the GNU General Public License. * * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 * * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 * * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 * * Added devfs support - Richard Gooch 16-Jan-1998 * * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 * * Loadable modules and other fixes by AK, 1998 * * Make real block number available to downstream transfer functions, enables * CBC (and relatives) mode encryption requiring unique IVs per data block. * Reed H. Petty, rhp@draper.net * * Maximum number of loop devices now dynamic via max_loop module parameter. * Russell Kroll 19990701 * * Maximum number of loop devices when compiled-in now selectable by passing * max_loop=<1-255> to the kernel on boot. * Erik I. Bolsø, , Oct 31, 1999 * * Completely rewrite request handling to be make_request_fn style and * non blocking, pushing work to a helper thread. Lots of fixes from * Al Viro too. * Jens Axboe , Nov 2000 * * Support up to 256 loop devices * Heinz Mauelshagen , Feb 2002 * * Support for falling back on the write file operation when the address space * operations write_begin is not available on the backing filesystem. * Anton Altaparmakov, 16 Feb 2005 * * Still To Fix: * - Advisory locking is ignored here. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "loop.h" #include static DEFINE_IDR(loop_index_idr); static DEFINE_MUTEX(loop_index_mutex); static int max_part; static int part_shift; static int transfer_xor(struct loop_device *lo, int cmd, struct page *raw_page, unsigned raw_off, struct page *loop_page, unsigned loop_off, int size, sector_t real_block) { char *raw_buf = kmap_atomic(raw_page) + raw_off; char *loop_buf = kmap_atomic(loop_page) + loop_off; char *in, *out, *key; int i, keysize; if (cmd == READ) { in = raw_buf; out = loop_buf; } else { in = loop_buf; out = raw_buf; } key = lo->lo_encrypt_key; keysize = lo->lo_encrypt_key_size; for (i = 0; i < size; i++) *out++ = *in++ ^ key[(i & 511) % keysize]; kunmap_atomic(loop_buf); kunmap_atomic(raw_buf); cond_resched(); return 0; } static int xor_init(struct loop_device *lo, const struct loop_info64 *info) { if (unlikely(info->lo_encrypt_key_size <= 0)) return -EINVAL; return 0; } static struct loop_func_table none_funcs = { .number = LO_CRYPT_NONE, }; static struct loop_func_table xor_funcs = { .number = LO_CRYPT_XOR, .transfer = transfer_xor, .init = xor_init }; /* xfer_funcs[0] is special - its release function is never called */ static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { &none_funcs, &xor_funcs }; static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) { loff_t loopsize; /* Compute loopsize in bytes */ loopsize = i_size_read(file->f_mapping->host); if (offset > 0) loopsize -= offset; /* offset is beyond i_size, weird but possible */ if (loopsize < 0) return 0; if (sizelimit > 0 && sizelimit < loopsize) loopsize = sizelimit; /* * Unfortunately, if we want to do I/O on the device, * the number of 512-byte sectors has to fit into a sector_t. */ return loopsize >> 9; } static loff_t get_loop_size(struct loop_device *lo, struct file *file) { return get_size(lo->lo_offset, lo->lo_sizelimit, file); } static void __loop_update_dio(struct loop_device *lo, bool dio) { struct file *file = lo->lo_backing_file; struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; unsigned short sb_bsize = 0; unsigned dio_align = 0; bool use_dio; if (inode->i_sb->s_bdev) { sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev); dio_align = sb_bsize - 1; } /* * We support direct I/O only if lo_offset is aligned with the * logical I/O size of backing device, and the logical block * size of loop is bigger than the backing device's and the loop * needn't transform transfer. * * TODO: the above condition may be loosed in the future, and * direct I/O may be switched runtime at that time because most * of requests in sane appplications should be PAGE_SIZE algined */ if (dio) { if (queue_logical_block_size(lo->lo_queue) >= sb_bsize && !(lo->lo_offset & dio_align) && mapping->a_ops->direct_IO && !lo->transfer) use_dio = true; else use_dio = false; } else { use_dio = false; } if (lo->use_dio == use_dio) return; /* flush dirty pages before changing direct IO */ vfs_fsync(file, 0); /* * The flag of LO_FLAGS_DIRECT_IO is handled similarly with * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup * will get updated by ioctl(LOOP_GET_STATUS) */ blk_mq_freeze_queue(lo->lo_queue); lo->use_dio = use_dio; if (use_dio) lo->lo_flags |= LO_FLAGS_DIRECT_IO; else lo->lo_flags &= ~LO_FLAGS_DIRECT_IO; blk_mq_unfreeze_queue(lo->lo_queue); } static int figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) { loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); sector_t x = (sector_t)size; struct block_device *bdev = lo->lo_device; if (unlikely((loff_t)x != size)) return -EFBIG; if (lo->lo_offset != offset) lo->lo_offset = offset; if (lo->lo_sizelimit != sizelimit) lo->lo_sizelimit = sizelimit; set_capacity(lo->lo_disk, x); bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); /* let user-space know about the new size */ kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); return 0; } static inline int lo_do_transfer(struct loop_device *lo, int cmd, struct page *rpage, unsigned roffs, struct page *lpage, unsigned loffs, int size, sector_t rblock) { int ret; ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); if (likely(!ret)) return 0; printk_ratelimited(KERN_ERR "loop: Transfer error at byte offset %llu, length %i.\n", (unsigned long long)rblock << 9, size); return ret; } static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos) { struct iov_iter i; ssize_t bw; iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len); file_start_write(file); bw = vfs_iter_write(file, &i, ppos); file_end_write(file); if (likely(bw == bvec->bv_len)) return 0; printk_ratelimited(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", (unsigned long long)*ppos, bvec->bv_len); if (bw >= 0) bw = -EIO; return bw; } static int lo_write_simple(struct loop_device *lo, struct request *rq, loff_t pos) { struct bio_vec bvec; struct req_iterator iter; int ret = 0; rq_for_each_segment(bvec, rq, iter) { ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos); if (ret < 0) break; cond_resched(); } return ret; } /* * This is the slow, transforming version that needs to double buffer the * data as it cannot do the transformations in place without having direct * access to the destination pages of the backing file. */ static int lo_write_transfer(struct loop_device *lo, struct request *rq, loff_t pos) { struct bio_vec bvec, b; struct req_iterator iter; struct page *page; int ret = 0; page = alloc_page(GFP_NOIO); if (unlikely(!page)) return -ENOMEM; rq_for_each_segment(bvec, rq, iter) { ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page, bvec.bv_offset, bvec.bv_len, pos >> 9); if (unlikely(ret)) break; b.bv_page = page; b.bv_offset = 0; b.bv_len = bvec.bv_len; ret = lo_write_bvec(lo->lo_backing_file, &b, &pos); if (ret < 0) break; } __free_page(page); return ret; } static int lo_read_simple(struct loop_device *lo, struct request *rq, loff_t pos) { struct bio_vec bvec; struct req_iterator iter; struct iov_iter i; ssize_t len; rq_for_each_segment(bvec, rq, iter) { iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len); len = vfs_iter_read(lo->lo_backing_file, &i, &pos); if (len < 0) return len; flush_dcache_page(bvec.bv_page); if (len != bvec.bv_len) { struct bio *bio; __rq_for_each_bio(bio, rq) zero_fill_bio(bio); break; } cond_resched(); } return 0; } static int lo_read_transfer(struct loop_device *lo, struct request *rq, loff_t pos) { struct bio_vec bvec, b; struct req_iterator iter; struct iov_iter i; struct page *page; ssize_t len; int ret = 0; page = alloc_page(GFP_NOIO); if (unlikely(!page)) return -ENOMEM; rq_for_each_segment(bvec, rq, iter) { loff_t offset = pos; b.bv_page = page; b.bv_offset = 0; b.bv_len = bvec.bv_len; iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len); len = vfs_iter_read(lo->lo_backing_file, &i, &pos); if (len < 0) { ret = len; goto out_free_page; } ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page, bvec.bv_offset, len, offset >> 9); if (ret) goto out_free_page; flush_dcache_page(bvec.bv_page); if (len != bvec.bv_len) { struct bio *bio; __rq_for_each_bio(bio, rq) zero_fill_bio(bio); break; } } ret = 0; out_free_page: __free_page(page); return ret; } static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos) { /* * We use punch hole to reclaim the free space used by the * image a.k.a. discard. However we do not support discard if * encryption is enabled, because it may give an attacker * useful information. */ struct file *file = lo->lo_backing_file; int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; int ret; if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { ret = -EOPNOTSUPP; goto out; } ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq)); if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP)) ret = -EIO; out: return ret; } static int lo_req_flush(struct loop_device *lo, struct request *rq) { struct file *file = lo->lo_backing_file; int ret = vfs_fsync(file, 0); if (unlikely(ret && ret != -EINVAL)) ret = -EIO; return ret; } static inline void handle_partial_read(struct loop_cmd *cmd, long bytes) { if (bytes < 0 || op_is_write(req_op(cmd->rq))) return; if (unlikely(bytes < blk_rq_bytes(cmd->rq))) { struct bio *bio = cmd->rq->bio; bio_advance(bio, bytes); zero_fill_bio(bio); } } static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2) { struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb); struct request *rq = cmd->rq; handle_partial_read(cmd, ret); if (ret > 0) ret = 0; else if (ret < 0) ret = -EIO; blk_mq_complete_request(rq, ret); } static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd, loff_t pos, bool rw) { struct iov_iter iter; struct bio_vec *bvec; struct bio *bio = cmd->rq->bio; struct file *file = lo->lo_backing_file; int ret; /* nomerge for loop request queue */ WARN_ON(cmd->rq->bio != cmd->rq->biotail); bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter); iov_iter_bvec(&iter, ITER_BVEC | rw, bvec, bio_segments(bio), blk_rq_bytes(cmd->rq)); /* * This bio may be started from the middle of the 'bvec' * because of bio splitting, so offset from the bvec must * be passed to iov iterator */ iter.iov_offset = bio->bi_iter.bi_bvec_done; cmd->iocb.ki_pos = pos; cmd->iocb.ki_filp = file; cmd->iocb.ki_complete = lo_rw_aio_complete; cmd->iocb.ki_flags = IOCB_DIRECT; if (rw == WRITE) ret = file->f_op->write_iter(&cmd->iocb, &iter); else ret = file->f_op->read_iter(&cmd->iocb, &iter); if (ret != -EIOCBQUEUED) cmd->iocb.ki_complete(&cmd->iocb, ret, 0); return 0; } static int do_req_filebacked(struct loop_device *lo, struct request *rq) { struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset; /* * lo_write_simple and lo_read_simple should have been covered * by io submit style function like lo_rw_aio(), one blocker * is that lo_read_simple() need to call flush_dcache_page after * the page is written from kernel, and it isn't easy to handle * this in io submit style function which submits all segments * of the req at one time. And direct read IO doesn't need to * run flush_dcache_page(). */ switch (req_op(rq)) { case REQ_OP_FLUSH: return lo_req_flush(lo, rq); case REQ_OP_DISCARD: return lo_discard(lo, rq, pos); case REQ_OP_WRITE: if (lo->transfer) return lo_write_transfer(lo, rq, pos); else if (cmd->use_aio) return lo_rw_aio(lo, cmd, pos, WRITE); else return lo_write_simple(lo, rq, pos); case REQ_OP_READ: if (lo->transfer) return lo_read_transfer(lo, rq, pos); else if (cmd->use_aio) return lo_rw_aio(lo, cmd, pos, READ); else return lo_read_simple(lo, rq, pos); default: WARN_ON_ONCE(1); return -EIO; break; } } struct switch_request { struct file *file; struct completion wait; }; static inline void loop_update_dio(struct loop_device *lo) { __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) | lo->use_dio); } /* * Do the actual switch; called from the BIO completion routine */ static void do_loop_switch(struct loop_device *lo, struct switch_request *p) { struct file *file = p->file; struct file *old_file = lo->lo_backing_file; struct address_space *mapping; /* if no new file, only flush of queued bios requested */ if (!file) return; mapping = file->f_mapping; mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); lo->lo_backing_file = file; lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? mapping->host->i_bdev->bd_block_size : PAGE_SIZE; lo->old_gfp_mask = mapping_gfp_mask(mapping); mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); loop_update_dio(lo); } /* * loop_switch performs the hard work of switching a backing store. * First it needs to flush existing IO, it does this by sending a magic * BIO down the pipe. The completion of this BIO does the actual switch. */ static int loop_switch(struct loop_device *lo, struct file *file) { struct switch_request w; w.file = file; /* freeze queue and wait for completion of scheduled requests */ blk_mq_freeze_queue(lo->lo_queue); /* do the switch action */ do_loop_switch(lo, &w); /* unfreeze */ blk_mq_unfreeze_queue(lo->lo_queue); return 0; } /* * Helper to flush the IOs in loop, but keeping loop thread running */ static int loop_flush(struct loop_device *lo) { /* loop not yet configured, no running thread, nothing to flush */ if (lo->lo_state != Lo_bound) return 0; return loop_switch(lo, NULL); } static void loop_reread_partitions(struct loop_device *lo, struct block_device *bdev) { int rc; /* * bd_mutex has been held already in release path, so don't * acquire it if this function is called in such case. * * If the reread partition isn't from release path, lo_refcnt * must be at least one and it can only become zero when the * current holder is released. */ if (!atomic_read(&lo->lo_refcnt)) rc = __blkdev_reread_part(bdev); else rc = blkdev_reread_part(bdev); if (rc) pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n", __func__, lo->lo_number, lo->lo_file_name, rc); } static inline int is_loop_device(struct file *file) { struct inode *i = file->f_mapping->host; return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; } static int loop_validate_file(struct file *file, struct block_device *bdev) { struct inode *inode = file->f_mapping->host; struct file *f = file; /* Avoid recursion */ while (is_loop_device(f)) { struct loop_device *l; if (f->f_mapping->host->i_bdev == bdev) return -EBADF; l = f->f_mapping->host->i_bdev->bd_disk->private_data; if (l->lo_state == Lo_unbound) { return -EINVAL; } f = l->lo_backing_file; } if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) return -EINVAL; return 0; } /* * loop_change_fd switched the backing store of a loopback device to * a new file. This is useful for operating system installers to free up * the original file and in High Availability environments to switch to * an alternative location for the content in case of server meltdown. * This can only work if the loop device is used read-only, and if the * new backing store is the same size and type as the old backing store. */ static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, unsigned int arg) { struct file *file, *old_file; struct inode *inode; int error; error = -ENXIO; if (lo->lo_state != Lo_bound) goto out; /* the loop device has to be read-only */ error = -EINVAL; if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) goto out; error = -EBADF; file = fget(arg); if (!file) goto out; error = loop_validate_file(file, bdev); if (error) goto out_putf; inode = file->f_mapping->host; old_file = lo->lo_backing_file; error = -EINVAL; /* size of the new backing store needs to be the same */ if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) goto out_putf; /* and ... switch */ error = loop_switch(lo, file); if (error) goto out_putf; fput(old_file); if (lo->lo_flags & LO_FLAGS_PARTSCAN) loop_reread_partitions(lo, bdev); return 0; out_putf: fput(file); out: return error; } /* loop sysfs attributes */ static ssize_t loop_attr_show(struct device *dev, char *page, ssize_t (*callback)(struct loop_device *, char *)) { struct gendisk *disk = dev_to_disk(dev); struct loop_device *lo = disk->private_data; return callback(lo, page); } #define LOOP_ATTR_RO(_name) \ static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ static ssize_t loop_attr_do_show_##_name(struct device *d, \ struct device_attribute *attr, char *b) \ { \ return loop_attr_show(d, b, loop_attr_##_name##_show); \ } \ static struct device_attribute loop_attr_##_name = \ __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) { ssize_t ret; char *p = NULL; spin_lock_irq(&lo->lo_lock); if (lo->lo_backing_file) p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1); spin_unlock_irq(&lo->lo_lock); if (IS_ERR_OR_NULL(p)) ret = PTR_ERR(p); else { ret = strlen(p); memmove(buf, p, ret); buf[ret++] = '\n'; buf[ret] = 0; } return ret; } static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) { return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_offset); } static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) { return sysfs_emit(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); } static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) { int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); return sysfs_emit(buf, "%s\n", autoclear ? "1" : "0"); } static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) { int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); return sysfs_emit(buf, "%s\n", partscan ? "1" : "0"); } static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf) { int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO); return sysfs_emit(buf, "%s\n", dio ? "1" : "0"); } LOOP_ATTR_RO(backing_file); LOOP_ATTR_RO(offset); LOOP_ATTR_RO(sizelimit); LOOP_ATTR_RO(autoclear); LOOP_ATTR_RO(partscan); LOOP_ATTR_RO(dio); static struct attribute *loop_attrs[] = { &loop_attr_backing_file.attr, &loop_attr_offset.attr, &loop_attr_sizelimit.attr, &loop_attr_autoclear.attr, &loop_attr_partscan.attr, &loop_attr_dio.attr, NULL, }; static struct attribute_group loop_attribute_group = { .name = "loop", .attrs= loop_attrs, }; static void loop_sysfs_init(struct loop_device *lo) { lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, &loop_attribute_group); } static void loop_sysfs_exit(struct loop_device *lo) { if (lo->sysfs_inited) sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, &loop_attribute_group); } static void loop_config_discard(struct loop_device *lo) { struct file *file = lo->lo_backing_file; struct inode *inode = file->f_mapping->host; struct request_queue *q = lo->lo_queue; /* * We use punch hole to reclaim the free space used by the * image a.k.a. discard. However we do not support discard if * encryption is enabled, because it may give an attacker * useful information. */ if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) { q->limits.discard_granularity = 0; q->limits.discard_alignment = 0; blk_queue_max_discard_sectors(q, 0); q->limits.discard_zeroes_data = 0; queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); return; } q->limits.discard_granularity = inode->i_sb->s_blocksize; q->limits.discard_alignment = 0; blk_queue_max_discard_sectors(q, UINT_MAX >> 9); q->limits.discard_zeroes_data = 1; queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); } static void loop_unprepare_queue(struct loop_device *lo) { kthread_flush_worker(&lo->worker); kthread_stop(lo->worker_task); } static int loop_prepare_queue(struct loop_device *lo) { kthread_init_worker(&lo->worker); lo->worker_task = kthread_run(kthread_worker_fn, &lo->worker, "loop%d", lo->lo_number); if (IS_ERR(lo->worker_task)) return -ENOMEM; set_user_nice(lo->worker_task, MIN_NICE); return 0; } static int loop_set_fd(struct loop_device *lo, fmode_t mode, struct block_device *bdev, unsigned int arg) { struct file *file; struct inode *inode; struct address_space *mapping; unsigned lo_blocksize; int lo_flags = 0; int error; loff_t size; /* This is safe, since we have a reference from open(). */ __module_get(THIS_MODULE); error = -EBADF; file = fget(arg); if (!file) goto out; error = -EBUSY; if (lo->lo_state != Lo_unbound) goto out_putf; error = loop_validate_file(file, bdev); if (error) goto out_putf; mapping = file->f_mapping; inode = mapping->host; if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || !file->f_op->write_iter) lo_flags |= LO_FLAGS_READ_ONLY; lo_blocksize = S_ISBLK(inode->i_mode) ? inode->i_bdev->bd_block_size : PAGE_SIZE; error = -EFBIG; size = get_loop_size(lo, file); if ((loff_t)(sector_t)size != size) goto out_putf; error = loop_prepare_queue(lo); if (error) goto out_putf; error = 0; set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); lo->use_dio = false; lo->lo_blocksize = lo_blocksize; lo->lo_device = bdev; lo->lo_flags = lo_flags; lo->lo_backing_file = file; lo->transfer = NULL; lo->ioctl = NULL; lo->lo_sizelimit = 0; lo->old_gfp_mask = mapping_gfp_mask(mapping); mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) blk_queue_write_cache(lo->lo_queue, true, false); loop_update_dio(lo); set_capacity(lo->lo_disk, size); bd_set_size(bdev, size << 9); loop_sysfs_init(lo); /* let user-space know about the new size */ kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); set_blocksize(bdev, lo_blocksize); lo->lo_state = Lo_bound; if (part_shift) lo->lo_flags |= LO_FLAGS_PARTSCAN; if (lo->lo_flags & LO_FLAGS_PARTSCAN) loop_reread_partitions(lo, bdev); /* Grab the block_device to prevent its destruction after we * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). */ bdgrab(bdev); return 0; out_putf: fput(file); out: /* This is safe: open() is still holding a reference. */ module_put(THIS_MODULE); return error; } static int loop_release_xfer(struct loop_device *lo) { int err = 0; struct loop_func_table *xfer = lo->lo_encryption; if (xfer) { if (xfer->release) err = xfer->release(lo); lo->transfer = NULL; lo->lo_encryption = NULL; module_put(xfer->owner); } return err; } static int loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, const struct loop_info64 *i) { int err = 0; if (xfer) { struct module *owner = xfer->owner; if (!try_module_get(owner)) return -EINVAL; if (xfer->init) err = xfer->init(lo, i); if (err) module_put(owner); else lo->lo_encryption = xfer; } return err; } static int loop_clr_fd(struct loop_device *lo) { struct file *filp = lo->lo_backing_file; gfp_t gfp = lo->old_gfp_mask; struct block_device *bdev = lo->lo_device; if (lo->lo_state != Lo_bound) return -ENXIO; /* * If we've explicitly asked to tear down the loop device, * and it has an elevated reference count, set it for auto-teardown when * the last reference goes away. This stops $!~#$@ udev from * preventing teardown because it decided that it needs to run blkid on * the loopback device whenever they appear. xfstests is notorious for * failing tests because blkid via udev races with a losetup * /do something like mkfs/losetup -d causing the losetup -d * command to fail with EBUSY. */ if (atomic_read(&lo->lo_refcnt) > 1) { lo->lo_flags |= LO_FLAGS_AUTOCLEAR; mutex_unlock(&lo->lo_ctl_mutex); return 0; } if (filp == NULL) return -EINVAL; /* freeze request queue during the transition */ blk_mq_freeze_queue(lo->lo_queue); spin_lock_irq(&lo->lo_lock); lo->lo_state = Lo_rundown; lo->lo_backing_file = NULL; spin_unlock_irq(&lo->lo_lock); loop_release_xfer(lo); lo->transfer = NULL; lo->ioctl = NULL; lo->lo_device = NULL; lo->lo_encryption = NULL; lo->lo_offset = 0; lo->lo_sizelimit = 0; lo->lo_encrypt_key_size = 0; memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); memset(lo->lo_file_name, 0, LO_NAME_SIZE); if (bdev) { bdput(bdev); invalidate_bdev(bdev); } set_capacity(lo->lo_disk, 0); loop_sysfs_exit(lo); if (bdev) { bd_set_size(bdev, 0); /* let user-space know about this change */ kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); } mapping_set_gfp_mask(filp->f_mapping, gfp); lo->lo_state = Lo_unbound; /* This is safe: open() is still holding a reference. */ module_put(THIS_MODULE); blk_mq_unfreeze_queue(lo->lo_queue); if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev) loop_reread_partitions(lo, bdev); lo->lo_flags = 0; if (!part_shift) lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; loop_unprepare_queue(lo); mutex_unlock(&lo->lo_ctl_mutex); /* * Need not hold lo_ctl_mutex to fput backing file. * Calling fput holding lo_ctl_mutex triggers a circular * lock dependency possibility warning as fput can take * bd_mutex which is usually taken before lo_ctl_mutex. */ fput(filp); return 0; } static int loop_set_status(struct loop_device *lo, const struct loop_info64 *info) { int err; struct loop_func_table *xfer; kuid_t uid = current_uid(); if (lo->lo_encrypt_key_size && !uid_eq(lo->lo_key_owner, uid) && !capable(CAP_SYS_ADMIN)) return -EPERM; if (lo->lo_state != Lo_bound) return -ENXIO; if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) return -EINVAL; /* I/O need to be drained during transfer transition */ blk_mq_freeze_queue(lo->lo_queue); err = loop_release_xfer(lo); if (err) goto exit; if (info->lo_encrypt_type) { unsigned int type = info->lo_encrypt_type; if (type >= MAX_LO_CRYPT) { err = -EINVAL; goto exit; } xfer = xfer_funcs[type]; if (xfer == NULL) { err = -EINVAL; goto exit; } } else xfer = NULL; err = loop_init_xfer(lo, xfer, info); if (err) goto exit; if (lo->lo_offset != info->lo_offset || lo->lo_sizelimit != info->lo_sizelimit) if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) { err = -EFBIG; goto exit; } loop_config_discard(lo); memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); lo->lo_file_name[LO_NAME_SIZE-1] = 0; lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; if (!xfer) xfer = &none_funcs; lo->transfer = xfer->transfer; lo->ioctl = xfer->ioctl; if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != (info->lo_flags & LO_FLAGS_AUTOCLEAR)) lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; lo->lo_encrypt_key_size = info->lo_encrypt_key_size; lo->lo_init[0] = info->lo_init[0]; lo->lo_init[1] = info->lo_init[1]; if (info->lo_encrypt_key_size) { memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, info->lo_encrypt_key_size); lo->lo_key_owner = uid; } /* update dio if lo_offset or transfer is changed */ __loop_update_dio(lo, lo->use_dio); exit: blk_mq_unfreeze_queue(lo->lo_queue); if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) && !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { lo->lo_flags |= LO_FLAGS_PARTSCAN; lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; loop_reread_partitions(lo, lo->lo_device); } return err; } static int loop_get_status(struct loop_device *lo, struct loop_info64 *info) { struct file *file = lo->lo_backing_file; struct kstat stat; int error; if (lo->lo_state != Lo_bound) return -ENXIO; error = vfs_getattr(&file->f_path, &stat); if (error) return error; memset(info, 0, sizeof(*info)); info->lo_number = lo->lo_number; info->lo_device = huge_encode_dev(stat.dev); info->lo_inode = stat.ino; info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); info->lo_offset = lo->lo_offset; info->lo_sizelimit = lo->lo_sizelimit; info->lo_flags = lo->lo_flags; memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); info->lo_encrypt_type = lo->lo_encryption ? lo->lo_encryption->number : 0; if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { info->lo_encrypt_key_size = lo->lo_encrypt_key_size; memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, lo->lo_encrypt_key_size); } return 0; } static void loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) { memset(info64, 0, sizeof(*info64)); info64->lo_number = info->lo_number; info64->lo_device = info->lo_device; info64->lo_inode = info->lo_inode; info64->lo_rdevice = info->lo_rdevice; info64->lo_offset = info->lo_offset; info64->lo_sizelimit = 0; info64->lo_encrypt_type = info->lo_encrypt_type; info64->lo_encrypt_key_size = info->lo_encrypt_key_size; info64->lo_flags = info->lo_flags; info64->lo_init[0] = info->lo_init[0]; info64->lo_init[1] = info->lo_init[1]; if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); else memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); } static int loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) { memset(info, 0, sizeof(*info)); info->lo_number = info64->lo_number; info->lo_device = info64->lo_device; info->lo_inode = info64->lo_inode; info->lo_rdevice = info64->lo_rdevice; info->lo_offset = info64->lo_offset; info->lo_encrypt_type = info64->lo_encrypt_type; info->lo_encrypt_key_size = info64->lo_encrypt_key_size; info->lo_flags = info64->lo_flags; info->lo_init[0] = info64->lo_init[0]; info->lo_init[1] = info64->lo_init[1]; if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); else memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); /* error in case values were truncated */ if (info->lo_device != info64->lo_device || info->lo_rdevice != info64->lo_rdevice || info->lo_inode != info64->lo_inode || info->lo_offset != info64->lo_offset) return -EOVERFLOW; return 0; } static int loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) { struct loop_info info; struct loop_info64 info64; if (copy_from_user(&info, arg, sizeof (struct loop_info))) return -EFAULT; loop_info64_from_old(&info, &info64); return loop_set_status(lo, &info64); } static int loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) { struct loop_info64 info64; if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) return -EFAULT; return loop_set_status(lo, &info64); } static int loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { struct loop_info info; struct loop_info64 info64; int err = 0; if (!arg) err = -EINVAL; if (!err) err = loop_get_status(lo, &info64); if (!err) err = loop_info64_to_old(&info64, &info); if (!err && copy_to_user(arg, &info, sizeof(info))) err = -EFAULT; return err; } static int loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { struct loop_info64 info64; int err = 0; if (!arg) err = -EINVAL; if (!err) err = loop_get_status(lo, &info64); if (!err && copy_to_user(arg, &info64, sizeof(info64))) err = -EFAULT; return err; } static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) { if (unlikely(lo->lo_state != Lo_bound)) return -ENXIO; return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); } static int loop_set_dio(struct loop_device *lo, unsigned long arg) { int error = -ENXIO; if (lo->lo_state != Lo_bound) goto out; __loop_update_dio(lo, !!arg); if (lo->use_dio == !!arg) return 0; error = -EINVAL; out: return error; } static int lo_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct loop_device *lo = bdev->bd_disk->private_data; int err; mutex_lock_nested(&lo->lo_ctl_mutex, 1); switch (cmd) { case LOOP_SET_FD: err = loop_set_fd(lo, mode, bdev, arg); break; case LOOP_CHANGE_FD: err = loop_change_fd(lo, bdev, arg); break; case LOOP_CLR_FD: /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ err = loop_clr_fd(lo); if (!err) goto out_unlocked; break; case LOOP_SET_STATUS: err = -EPERM; if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) err = loop_set_status_old(lo, (struct loop_info __user *)arg); break; case LOOP_GET_STATUS: err = loop_get_status_old(lo, (struct loop_info __user *) arg); break; case LOOP_SET_STATUS64: err = -EPERM; if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) err = loop_set_status64(lo, (struct loop_info64 __user *) arg); break; case LOOP_GET_STATUS64: err = loop_get_status64(lo, (struct loop_info64 __user *) arg); break; case LOOP_SET_CAPACITY: err = -EPERM; if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) err = loop_set_capacity(lo, bdev); break; case LOOP_SET_DIRECT_IO: err = -EPERM; if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) err = loop_set_dio(lo, arg); break; default: err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; } mutex_unlock(&lo->lo_ctl_mutex); out_unlocked: return err; } #ifdef CONFIG_COMPAT struct compat_loop_info { compat_int_t lo_number; /* ioctl r/o */ compat_dev_t lo_device; /* ioctl r/o */ compat_ulong_t lo_inode; /* ioctl r/o */ compat_dev_t lo_rdevice; /* ioctl r/o */ compat_int_t lo_offset; compat_int_t lo_encrypt_type; compat_int_t lo_encrypt_key_size; /* ioctl w/o */ compat_int_t lo_flags; /* ioctl r/o */ char lo_name[LO_NAME_SIZE]; unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ compat_ulong_t lo_init[2]; char reserved[4]; }; /* * Transfer 32-bit compatibility structure in userspace to 64-bit loop info * - noinlined to reduce stack space usage in main part of driver */ static noinline int loop_info64_from_compat(const struct compat_loop_info __user *arg, struct loop_info64 *info64) { struct compat_loop_info info; if (copy_from_user(&info, arg, sizeof(info))) return -EFAULT; memset(info64, 0, sizeof(*info64)); info64->lo_number = info.lo_number; info64->lo_device = info.lo_device; info64->lo_inode = info.lo_inode; info64->lo_rdevice = info.lo_rdevice; info64->lo_offset = info.lo_offset; info64->lo_sizelimit = 0; info64->lo_encrypt_type = info.lo_encrypt_type; info64->lo_encrypt_key_size = info.lo_encrypt_key_size; info64->lo_flags = info.lo_flags; info64->lo_init[0] = info.lo_init[0]; info64->lo_init[1] = info.lo_init[1]; if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); else memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); return 0; } /* * Transfer 64-bit loop info to 32-bit compatibility structure in userspace * - noinlined to reduce stack space usage in main part of driver */ static noinline int loop_info64_to_compat(const struct loop_info64 *info64, struct compat_loop_info __user *arg) { struct compat_loop_info info; memset(&info, 0, sizeof(info)); info.lo_number = info64->lo_number; info.lo_device = info64->lo_device; info.lo_inode = info64->lo_inode; info.lo_rdevice = info64->lo_rdevice; info.lo_offset = info64->lo_offset; info.lo_encrypt_type = info64->lo_encrypt_type; info.lo_encrypt_key_size = info64->lo_encrypt_key_size; info.lo_flags = info64->lo_flags; info.lo_init[0] = info64->lo_init[0]; info.lo_init[1] = info64->lo_init[1]; if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); else memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); /* error in case values were truncated */ if (info.lo_device != info64->lo_device || info.lo_rdevice != info64->lo_rdevice || info.lo_inode != info64->lo_inode || info.lo_offset != info64->lo_offset || info.lo_init[0] != info64->lo_init[0] || info.lo_init[1] != info64->lo_init[1]) return -EOVERFLOW; if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int loop_set_status_compat(struct loop_device *lo, const struct compat_loop_info __user *arg) { struct loop_info64 info64; int ret; ret = loop_info64_from_compat(arg, &info64); if (ret < 0) return ret; return loop_set_status(lo, &info64); } static int loop_get_status_compat(struct loop_device *lo, struct compat_loop_info __user *arg) { struct loop_info64 info64; int err = 0; if (!arg) err = -EINVAL; if (!err) err = loop_get_status(lo, &info64); if (!err) err = loop_info64_to_compat(&info64, arg); return err; } static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct loop_device *lo = bdev->bd_disk->private_data; int err; switch(cmd) { case LOOP_SET_STATUS: mutex_lock(&lo->lo_ctl_mutex); err = loop_set_status_compat( lo, (const struct compat_loop_info __user *) arg); mutex_unlock(&lo->lo_ctl_mutex); break; case LOOP_GET_STATUS: mutex_lock(&lo->lo_ctl_mutex); err = loop_get_status_compat( lo, (struct compat_loop_info __user *) arg); mutex_unlock(&lo->lo_ctl_mutex); break; case LOOP_SET_CAPACITY: case LOOP_CLR_FD: case LOOP_GET_STATUS64: case LOOP_SET_STATUS64: arg = (unsigned long) compat_ptr(arg); case LOOP_SET_FD: case LOOP_CHANGE_FD: case LOOP_SET_DIRECT_IO: err = lo_ioctl(bdev, mode, cmd, arg); break; default: err = -ENOIOCTLCMD; break; } return err; } #endif static int lo_open(struct block_device *bdev, fmode_t mode) { struct loop_device *lo; int err = 0; mutex_lock(&loop_index_mutex); lo = bdev->bd_disk->private_data; if (!lo) { err = -ENXIO; goto out; } atomic_inc(&lo->lo_refcnt); out: mutex_unlock(&loop_index_mutex); return err; } static void __lo_release(struct loop_device *lo) { int err; if (atomic_dec_return(&lo->lo_refcnt)) return; mutex_lock(&lo->lo_ctl_mutex); if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { /* * In autoclear mode, stop the loop thread * and remove configuration after last close. */ err = loop_clr_fd(lo); if (!err) return; } else { /* * Otherwise keep thread (if running) and config, * but flush possible ongoing bios in thread. */ loop_flush(lo); } mutex_unlock(&lo->lo_ctl_mutex); } static void lo_release(struct gendisk *disk, fmode_t mode) { mutex_lock(&loop_index_mutex); __lo_release(disk->private_data); mutex_unlock(&loop_index_mutex); } static const struct block_device_operations lo_fops = { .owner = THIS_MODULE, .open = lo_open, .release = lo_release, .ioctl = lo_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = lo_compat_ioctl, #endif }; /* * And now the modules code and kernel interface. */ static int max_loop; module_param(max_loop, int, S_IRUGO); MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); module_param(max_part, int, S_IRUGO); MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); MODULE_LICENSE("GPL"); MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); int loop_register_transfer(struct loop_func_table *funcs) { unsigned int n = funcs->number; if (n >= MAX_LO_CRYPT || xfer_funcs[n]) return -EINVAL; xfer_funcs[n] = funcs; return 0; } static int unregister_transfer_cb(int id, void *ptr, void *data) { struct loop_device *lo = ptr; struct loop_func_table *xfer = data; mutex_lock(&lo->lo_ctl_mutex); if (lo->lo_encryption == xfer) loop_release_xfer(lo); mutex_unlock(&lo->lo_ctl_mutex); return 0; } int loop_unregister_transfer(int number) { unsigned int n = number; struct loop_func_table *xfer; if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) return -EINVAL; xfer_funcs[n] = NULL; idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); return 0; } EXPORT_SYMBOL(loop_register_transfer); EXPORT_SYMBOL(loop_unregister_transfer); static int loop_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); struct loop_device *lo = cmd->rq->q->queuedata; blk_mq_start_request(bd->rq); if (lo->lo_state != Lo_bound) return BLK_MQ_RQ_QUEUE_ERROR; switch (req_op(cmd->rq)) { case REQ_OP_FLUSH: case REQ_OP_DISCARD: cmd->use_aio = false; break; default: cmd->use_aio = lo->use_dio; break; } kthread_queue_work(&lo->worker, &cmd->work); return BLK_MQ_RQ_QUEUE_OK; } static void loop_handle_cmd(struct loop_cmd *cmd) { const bool write = op_is_write(req_op(cmd->rq)); struct loop_device *lo = cmd->rq->q->queuedata; int ret = 0; if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) { ret = -EIO; goto failed; } ret = do_req_filebacked(lo, cmd->rq); failed: /* complete non-aio request */ if (!cmd->use_aio || ret) blk_mq_complete_request(cmd->rq, ret ? -EIO : 0); } static void loop_queue_work(struct kthread_work *work) { struct loop_cmd *cmd = container_of(work, struct loop_cmd, work); loop_handle_cmd(cmd); } static int loop_init_request(void *data, struct request *rq, unsigned int hctx_idx, unsigned int request_idx, unsigned int numa_node) { struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq); cmd->rq = rq; kthread_init_work(&cmd->work, loop_queue_work); return 0; } static struct blk_mq_ops loop_mq_ops = { .queue_rq = loop_queue_rq, .init_request = loop_init_request, }; static int loop_add(struct loop_device **l, int i) { struct loop_device *lo; struct gendisk *disk; int err; err = -ENOMEM; lo = kzalloc(sizeof(*lo), GFP_KERNEL); if (!lo) goto out; lo->lo_state = Lo_unbound; /* allocate id, if @id >= 0, we're requesting that specific id */ if (i >= 0) { err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); if (err == -ENOSPC) err = -EEXIST; } else { err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); } if (err < 0) goto out_free_dev; i = err; err = -ENOMEM; lo->tag_set.ops = &loop_mq_ops; lo->tag_set.nr_hw_queues = 1; lo->tag_set.queue_depth = 128; lo->tag_set.numa_node = NUMA_NO_NODE; lo->tag_set.cmd_size = sizeof(struct loop_cmd); lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE; lo->tag_set.driver_data = lo; err = blk_mq_alloc_tag_set(&lo->tag_set); if (err) goto out_free_idr; lo->lo_queue = blk_mq_init_queue(&lo->tag_set); if (IS_ERR_OR_NULL(lo->lo_queue)) { err = PTR_ERR(lo->lo_queue); goto out_cleanup_tags; } lo->lo_queue->queuedata = lo; /* * It doesn't make sense to enable merge because the I/O * submitted to backing file is handled page by page. */ queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue); err = -ENOMEM; disk = lo->lo_disk = alloc_disk(1 << part_shift); if (!disk) goto out_free_queue; /* * Disable partition scanning by default. The in-kernel partition * scanning can be requested individually per-device during its * setup. Userspace can always add and remove partitions from all * devices. The needed partition minors are allocated from the * extended minor space, the main loop device numbers will continue * to match the loop minors, regardless of the number of partitions * used. * * If max_part is given, partition scanning is globally enabled for * all loop devices. The minors for the main loop devices will be * multiples of max_part. * * Note: Global-for-all-devices, set-only-at-init, read-only module * parameteters like 'max_loop' and 'max_part' make things needlessly * complicated, are too static, inflexible and may surprise * userspace tools. Parameters like this in general should be avoided. */ if (!part_shift) disk->flags |= GENHD_FL_NO_PART_SCAN; disk->flags |= GENHD_FL_EXT_DEVT; mutex_init(&lo->lo_ctl_mutex); atomic_set(&lo->lo_refcnt, 0); lo->lo_number = i; spin_lock_init(&lo->lo_lock); disk->major = LOOP_MAJOR; disk->first_minor = i << part_shift; disk->fops = &lo_fops; disk->private_data = lo; disk->queue = lo->lo_queue; sprintf(disk->disk_name, "loop%d", i); add_disk(disk); *l = lo; return lo->lo_number; out_free_queue: blk_cleanup_queue(lo->lo_queue); out_cleanup_tags: blk_mq_free_tag_set(&lo->tag_set); out_free_idr: idr_remove(&loop_index_idr, i); out_free_dev: kfree(lo); out: return err; } static void loop_remove(struct loop_device *lo) { blk_cleanup_queue(lo->lo_queue); del_gendisk(lo->lo_disk); blk_mq_free_tag_set(&lo->tag_set); put_disk(lo->lo_disk); kfree(lo); } static int find_free_cb(int id, void *ptr, void *data) { struct loop_device *lo = ptr; struct loop_device **l = data; if (lo->lo_state == Lo_unbound) { *l = lo; return 1; } return 0; } static int loop_lookup(struct loop_device **l, int i) { struct loop_device *lo; int ret = -ENODEV; if (i < 0) { int err; err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); if (err == 1) { *l = lo; ret = lo->lo_number; } goto out; } /* lookup and return a specific i */ lo = idr_find(&loop_index_idr, i); if (lo) { *l = lo; ret = lo->lo_number; } out: return ret; } static struct kobject *loop_probe(dev_t dev, int *part, void *data) { struct loop_device *lo; struct kobject *kobj; int err; mutex_lock(&loop_index_mutex); err = loop_lookup(&lo, MINOR(dev) >> part_shift); if (err < 0) err = loop_add(&lo, MINOR(dev) >> part_shift); if (err < 0) kobj = NULL; else kobj = get_disk(lo->lo_disk); mutex_unlock(&loop_index_mutex); *part = 0; return kobj; } static long loop_control_ioctl(struct file *file, unsigned int cmd, unsigned long parm) { struct loop_device *lo; int ret = -ENOSYS; mutex_lock(&loop_index_mutex); switch (cmd) { case LOOP_CTL_ADD: ret = loop_lookup(&lo, parm); if (ret >= 0) { ret = -EEXIST; break; } ret = loop_add(&lo, parm); break; case LOOP_CTL_REMOVE: ret = loop_lookup(&lo, parm); if (ret < 0) break; mutex_lock(&lo->lo_ctl_mutex); if (lo->lo_state != Lo_unbound) { ret = -EBUSY; mutex_unlock(&lo->lo_ctl_mutex); break; } if (atomic_read(&lo->lo_refcnt) > 0) { ret = -EBUSY; mutex_unlock(&lo->lo_ctl_mutex); break; } lo->lo_disk->private_data = NULL; mutex_unlock(&lo->lo_ctl_mutex); idr_remove(&loop_index_idr, lo->lo_number); loop_remove(lo); break; case LOOP_CTL_GET_FREE: ret = loop_lookup(&lo, -1); if (ret >= 0) break; ret = loop_add(&lo, -1); } mutex_unlock(&loop_index_mutex); return ret; } static const struct file_operations loop_ctl_fops = { .open = nonseekable_open, .unlocked_ioctl = loop_control_ioctl, .compat_ioctl = loop_control_ioctl, .owner = THIS_MODULE, .llseek = noop_llseek, }; static struct miscdevice loop_misc = { .minor = LOOP_CTRL_MINOR, .name = "loop-control", .fops = &loop_ctl_fops, }; MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); MODULE_ALIAS("devname:loop-control"); static int __init loop_init(void) { int i, nr; unsigned long range; struct loop_device *lo; int err; err = misc_register(&loop_misc); if (err < 0) return err; part_shift = 0; if (max_part > 0) { part_shift = fls(max_part); /* * Adjust max_part according to part_shift as it is exported * to user space so that user can decide correct minor number * if [s]he want to create more devices. * * Note that -1 is required because partition 0 is reserved * for the whole disk. */ max_part = (1UL << part_shift) - 1; } if ((1UL << part_shift) > DISK_MAX_PARTS) { err = -EINVAL; goto misc_out; } if (max_loop > 1UL << (MINORBITS - part_shift)) { err = -EINVAL; goto misc_out; } /* * If max_loop is specified, create that many devices upfront. * This also becomes a hard limit. If max_loop is not specified, * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module * init time. Loop devices can be requested on-demand with the * /dev/loop-control interface, or be instantiated by accessing * a 'dead' device node. */ if (max_loop) { nr = max_loop; range = max_loop << part_shift; } else { nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; range = 1UL << MINORBITS; } if (register_blkdev(LOOP_MAJOR, "loop")) { err = -EIO; goto misc_out; } blk_register_region(MKDEV(LOOP_MAJOR, 0), range, THIS_MODULE, loop_probe, NULL, NULL); /* pre-create number of devices given by config or max_loop */ mutex_lock(&loop_index_mutex); for (i = 0; i < nr; i++) loop_add(&lo, i); mutex_unlock(&loop_index_mutex); printk(KERN_INFO "loop: module loaded\n"); return 0; misc_out: misc_deregister(&loop_misc); return err; } static int loop_exit_cb(int id, void *ptr, void *data) { struct loop_device *lo = ptr; loop_remove(lo); return 0; } static void __exit loop_exit(void) { unsigned long range; range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); idr_destroy(&loop_index_idr); blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); unregister_blkdev(LOOP_MAJOR, "loop"); misc_deregister(&loop_misc); } module_init(loop_init); module_exit(loop_exit); #ifndef MODULE static int __init max_loop_setup(char *str) { max_loop = simple_strtol(str, NULL, 0); return 1; } __setup("max_loop=", max_loop_setup); #endif