/* This file is provided under a dual BSD/GPLv2 license. When using or redistributing this file, you may do so under either license. GPL LICENSE SUMMARY Copyright(c) 2014 Intel Corporation. This program is free software; you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public License as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Contact Information: qat-linux@intel.com BSD LICENSE Copyright(c) 2014 Intel Corporation. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "adf_accel_devices.h" #include "adf_transport_internal.h" #include "adf_transport_access_macros.h" #include "adf_cfg.h" #include "adf_common_drv.h" static inline uint32_t adf_modulo(uint32_t data, uint32_t shift) { uint32_t div = data >> shift; uint32_t mult = div << shift; return data - mult; } static inline int adf_check_ring_alignment(uint64_t addr, uint64_t size) { if (((size - 1) & addr) != 0) return -EFAULT; return 0; } static int adf_verify_ring_size(uint32_t msg_size, uint32_t msg_num) { int i = ADF_MIN_RING_SIZE; for (; i <= ADF_MAX_RING_SIZE; i++) if ((msg_size * msg_num) == ADF_SIZE_TO_RING_SIZE_IN_BYTES(i)) return i; return ADF_DEFAULT_RING_SIZE; } static int adf_reserve_ring(struct adf_etr_bank_data *bank, uint32_t ring) { spin_lock(&bank->lock); if (bank->ring_mask & (1 << ring)) { spin_unlock(&bank->lock); return -EFAULT; } bank->ring_mask |= (1 << ring); spin_unlock(&bank->lock); return 0; } static void adf_unreserve_ring(struct adf_etr_bank_data *bank, uint32_t ring) { spin_lock(&bank->lock); bank->ring_mask &= ~(1 << ring); spin_unlock(&bank->lock); } static void adf_enable_ring_irq(struct adf_etr_bank_data *bank, uint32_t ring) { spin_lock_bh(&bank->lock); bank->irq_mask |= (1 << ring); spin_unlock_bh(&bank->lock); WRITE_CSR_INT_COL_EN(bank->csr_addr, bank->bank_number, bank->irq_mask); WRITE_CSR_INT_COL_CTL(bank->csr_addr, bank->bank_number, bank->irq_coalesc_timer); } static void adf_disable_ring_irq(struct adf_etr_bank_data *bank, uint32_t ring) { spin_lock_bh(&bank->lock); bank->irq_mask &= ~(1 << ring); spin_unlock_bh(&bank->lock); WRITE_CSR_INT_COL_EN(bank->csr_addr, bank->bank_number, bank->irq_mask); } int adf_send_message(struct adf_etr_ring_data *ring, uint32_t *msg) { if (atomic_add_return(1, ring->inflights) > ADF_MAX_INFLIGHTS(ring->ring_size, ring->msg_size)) { atomic_dec(ring->inflights); return -EAGAIN; } spin_lock_bh(&ring->lock); memcpy((void *)((uintptr_t)ring->base_addr + ring->tail), msg, ADF_MSG_SIZE_TO_BYTES(ring->msg_size)); ring->tail = adf_modulo(ring->tail + ADF_MSG_SIZE_TO_BYTES(ring->msg_size), ADF_RING_SIZE_MODULO(ring->ring_size)); WRITE_CSR_RING_TAIL(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring->tail); spin_unlock_bh(&ring->lock); return 0; } static int adf_handle_response(struct adf_etr_ring_data *ring) { uint32_t msg_counter = 0; uint32_t *msg = (uint32_t *)((uintptr_t)ring->base_addr + ring->head); while (*msg != ADF_RING_EMPTY_SIG) { ring->callback((uint32_t *)msg); atomic_dec(ring->inflights); *msg = ADF_RING_EMPTY_SIG; ring->head = adf_modulo(ring->head + ADF_MSG_SIZE_TO_BYTES(ring->msg_size), ADF_RING_SIZE_MODULO(ring->ring_size)); msg_counter++; msg = (uint32_t *)((uintptr_t)ring->base_addr + ring->head); } if (msg_counter > 0) WRITE_CSR_RING_HEAD(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring->head); return 0; } static void adf_configure_tx_ring(struct adf_etr_ring_data *ring) { uint32_t ring_config = BUILD_RING_CONFIG(ring->ring_size); WRITE_CSR_RING_CONFIG(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring_config); } static void adf_configure_rx_ring(struct adf_etr_ring_data *ring) { uint32_t ring_config = BUILD_RESP_RING_CONFIG(ring->ring_size, ADF_RING_NEAR_WATERMARK_512, ADF_RING_NEAR_WATERMARK_0); WRITE_CSR_RING_CONFIG(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring_config); } static int adf_init_ring(struct adf_etr_ring_data *ring) { struct adf_etr_bank_data *bank = ring->bank; struct adf_accel_dev *accel_dev = bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; uint64_t ring_base; uint32_t ring_size_bytes = ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size); ring_size_bytes = ADF_RING_SIZE_BYTES_MIN(ring_size_bytes); ring->base_addr = dma_alloc_coherent(&GET_DEV(accel_dev), ring_size_bytes, &ring->dma_addr, GFP_KERNEL); if (!ring->base_addr) return -ENOMEM; memset(ring->base_addr, 0x7F, ring_size_bytes); /* The base_addr has to be aligned to the size of the buffer */ if (adf_check_ring_alignment(ring->dma_addr, ring_size_bytes)) { dev_err(&GET_DEV(accel_dev), "Ring address not aligned\n"); dma_free_coherent(&GET_DEV(accel_dev), ring_size_bytes, ring->base_addr, ring->dma_addr); ring->base_addr = NULL; return -EFAULT; } if (hw_data->tx_rings_mask & (1 << ring->ring_number)) adf_configure_tx_ring(ring); else adf_configure_rx_ring(ring); ring_base = BUILD_RING_BASE_ADDR(ring->dma_addr, ring->ring_size); WRITE_CSR_RING_BASE(ring->bank->csr_addr, ring->bank->bank_number, ring->ring_number, ring_base); spin_lock_init(&ring->lock); return 0; } static void adf_cleanup_ring(struct adf_etr_ring_data *ring) { uint32_t ring_size_bytes = ADF_SIZE_TO_RING_SIZE_IN_BYTES(ring->ring_size); ring_size_bytes = ADF_RING_SIZE_BYTES_MIN(ring_size_bytes); if (ring->base_addr) { memset(ring->base_addr, 0x7F, ring_size_bytes); dma_free_coherent(&GET_DEV(ring->bank->accel_dev), ring_size_bytes, ring->base_addr, ring->dma_addr); } } int adf_create_ring(struct adf_accel_dev *accel_dev, const char *section, uint32_t bank_num, uint32_t num_msgs, uint32_t msg_size, const char *ring_name, adf_callback_fn callback, int poll_mode, struct adf_etr_ring_data **ring_ptr) { struct adf_etr_data *transport_data = accel_dev->transport; struct adf_etr_bank_data *bank; struct adf_etr_ring_data *ring; char val[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; uint32_t ring_num; int ret; if (bank_num >= GET_MAX_BANKS(accel_dev)) { dev_err(&GET_DEV(accel_dev), "Invalid bank number\n"); return -EFAULT; } if (msg_size > ADF_MSG_SIZE_TO_BYTES(ADF_MAX_MSG_SIZE)) { dev_err(&GET_DEV(accel_dev), "Invalid msg size\n"); return -EFAULT; } if (ADF_MAX_INFLIGHTS(adf_verify_ring_size(msg_size, num_msgs), ADF_BYTES_TO_MSG_SIZE(msg_size)) < 2) { dev_err(&GET_DEV(accel_dev), "Invalid ring size for given msg size\n"); return -EFAULT; } if (adf_cfg_get_param_value(accel_dev, section, ring_name, val)) { dev_err(&GET_DEV(accel_dev), "Section %s, no such entry : %s\n", section, ring_name); return -EFAULT; } if (kstrtouint(val, 10, &ring_num)) { dev_err(&GET_DEV(accel_dev), "Can't get ring number\n"); return -EFAULT; } if (ring_num >= ADF_ETR_MAX_RINGS_PER_BANK) { dev_err(&GET_DEV(accel_dev), "Invalid ring number\n"); return -EFAULT; } bank = &transport_data->banks[bank_num]; if (adf_reserve_ring(bank, ring_num)) { dev_err(&GET_DEV(accel_dev), "Ring %d, %s already exists.\n", ring_num, ring_name); return -EFAULT; } ring = &bank->rings[ring_num]; ring->ring_number = ring_num; ring->bank = bank; ring->callback = callback; ring->msg_size = ADF_BYTES_TO_MSG_SIZE(msg_size); ring->ring_size = adf_verify_ring_size(msg_size, num_msgs); ring->head = 0; ring->tail = 0; atomic_set(ring->inflights, 0); ret = adf_init_ring(ring); if (ret) goto err; /* Enable HW arbitration for the given ring */ adf_update_ring_arb(ring); if (adf_ring_debugfs_add(ring, ring_name)) { dev_err(&GET_DEV(accel_dev), "Couldn't add ring debugfs entry\n"); ret = -EFAULT; goto err; } /* Enable interrupts if needed */ if (callback && (!poll_mode)) adf_enable_ring_irq(bank, ring->ring_number); *ring_ptr = ring; return 0; err: adf_cleanup_ring(ring); adf_unreserve_ring(bank, ring_num); adf_update_ring_arb(ring); return ret; } void adf_remove_ring(struct adf_etr_ring_data *ring) { struct adf_etr_bank_data *bank = ring->bank; /* Disable interrupts for the given ring */ adf_disable_ring_irq(bank, ring->ring_number); /* Clear PCI config space */ WRITE_CSR_RING_CONFIG(bank->csr_addr, bank->bank_number, ring->ring_number, 0); WRITE_CSR_RING_BASE(bank->csr_addr, bank->bank_number, ring->ring_number, 0); adf_ring_debugfs_rm(ring); adf_unreserve_ring(bank, ring->ring_number); /* Disable HW arbitration for the given ring */ adf_update_ring_arb(ring); adf_cleanup_ring(ring); } static void adf_ring_response_handler(struct adf_etr_bank_data *bank) { uint32_t empty_rings, i; empty_rings = READ_CSR_E_STAT(bank->csr_addr, bank->bank_number); empty_rings = ~empty_rings & bank->irq_mask; for (i = 0; i < ADF_ETR_MAX_RINGS_PER_BANK; ++i) { if (empty_rings & (1 << i)) adf_handle_response(&bank->rings[i]); } } void adf_response_handler(uintptr_t bank_addr) { struct adf_etr_bank_data *bank = (void *)bank_addr; /* Handle all the responses and reenable IRQs */ adf_ring_response_handler(bank); WRITE_CSR_INT_FLAG_AND_COL(bank->csr_addr, bank->bank_number, bank->irq_mask); } static inline int adf_get_cfg_int(struct adf_accel_dev *accel_dev, const char *section, const char *format, uint32_t key, uint32_t *value) { char key_buf[ADF_CFG_MAX_KEY_LEN_IN_BYTES]; char val_buf[ADF_CFG_MAX_VAL_LEN_IN_BYTES]; snprintf(key_buf, ADF_CFG_MAX_KEY_LEN_IN_BYTES, format, key); if (adf_cfg_get_param_value(accel_dev, section, key_buf, val_buf)) return -EFAULT; if (kstrtouint(val_buf, 10, value)) return -EFAULT; return 0; } static void adf_get_coalesc_timer(struct adf_etr_bank_data *bank, const char *section, uint32_t bank_num_in_accel) { if (adf_get_cfg_int(bank->accel_dev, section, ADF_ETRMGR_COALESCE_TIMER_FORMAT, bank_num_in_accel, &bank->irq_coalesc_timer)) bank->irq_coalesc_timer = ADF_COALESCING_DEF_TIME; if (ADF_COALESCING_MAX_TIME < bank->irq_coalesc_timer || ADF_COALESCING_MIN_TIME > bank->irq_coalesc_timer) bank->irq_coalesc_timer = ADF_COALESCING_DEF_TIME; } static int adf_init_bank(struct adf_accel_dev *accel_dev, struct adf_etr_bank_data *bank, uint32_t bank_num, void __iomem *csr_addr) { struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_etr_ring_data *ring; struct adf_etr_ring_data *tx_ring; uint32_t i, coalesc_enabled = 0; memset(bank, 0, sizeof(*bank)); bank->bank_number = bank_num; bank->csr_addr = csr_addr; bank->accel_dev = accel_dev; spin_lock_init(&bank->lock); /* Enable IRQ coalescing always. This will allow to use * the optimised flag and coalesc register. * If it is disabled in the config file just use min time value */ if ((adf_get_cfg_int(accel_dev, "Accelerator0", ADF_ETRMGR_COALESCING_ENABLED_FORMAT, bank_num, &coalesc_enabled) == 0) && coalesc_enabled) adf_get_coalesc_timer(bank, "Accelerator0", bank_num); else bank->irq_coalesc_timer = ADF_COALESCING_MIN_TIME; for (i = 0; i < ADF_ETR_MAX_RINGS_PER_BANK; i++) { WRITE_CSR_RING_CONFIG(csr_addr, bank_num, i, 0); WRITE_CSR_RING_BASE(csr_addr, bank_num, i, 0); ring = &bank->rings[i]; if (hw_data->tx_rings_mask & (1 << i)) { ring->inflights = kzalloc_node(sizeof(atomic_t), GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!ring->inflights) goto err; } else { if (i < hw_data->tx_rx_gap) { dev_err(&GET_DEV(accel_dev), "Invalid tx rings mask config\n"); goto err; } tx_ring = &bank->rings[i - hw_data->tx_rx_gap]; ring->inflights = tx_ring->inflights; } } if (adf_bank_debugfs_add(bank)) { dev_err(&GET_DEV(accel_dev), "Failed to add bank debugfs entry\n"); goto err; } WRITE_CSR_INT_FLAG(csr_addr, bank_num, ADF_BANK_INT_FLAG_CLEAR_MASK); WRITE_CSR_INT_SRCSEL(csr_addr, bank_num); return 0; err: for (i = 0; i < ADF_ETR_MAX_RINGS_PER_BANK; i++) { ring = &bank->rings[i]; if (hw_data->tx_rings_mask & (1 << i)) kfree(ring->inflights); } return -ENOMEM; } /** * adf_init_etr_data() - Initialize transport rings for acceleration device * @accel_dev: Pointer to acceleration device. * * Function is the initializes the communications channels (rings) to the * acceleration device accel_dev. * To be used by QAT device specific drivers. * * Return: 0 on success, error code otherwise. */ int adf_init_etr_data(struct adf_accel_dev *accel_dev) { struct adf_etr_data *etr_data; struct adf_hw_device_data *hw_data = accel_dev->hw_device; void __iomem *csr_addr; uint32_t size; uint32_t num_banks = 0; int i, ret; etr_data = kzalloc_node(sizeof(*etr_data), GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!etr_data) return -ENOMEM; num_banks = GET_MAX_BANKS(accel_dev); size = num_banks * sizeof(struct adf_etr_bank_data); etr_data->banks = kzalloc_node(size, GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev))); if (!etr_data->banks) { ret = -ENOMEM; goto err_bank; } accel_dev->transport = etr_data; i = hw_data->get_etr_bar_id(hw_data); csr_addr = accel_dev->accel_pci_dev.pci_bars[i].virt_addr; /* accel_dev->debugfs_dir should always be non-NULL here */ etr_data->debug = debugfs_create_dir("transport", accel_dev->debugfs_dir); if (!etr_data->debug) { dev_err(&GET_DEV(accel_dev), "Unable to create transport debugfs entry\n"); ret = -ENOENT; goto err_bank_debug; } for (i = 0; i < num_banks; i++) { ret = adf_init_bank(accel_dev, &etr_data->banks[i], i, csr_addr); if (ret) goto err_bank_all; } return 0; err_bank_all: debugfs_remove(etr_data->debug); err_bank_debug: kfree(etr_data->banks); err_bank: kfree(etr_data); accel_dev->transport = NULL; return ret; } EXPORT_SYMBOL_GPL(adf_init_etr_data); static void cleanup_bank(struct adf_etr_bank_data *bank) { uint32_t i; for (i = 0; i < ADF_ETR_MAX_RINGS_PER_BANK; i++) { struct adf_accel_dev *accel_dev = bank->accel_dev; struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_etr_ring_data *ring = &bank->rings[i]; if (bank->ring_mask & (1 << i)) adf_cleanup_ring(ring); if (hw_data->tx_rings_mask & (1 << i)) kfree(ring->inflights); } adf_bank_debugfs_rm(bank); memset(bank, 0, sizeof(*bank)); } static void adf_cleanup_etr_handles(struct adf_accel_dev *accel_dev) { struct adf_etr_data *etr_data = accel_dev->transport; uint32_t i, num_banks = GET_MAX_BANKS(accel_dev); for (i = 0; i < num_banks; i++) cleanup_bank(&etr_data->banks[i]); } /** * adf_cleanup_etr_data() - Clear transport rings for acceleration device * @accel_dev: Pointer to acceleration device. * * Function is the clears the communications channels (rings) of the * acceleration device accel_dev. * To be used by QAT device specific drivers. * * Return: void */ void adf_cleanup_etr_data(struct adf_accel_dev *accel_dev) { struct adf_etr_data *etr_data = accel_dev->transport; if (etr_data) { adf_cleanup_etr_handles(accel_dev); debugfs_remove(etr_data->debug); kfree(etr_data->banks); kfree(etr_data); accel_dev->transport = NULL; } } EXPORT_SYMBOL_GPL(adf_cleanup_etr_data);