/* * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved. * Author: Marc Zyngier * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #define pr_fmt(fmt) "GICv3: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "irq-gic-common.h" struct redist_region { void __iomem *redist_base; phys_addr_t phys_base; bool single_redist; }; struct gic_chip_data { struct fwnode_handle *fwnode; void __iomem *dist_base; struct redist_region *redist_regions; struct rdists rdists; struct irq_domain *domain; u64 redist_stride; u32 nr_redist_regions; unsigned int irq_nr; struct partition_desc *ppi_descs[16]; }; static struct gic_chip_data gic_data __read_mostly; static struct static_key supports_deactivate = STATIC_KEY_INIT_TRUE; static struct gic_kvm_info gic_v3_kvm_info; #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist)) #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K) /* Our default, arbitrary priority value. Linux only uses one anyway. */ #define DEFAULT_PMR_VALUE 0xf0 static inline unsigned int gic_irq(struct irq_data *d) { return d->hwirq; } static inline int gic_irq_in_rdist(struct irq_data *d) { return gic_irq(d) < 32; } static inline void __iomem *gic_dist_base(struct irq_data *d) { if (gic_irq_in_rdist(d)) /* SGI+PPI -> SGI_base for this CPU */ return gic_data_rdist_sgi_base(); if (d->hwirq <= 1023) /* SPI -> dist_base */ return gic_data.dist_base; return NULL; } static void gic_do_wait_for_rwp(void __iomem *base) { u32 count = 1000000; /* 1s! */ while (readl_relaxed(base + GICD_CTLR) & GICD_CTLR_RWP) { count--; if (!count) { pr_err_ratelimited("RWP timeout, gone fishing\n"); return; } cpu_relax(); udelay(1); }; } /* Wait for completion of a distributor change */ static void gic_dist_wait_for_rwp(void) { gic_do_wait_for_rwp(gic_data.dist_base); } /* Wait for completion of a redistributor change */ static void gic_redist_wait_for_rwp(void) { gic_do_wait_for_rwp(gic_data_rdist_rd_base()); } #ifdef CONFIG_ARM64 static u64 __maybe_unused gic_read_iar(void) { if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154)) return gic_read_iar_cavium_thunderx(); else return gic_read_iar_common(); } #endif static void gic_enable_redist(bool enable) { void __iomem *rbase; u32 count = 1000000; /* 1s! */ u32 val; rbase = gic_data_rdist_rd_base(); val = readl_relaxed(rbase + GICR_WAKER); if (enable) /* Wake up this CPU redistributor */ val &= ~GICR_WAKER_ProcessorSleep; else val |= GICR_WAKER_ProcessorSleep; writel_relaxed(val, rbase + GICR_WAKER); if (!enable) { /* Check that GICR_WAKER is writeable */ val = readl_relaxed(rbase + GICR_WAKER); if (!(val & GICR_WAKER_ProcessorSleep)) return; /* No PM support in this redistributor */ } while (--count) { val = readl_relaxed(rbase + GICR_WAKER); if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep)) break; cpu_relax(); udelay(1); }; if (!count) pr_err_ratelimited("redistributor failed to %s...\n", enable ? "wakeup" : "sleep"); } /* * Routines to disable, enable, EOI and route interrupts */ static int gic_peek_irq(struct irq_data *d, u32 offset) { u32 mask = 1 << (gic_irq(d) % 32); void __iomem *base; if (gic_irq_in_rdist(d)) base = gic_data_rdist_sgi_base(); else base = gic_data.dist_base; return !!(readl_relaxed(base + offset + (gic_irq(d) / 32) * 4) & mask); } static void gic_poke_irq(struct irq_data *d, u32 offset) { u32 mask = 1 << (gic_irq(d) % 32); void (*rwp_wait)(void); void __iomem *base; if (gic_irq_in_rdist(d)) { base = gic_data_rdist_sgi_base(); rwp_wait = gic_redist_wait_for_rwp; } else { base = gic_data.dist_base; rwp_wait = gic_dist_wait_for_rwp; } writel_relaxed(mask, base + offset + (gic_irq(d) / 32) * 4); rwp_wait(); } static void gic_mask_irq(struct irq_data *d) { gic_poke_irq(d, GICD_ICENABLER); } static void gic_eoimode1_mask_irq(struct irq_data *d) { gic_mask_irq(d); /* * When masking a forwarded interrupt, make sure it is * deactivated as well. * * This ensures that an interrupt that is getting * disabled/masked will not get "stuck", because there is * noone to deactivate it (guest is being terminated). */ if (irqd_is_forwarded_to_vcpu(d)) gic_poke_irq(d, GICD_ICACTIVER); } static void gic_unmask_irq(struct irq_data *d) { gic_poke_irq(d, GICD_ISENABLER); } static int gic_irq_set_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool val) { u32 reg; if (d->hwirq >= gic_data.irq_nr) /* PPI/SPI only */ return -EINVAL; switch (which) { case IRQCHIP_STATE_PENDING: reg = val ? GICD_ISPENDR : GICD_ICPENDR; break; case IRQCHIP_STATE_ACTIVE: reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; break; case IRQCHIP_STATE_MASKED: reg = val ? GICD_ICENABLER : GICD_ISENABLER; break; default: return -EINVAL; } gic_poke_irq(d, reg); return 0; } static int gic_irq_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *val) { if (d->hwirq >= gic_data.irq_nr) /* PPI/SPI only */ return -EINVAL; switch (which) { case IRQCHIP_STATE_PENDING: *val = gic_peek_irq(d, GICD_ISPENDR); break; case IRQCHIP_STATE_ACTIVE: *val = gic_peek_irq(d, GICD_ISACTIVER); break; case IRQCHIP_STATE_MASKED: *val = !gic_peek_irq(d, GICD_ISENABLER); break; default: return -EINVAL; } return 0; } static void gic_eoi_irq(struct irq_data *d) { gic_write_eoir(gic_irq(d)); } static void gic_eoimode1_eoi_irq(struct irq_data *d) { /* * No need to deactivate an LPI, or an interrupt that * is is getting forwarded to a vcpu. */ if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) return; gic_write_dir(gic_irq(d)); } static int gic_set_type(struct irq_data *d, unsigned int type) { unsigned int irq = gic_irq(d); void (*rwp_wait)(void); void __iomem *base; /* Interrupt configuration for SGIs can't be changed */ if (irq < 16) return -EINVAL; /* SPIs have restrictions on the supported types */ if (irq >= 32 && type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) return -EINVAL; if (gic_irq_in_rdist(d)) { base = gic_data_rdist_sgi_base(); rwp_wait = gic_redist_wait_for_rwp; } else { base = gic_data.dist_base; rwp_wait = gic_dist_wait_for_rwp; } return gic_configure_irq(irq, type, base, rwp_wait); } static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) { if (vcpu) irqd_set_forwarded_to_vcpu(d); else irqd_clr_forwarded_to_vcpu(d); return 0; } static u64 gic_mpidr_to_affinity(unsigned long mpidr) { u64 aff; aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | MPIDR_AFFINITY_LEVEL(mpidr, 0)); return aff; } static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) { u32 irqnr; do { irqnr = gic_read_iar(); if (likely(irqnr > 15 && irqnr < 1020) || irqnr >= 8192) { int err; if (static_key_true(&supports_deactivate)) gic_write_eoir(irqnr); err = handle_domain_irq(gic_data.domain, irqnr, regs); if (err) { WARN_ONCE(true, "Unexpected interrupt received!\n"); if (static_key_true(&supports_deactivate)) { if (irqnr < 8192) gic_write_dir(irqnr); } else { gic_write_eoir(irqnr); } } continue; } if (irqnr < 16) { gic_write_eoir(irqnr); if (static_key_true(&supports_deactivate)) gic_write_dir(irqnr); #ifdef CONFIG_SMP /* * Unlike GICv2, we don't need an smp_rmb() here. * The control dependency from gic_read_iar to * the ISB in gic_write_eoir is enough to ensure * that any shared data read by handle_IPI will * be read after the ACK. */ handle_IPI(irqnr, regs); #else WARN_ONCE(true, "Unexpected SGI received!\n"); #endif continue; } } while (irqnr != ICC_IAR1_EL1_SPURIOUS); } static void __init gic_dist_init(void) { unsigned int i; u64 affinity; void __iomem *base = gic_data.dist_base; /* Disable the distributor */ writel_relaxed(0, base + GICD_CTLR); gic_dist_wait_for_rwp(); /* * Configure SPIs as non-secure Group-1. This will only matter * if the GIC only has a single security state. This will not * do the right thing if the kernel is running in secure mode, * but that's not the intended use case anyway. */ for (i = 32; i < gic_data.irq_nr; i += 32) writel_relaxed(~0, base + GICD_IGROUPR + i / 8); gic_dist_config(base, gic_data.irq_nr, gic_dist_wait_for_rwp); /* Enable distributor with ARE, Group1 */ writel_relaxed(GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1, base + GICD_CTLR); /* * Set all global interrupts to the boot CPU only. ARE must be * enabled. */ affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id())); for (i = 32; i < gic_data.irq_nr; i++) gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); } static int gic_populate_rdist(void) { unsigned long mpidr = cpu_logical_map(smp_processor_id()); u64 typer; u32 aff; int i; /* * Convert affinity to a 32bit value that can be matched to * GICR_TYPER bits [63:32]. */ aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | MPIDR_AFFINITY_LEVEL(mpidr, 0)); for (i = 0; i < gic_data.nr_redist_regions; i++) { void __iomem *ptr = gic_data.redist_regions[i].redist_base; u32 reg; reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ pr_warn("No redistributor present @%p\n", ptr); break; } do { typer = gic_read_typer(ptr + GICR_TYPER); if ((typer >> 32) == aff) { u64 offset = ptr - gic_data.redist_regions[i].redist_base; gic_data_rdist_rd_base() = ptr; gic_data_rdist()->phys_base = gic_data.redist_regions[i].phys_base + offset; pr_info("CPU%d: found redistributor %lx region %d:%pa\n", smp_processor_id(), mpidr, i, &gic_data_rdist()->phys_base); return 0; } if (gic_data.redist_regions[i].single_redist) break; if (gic_data.redist_stride) { ptr += gic_data.redist_stride; } else { ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ if (typer & GICR_TYPER_VLPIS) ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ } } while (!(typer & GICR_TYPER_LAST)); } /* We couldn't even deal with ourselves... */ WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n", smp_processor_id(), mpidr); return -ENODEV; } static void gic_cpu_sys_reg_init(void) { /* * Need to check that the SRE bit has actually been set. If * not, it means that SRE is disabled at EL2. We're going to * die painfully, and there is nothing we can do about it. * * Kindly inform the luser. */ if (!gic_enable_sre()) pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n"); /* Set priority mask register */ gic_write_pmr(DEFAULT_PMR_VALUE); /* * Some firmwares hand over to the kernel with the BPR changed from * its reset value (and with a value large enough to prevent * any pre-emptive interrupts from working at all). Writing a zero * to BPR restores is reset value. */ gic_write_bpr1(0); if (static_key_true(&supports_deactivate)) { /* EOI drops priority only (mode 1) */ gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); } else { /* EOI deactivates interrupt too (mode 0) */ gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); } /* ... and let's hit the road... */ gic_write_grpen1(1); } static int gic_dist_supports_lpis(void) { return !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS); } static void gic_cpu_init(void) { void __iomem *rbase; /* Register ourselves with the rest of the world */ if (gic_populate_rdist()) return; gic_enable_redist(true); rbase = gic_data_rdist_sgi_base(); /* Configure SGIs/PPIs as non-secure Group-1 */ writel_relaxed(~0, rbase + GICR_IGROUPR0); gic_cpu_config(rbase, gic_redist_wait_for_rwp); /* Give LPIs a spin */ if (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && gic_dist_supports_lpis()) its_cpu_init(); /* initialise system registers */ gic_cpu_sys_reg_init(); } #ifdef CONFIG_SMP static int gic_starting_cpu(unsigned int cpu) { gic_cpu_init(); return 0; } static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, unsigned long cluster_id) { int next_cpu, cpu = *base_cpu; unsigned long mpidr = cpu_logical_map(cpu); u16 tlist = 0; while (cpu < nr_cpu_ids) { /* * If we ever get a cluster of more than 16 CPUs, just * scream and skip that CPU. */ if (WARN_ON((mpidr & 0xff) >= 16)) goto out; tlist |= 1 << (mpidr & 0xf); next_cpu = cpumask_next(cpu, mask); if (next_cpu >= nr_cpu_ids) goto out; cpu = next_cpu; mpidr = cpu_logical_map(cpu); if (cluster_id != (mpidr & ~0xffUL)) { cpu--; goto out; } } out: *base_cpu = cpu; return tlist; } #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ << ICC_SGI1R_AFFINITY_## level ##_SHIFT) static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) { u64 val; val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | irq << ICC_SGI1R_SGI_ID_SHIFT | MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | tlist << ICC_SGI1R_TARGET_LIST_SHIFT); pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); gic_write_sgi1r(val); } static void gic_raise_softirq(const struct cpumask *mask, unsigned int irq) { int cpu; if (WARN_ON(irq >= 16)) return; /* * Ensure that stores to Normal memory are visible to the * other CPUs before issuing the IPI. */ wmb(); for_each_cpu(cpu, mask) { unsigned long cluster_id = cpu_logical_map(cpu) & ~0xffUL; u16 tlist; tlist = gic_compute_target_list(&cpu, mask, cluster_id); gic_send_sgi(cluster_id, tlist, irq); } /* Force the above writes to ICC_SGI1R_EL1 to be executed */ isb(); } static void gic_smp_init(void) { set_smp_cross_call(gic_raise_softirq); cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GICV3_STARTING, "AP_IRQ_GICV3_STARTING", gic_starting_cpu, NULL); } static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask); void __iomem *reg; int enabled; u64 val; if (cpu >= nr_cpu_ids) return -EINVAL; if (gic_irq_in_rdist(d)) return -EINVAL; /* If interrupt was enabled, disable it first */ enabled = gic_peek_irq(d, GICD_ISENABLER); if (enabled) gic_mask_irq(d); reg = gic_dist_base(d) + GICD_IROUTER + (gic_irq(d) * 8); val = gic_mpidr_to_affinity(cpu_logical_map(cpu)); gic_write_irouter(val, reg); /* * If the interrupt was enabled, enabled it again. Otherwise, * just wait for the distributor to have digested our changes. */ if (enabled) gic_unmask_irq(d); else gic_dist_wait_for_rwp(); return IRQ_SET_MASK_OK_DONE; } #else #define gic_set_affinity NULL #define gic_smp_init() do { } while(0) #endif #ifdef CONFIG_CPU_PM /* Check whether it's single security state view */ static bool gic_dist_security_disabled(void) { return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; } static int gic_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd, void *v) { if (cmd == CPU_PM_EXIT) { if (gic_dist_security_disabled()) gic_enable_redist(true); gic_cpu_sys_reg_init(); } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { gic_write_grpen1(0); gic_enable_redist(false); } return NOTIFY_OK; } static struct notifier_block gic_cpu_pm_notifier_block = { .notifier_call = gic_cpu_pm_notifier, }; static void gic_cpu_pm_init(void) { cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); } #else static inline void gic_cpu_pm_init(void) { } #endif /* CONFIG_CPU_PM */ static struct irq_chip gic_chip = { .name = "GICv3", .irq_mask = gic_mask_irq, .irq_unmask = gic_unmask_irq, .irq_eoi = gic_eoi_irq, .irq_set_type = gic_set_type, .irq_set_affinity = gic_set_affinity, .irq_get_irqchip_state = gic_irq_get_irqchip_state, .irq_set_irqchip_state = gic_irq_set_irqchip_state, .flags = IRQCHIP_SET_TYPE_MASKED, }; static struct irq_chip gic_eoimode1_chip = { .name = "GICv3", .irq_mask = gic_eoimode1_mask_irq, .irq_unmask = gic_unmask_irq, .irq_eoi = gic_eoimode1_eoi_irq, .irq_set_type = gic_set_type, .irq_set_affinity = gic_set_affinity, .irq_get_irqchip_state = gic_irq_get_irqchip_state, .irq_set_irqchip_state = gic_irq_set_irqchip_state, .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, .flags = IRQCHIP_SET_TYPE_MASKED, }; #define GIC_ID_NR (1U << gic_data.rdists.id_bits) static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw) { struct irq_chip *chip = &gic_chip; if (static_key_true(&supports_deactivate)) chip = &gic_eoimode1_chip; /* SGIs are private to the core kernel */ if (hw < 16) return -EPERM; /* Nothing here */ if (hw >= gic_data.irq_nr && hw < 8192) return -EPERM; /* Off limits */ if (hw >= GIC_ID_NR) return -EPERM; /* PPIs */ if (hw < 32) { irq_set_percpu_devid(irq); irq_domain_set_info(d, irq, hw, chip, d->host_data, handle_percpu_devid_irq, NULL, NULL); irq_set_status_flags(irq, IRQ_NOAUTOEN); } /* SPIs */ if (hw >= 32 && hw < gic_data.irq_nr) { irq_domain_set_info(d, irq, hw, chip, d->host_data, handle_fasteoi_irq, NULL, NULL); irq_set_probe(irq); } /* LPIs */ if (hw >= 8192 && hw < GIC_ID_NR) { if (!gic_dist_supports_lpis()) return -EPERM; irq_domain_set_info(d, irq, hw, chip, d->host_data, handle_fasteoi_irq, NULL, NULL); } return 0; } static int gic_irq_domain_translate(struct irq_domain *d, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { if (is_of_node(fwspec->fwnode)) { if (fwspec->param_count < 3) return -EINVAL; switch (fwspec->param[0]) { case 0: /* SPI */ *hwirq = fwspec->param[1] + 32; break; case 1: /* PPI */ *hwirq = fwspec->param[1] + 16; break; case GIC_IRQ_TYPE_LPI: /* LPI */ *hwirq = fwspec->param[1]; break; default: return -EINVAL; } *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; return 0; } if (is_fwnode_irqchip(fwspec->fwnode)) { if(fwspec->param_count != 2) return -EINVAL; *hwirq = fwspec->param[0]; *type = fwspec->param[1]; return 0; } return -EINVAL; } static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { int i, ret; irq_hw_number_t hwirq; unsigned int type = IRQ_TYPE_NONE; struct irq_fwspec *fwspec = arg; ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); if (ret) return ret; for (i = 0; i < nr_irqs; i++) gic_irq_domain_map(domain, virq + i, hwirq + i); return 0; } static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { int i; for (i = 0; i < nr_irqs; i++) { struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); irq_set_handler(virq + i, NULL); irq_domain_reset_irq_data(d); } } static int gic_irq_domain_select(struct irq_domain *d, struct irq_fwspec *fwspec, enum irq_domain_bus_token bus_token) { /* Not for us */ if (fwspec->fwnode != d->fwnode) return 0; /* If this is not DT, then we have a single domain */ if (!is_of_node(fwspec->fwnode)) return 1; /* * If this is a PPI and we have a 4th (non-null) parameter, * then we need to match the partition domain. */ if (fwspec->param_count >= 4 && fwspec->param[0] == 1 && fwspec->param[3] != 0) return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]); return d == gic_data.domain; } static const struct irq_domain_ops gic_irq_domain_ops = { .translate = gic_irq_domain_translate, .alloc = gic_irq_domain_alloc, .free = gic_irq_domain_free, .select = gic_irq_domain_select, }; static int partition_domain_translate(struct irq_domain *d, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { struct device_node *np; int ret; np = of_find_node_by_phandle(fwspec->param[3]); if (WARN_ON(!np)) return -EINVAL; ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]], of_node_to_fwnode(np)); if (ret < 0) return ret; *hwirq = ret; *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; return 0; } static const struct irq_domain_ops partition_domain_ops = { .translate = partition_domain_translate, .select = gic_irq_domain_select, }; static int __init gic_init_bases(void __iomem *dist_base, struct redist_region *rdist_regs, u32 nr_redist_regions, u64 redist_stride, struct fwnode_handle *handle) { u32 typer; int gic_irqs; int err; if (!is_hyp_mode_available()) static_key_slow_dec(&supports_deactivate); if (static_key_true(&supports_deactivate)) pr_info("GIC: Using split EOI/Deactivate mode\n"); gic_data.fwnode = handle; gic_data.dist_base = dist_base; gic_data.redist_regions = rdist_regs; gic_data.nr_redist_regions = nr_redist_regions; gic_data.redist_stride = redist_stride; /* * Find out how many interrupts are supported. * The GIC only supports up to 1020 interrupt sources (SGI+PPI+SPI) */ typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); gic_data.rdists.id_bits = GICD_TYPER_ID_BITS(typer); gic_irqs = GICD_TYPER_IRQS(typer); if (gic_irqs > 1020) gic_irqs = 1020; gic_data.irq_nr = gic_irqs; gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, &gic_data); gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { err = -ENOMEM; goto out_free; } set_handle_irq(gic_handle_irq); if (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && gic_dist_supports_lpis()) its_init(handle, &gic_data.rdists, gic_data.domain); gic_smp_init(); gic_dist_init(); gic_cpu_init(); gic_cpu_pm_init(); return 0; out_free: if (gic_data.domain) irq_domain_remove(gic_data.domain); free_percpu(gic_data.rdists.rdist); return err; } static int __init gic_validate_dist_version(void __iomem *dist_base) { u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) return -ENODEV; return 0; } static int get_cpu_number(struct device_node *dn) { const __be32 *cell; u64 hwid; int cpu; cell = of_get_property(dn, "reg", NULL); if (!cell) return -1; hwid = of_read_number(cell, of_n_addr_cells(dn)); /* * Non affinity bits must be set to 0 in the DT */ if (hwid & ~MPIDR_HWID_BITMASK) return -1; for_each_possible_cpu(cpu) if (cpu_logical_map(cpu) == hwid) return cpu; return -1; } /* Create all possible partitions at boot time */ static void __init gic_populate_ppi_partitions(struct device_node *gic_node) { struct device_node *parts_node, *child_part; int part_idx = 0, i; int nr_parts; struct partition_affinity *parts; parts_node = of_get_child_by_name(gic_node, "ppi-partitions"); if (!parts_node) return; nr_parts = of_get_child_count(parts_node); if (!nr_parts) goto out_put_node; parts = kzalloc(sizeof(*parts) * nr_parts, GFP_KERNEL); if (WARN_ON(!parts)) goto out_put_node; for_each_child_of_node(parts_node, child_part) { struct partition_affinity *part; int n; part = &parts[part_idx]; part->partition_id = of_node_to_fwnode(child_part); pr_info("GIC: PPI partition %s[%d] { ", child_part->name, part_idx); n = of_property_count_elems_of_size(child_part, "affinity", sizeof(u32)); WARN_ON(n <= 0); for (i = 0; i < n; i++) { int err, cpu; u32 cpu_phandle; struct device_node *cpu_node; err = of_property_read_u32_index(child_part, "affinity", i, &cpu_phandle); if (WARN_ON(err)) continue; cpu_node = of_find_node_by_phandle(cpu_phandle); if (WARN_ON(!cpu_node)) continue; cpu = get_cpu_number(cpu_node); if (WARN_ON(cpu == -1)) continue; pr_cont("%s[%d] ", cpu_node->full_name, cpu); cpumask_set_cpu(cpu, &part->mask); } pr_cont("}\n"); part_idx++; } for (i = 0; i < 16; i++) { unsigned int irq; struct partition_desc *desc; struct irq_fwspec ppi_fwspec = { .fwnode = gic_data.fwnode, .param_count = 3, .param = { [0] = 1, [1] = i, [2] = IRQ_TYPE_NONE, }, }; irq = irq_create_fwspec_mapping(&ppi_fwspec); if (WARN_ON(!irq)) continue; desc = partition_create_desc(gic_data.fwnode, parts, nr_parts, irq, &partition_domain_ops); if (WARN_ON(!desc)) continue; gic_data.ppi_descs[i] = desc; } out_put_node: of_node_put(parts_node); } static void __init gic_of_setup_kvm_info(struct device_node *node) { int ret; struct resource r; u32 gicv_idx; gic_v3_kvm_info.type = GIC_V3; gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); if (!gic_v3_kvm_info.maint_irq) return; if (of_property_read_u32(node, "#redistributor-regions", &gicv_idx)) gicv_idx = 1; gicv_idx += 3; /* Also skip GICD, GICC, GICH */ ret = of_address_to_resource(node, gicv_idx, &r); if (!ret) gic_v3_kvm_info.vcpu = r; gic_set_kvm_info(&gic_v3_kvm_info); } static int __init gic_of_init(struct device_node *node, struct device_node *parent) { void __iomem *dist_base; struct redist_region *rdist_regs; u64 redist_stride; u32 nr_redist_regions; int err, i; dist_base = of_iomap(node, 0); if (!dist_base) { pr_err("%s: unable to map gic dist registers\n", node->full_name); return -ENXIO; } err = gic_validate_dist_version(dist_base); if (err) { pr_err("%s: no distributor detected, giving up\n", node->full_name); goto out_unmap_dist; } if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) nr_redist_regions = 1; rdist_regs = kzalloc(sizeof(*rdist_regs) * nr_redist_regions, GFP_KERNEL); if (!rdist_regs) { err = -ENOMEM; goto out_unmap_dist; } for (i = 0; i < nr_redist_regions; i++) { struct resource res; int ret; ret = of_address_to_resource(node, 1 + i, &res); rdist_regs[i].redist_base = of_iomap(node, 1 + i); if (ret || !rdist_regs[i].redist_base) { pr_err("%s: couldn't map region %d\n", node->full_name, i); err = -ENODEV; goto out_unmap_rdist; } rdist_regs[i].phys_base = res.start; } if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) redist_stride = 0; err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions, redist_stride, &node->fwnode); if (err) goto out_unmap_rdist; gic_populate_ppi_partitions(node); gic_of_setup_kvm_info(node); return 0; out_unmap_rdist: for (i = 0; i < nr_redist_regions; i++) if (rdist_regs[i].redist_base) iounmap(rdist_regs[i].redist_base); kfree(rdist_regs); out_unmap_dist: iounmap(dist_base); return err; } IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init); #ifdef CONFIG_ACPI static struct { void __iomem *dist_base; struct redist_region *redist_regs; u32 nr_redist_regions; bool single_redist; int enabled_rdists; u32 maint_irq; int maint_irq_mode; phys_addr_t vcpu_base; } acpi_data __initdata; static void __init gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) { static int count = 0; acpi_data.redist_regs[count].phys_base = phys_base; acpi_data.redist_regs[count].redist_base = redist_base; acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; count++; } static int __init gic_acpi_parse_madt_redist(struct acpi_subtable_header *header, const unsigned long end) { struct acpi_madt_generic_redistributor *redist = (struct acpi_madt_generic_redistributor *)header; void __iomem *redist_base; redist_base = ioremap(redist->base_address, redist->length); if (!redist_base) { pr_err("Couldn't map GICR region @%llx\n", redist->base_address); return -ENOMEM; } gic_acpi_register_redist(redist->base_address, redist_base); return 0; } static int __init gic_acpi_parse_madt_gicc(struct acpi_subtable_header *header, const unsigned long end) { struct acpi_madt_generic_interrupt *gicc = (struct acpi_madt_generic_interrupt *)header; u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; void __iomem *redist_base; /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */ if (!(gicc->flags & ACPI_MADT_ENABLED)) return 0; redist_base = ioremap(gicc->gicr_base_address, size); if (!redist_base) return -ENOMEM; gic_acpi_register_redist(gicc->gicr_base_address, redist_base); return 0; } static int __init gic_acpi_collect_gicr_base(void) { acpi_tbl_entry_handler redist_parser; enum acpi_madt_type type; if (acpi_data.single_redist) { type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; redist_parser = gic_acpi_parse_madt_gicc; } else { type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; redist_parser = gic_acpi_parse_madt_redist; } /* Collect redistributor base addresses in GICR entries */ if (acpi_table_parse_madt(type, redist_parser, 0) > 0) return 0; pr_info("No valid GICR entries exist\n"); return -ENODEV; } static int __init gic_acpi_match_gicr(struct acpi_subtable_header *header, const unsigned long end) { /* Subtable presence means that redist exists, that's it */ return 0; } static int __init gic_acpi_match_gicc(struct acpi_subtable_header *header, const unsigned long end) { struct acpi_madt_generic_interrupt *gicc = (struct acpi_madt_generic_interrupt *)header; /* * If GICC is enabled and has valid gicr base address, then it means * GICR base is presented via GICC */ if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) { acpi_data.enabled_rdists++; return 0; } /* * It's perfectly valid firmware can pass disabled GICC entry, driver * should not treat as errors, skip the entry instead of probe fail. */ if (!(gicc->flags & ACPI_MADT_ENABLED)) return 0; return -ENODEV; } static int __init gic_acpi_count_gicr_regions(void) { int count; /* * Count how many redistributor regions we have. It is not allowed * to mix redistributor description, GICR and GICC subtables have to be * mutually exclusive. */ count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, gic_acpi_match_gicr, 0); if (count > 0) { acpi_data.single_redist = false; return count; } count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, gic_acpi_match_gicc, 0); if (count > 0) { acpi_data.single_redist = true; count = acpi_data.enabled_rdists; } return count; } static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header, struct acpi_probe_entry *ape) { struct acpi_madt_generic_distributor *dist; int count; dist = (struct acpi_madt_generic_distributor *)header; if (dist->version != ape->driver_data) return false; /* We need to do that exercise anyway, the sooner the better */ count = gic_acpi_count_gicr_regions(); if (count <= 0) return false; acpi_data.nr_redist_regions = count; return true; } static int __init gic_acpi_parse_virt_madt_gicc(struct acpi_subtable_header *header, const unsigned long end) { struct acpi_madt_generic_interrupt *gicc = (struct acpi_madt_generic_interrupt *)header; int maint_irq_mode; static int first_madt = true; /* Skip unusable CPUs */ if (!(gicc->flags & ACPI_MADT_ENABLED)) return 0; maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; if (first_madt) { first_madt = false; acpi_data.maint_irq = gicc->vgic_interrupt; acpi_data.maint_irq_mode = maint_irq_mode; acpi_data.vcpu_base = gicc->gicv_base_address; return 0; } /* * The maintenance interrupt and GICV should be the same for every CPU */ if ((acpi_data.maint_irq != gicc->vgic_interrupt) || (acpi_data.maint_irq_mode != maint_irq_mode) || (acpi_data.vcpu_base != gicc->gicv_base_address)) return -EINVAL; return 0; } static bool __init gic_acpi_collect_virt_info(void) { int count; count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, gic_acpi_parse_virt_madt_gicc, 0); return (count > 0); } #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) static void __init gic_acpi_setup_kvm_info(void) { int irq; if (!gic_acpi_collect_virt_info()) { pr_warn("Unable to get hardware information used for virtualization\n"); return; } gic_v3_kvm_info.type = GIC_V3; irq = acpi_register_gsi(NULL, acpi_data.maint_irq, acpi_data.maint_irq_mode, ACPI_ACTIVE_HIGH); if (irq <= 0) return; gic_v3_kvm_info.maint_irq = irq; if (acpi_data.vcpu_base) { struct resource *vcpu = &gic_v3_kvm_info.vcpu; vcpu->flags = IORESOURCE_MEM; vcpu->start = acpi_data.vcpu_base; vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; } gic_set_kvm_info(&gic_v3_kvm_info); } static int __init gic_acpi_init(struct acpi_subtable_header *header, const unsigned long end) { struct acpi_madt_generic_distributor *dist; struct fwnode_handle *domain_handle; size_t size; int i, err; /* Get distributor base address */ dist = (struct acpi_madt_generic_distributor *)header; acpi_data.dist_base = ioremap(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE); if (!acpi_data.dist_base) { pr_err("Unable to map GICD registers\n"); return -ENOMEM; } err = gic_validate_dist_version(acpi_data.dist_base); if (err) { pr_err("No distributor detected at @%p, giving up", acpi_data.dist_base); goto out_dist_unmap; } size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); if (!acpi_data.redist_regs) { err = -ENOMEM; goto out_dist_unmap; } err = gic_acpi_collect_gicr_base(); if (err) goto out_redist_unmap; domain_handle = irq_domain_alloc_fwnode(acpi_data.dist_base); if (!domain_handle) { err = -ENOMEM; goto out_redist_unmap; } err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs, acpi_data.nr_redist_regions, 0, domain_handle); if (err) goto out_fwhandle_free; acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle); gic_acpi_setup_kvm_info(); return 0; out_fwhandle_free: irq_domain_free_fwnode(domain_handle); out_redist_unmap: for (i = 0; i < acpi_data.nr_redist_regions; i++) if (acpi_data.redist_regs[i].redist_base) iounmap(acpi_data.redist_regs[i].redist_base); kfree(acpi_data.redist_regs); out_dist_unmap: iounmap(acpi_data.dist_base); return err; } IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, gic_acpi_init); IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, gic_acpi_init); IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, gic_acpi_init); #endif